Lecture: Virtual Machines

Jan Vitek

CS Spring 2011

Java Virtual Machine

Java Virtual Machine

Operating System

Hardware Platform

Multiple Platforms

What is the "Machine"?

A few words of history

- 1985 James Gosling designs NeWS Network/extensible Window System for Sun Microsystems. NeWS is a portable dynamically-typed object-oriented language, with garbage collection, a portable code format, dynamic loading.
- 1992 James Gosling designs Oak

 a statically-typed object-oriented language for embedded devices.

 Oak has inheritance, garbage-collection, a portable intermediate representation, type-safe, but a syntax like C.
- 1995 Java, aka Oak, is introduced.
 It runs on devices with >20MB of main memory.

From Source Code to Running Program

```
Java Program
class HelloWorldApp {
     public static void main (String[] args) {
          System.out.println("Hello World!");
HelloWorldApp.java
                           Compiler
          Win32
                            UNIX
                                         MacOS
```

Java Virtualizes...

- · ... locale
- ... threading
- ... endianness
- ... memory models
- ... operating system
- ... program extension
- ... data representation
- ... memory management

A Main Reference Source

The JavaTM Virtual Machine Specification (2nd Ed) by Tim Lindholm & Frank Yellin Addison-Wesley, 1999

The book is on-line and available for download:

http://java.sun.com/docs/books/vmspec/

Implementing programming languages

Usual Programming Language Implementation Source Code Compiler Front-End Intermediate Code Another Programming Language Implementation Compiler Front-End

And Another Implementation

Run-time actions

Intermediate Code

Interpreter

An Overview

- Source code is translated into an intermediate representation, (IR)
- The IR can be processed in these different ways:
 - 1 compile-time (static) translation to machine code
 - 2 emulation of the IR using an interpreter
 - 3 run-time (dynamic) translation to machine code = JIT (Just-In-Time) compiling

What is IR?

IR is code for an idealized computer, a virtual machine.

A Small IR and its Interpreter (1/3)

We need a representation scheme for the bytecode. A simple one is:

- to use one byte for an opcode,
- four bytes for the operand of LDI,
- two bytes for the operands of LD, ST, JMP and JMPF.

As well as 0 for STOP, we will use this opcode numbering:

LDI	LD	ST	ADD	SUB	EQ	NE	GT	JMP	JMPF	READ	WRITE
1	2	3	4	5	6	7	8	9	10	11	12

The order of the bytes in the integer operands is important. We will use big-endian order.

A Small IR and its Interpreter (2/3)

It emulates the fetch/decode/execute stages of a computer.

```
for(;;) {
   opcode = code[pc++];
   switch(opcode) {
     case LDI:
         val = fetch4(pc); pc += 4;
         push (val);
         break;
     case LD:
         num = fetch2(pc); pc += 2;
         push( variable[num] );
         break;
     case SUB:
         right = pop(); left = pop();
         push( right-left );
```

A Small IR and its Interpreter (3/3)

```
case JMP:
         pc = fetch2(pc);
         break;
     case JMPF:
         val = pop();
         if (val)
             pc += 2;
         else
             pc = fetch2(pc);
         break;
   } /* end of switch */
} /* end of for loop */
```

The Java Classfile

JVM Architecture

The internal runtime structure of the JVM consists of:

- One: (i.e. shared by all threads)
 - method area
 - heap
- For each thread, a:
 - program counter (pointing into the method area)
 - Java stack
 - native method stack (system dependent)

Runtime structure

Datatypes

Java Bytecode

```
int bar(int i) {
    try {
        if (i == 3) return this.foo();
    } finally {
          this.ladida();
    }
    return i;
}
```

```
      Region
      Target

      1-12
      17

      13-16
      21
```

```
iload 1
01
                            // Push i
02
    iconst 3
                            // Push 3
03
    if_icmpne 10
                           // Goto 10 if i does not equal 3
    // Then case of if statement
                            // Push this
04
    aload_0
05
    invokevirtual foo
                           // Call this.foo
    istore_2
                           // Save result of this.foo()
06
07
    jsr 13
                           // Do finally block before returning
                            // Recall result from this.foo()
08
    iload 2
09
    ireturn
                            // Return result of this.foo()
    // Else case of if statement
10
    jsr 13
                            // Do finally block before leaving try
    // Return statement following try statement
11
    iload_1
                            // Push i
12
                            // Return i
    ireturn
    // finally block
13
    astore_3
                            // Save return address in variable 3
    aload_0
                           // Push this
14
15
    invokevirtual ladida // Call this.ladida()
16
                            // Return to address saved on line 13
    ret 3
    // Exception handler for try body
17
    astore_2
                            // Save exception
                            // Do finally block
18
    jsr 13
19
    aload_2
                            // Recall exception
20
    athrow
                            // Rethrow exception
    // Exception handler for finally body
21
    athrow
                            // Rethrow exception
```

Virtualizing Memory

- Memory is a set of objects with fields, methods and a class + local variables of a method
- Memory is read by accessing a field or local variable
- Memory is modified by writing to a field or local variable
- Location and size of data are not exposed
- Memory allocation is done by call in new

```
public class Main {
 static public
   void main(String[] a){
   Cell c1, c2 = null;
   while (true) {
     c1 = new Cell();
     c2 = c1;
```

- Question:
 - Does main () terminate?

```
class Cell {Cell next; }
```

Virtualizing Memory

- Memory is a set of objects with fields, methods and a class + local variables of a method
- Memory is read by accessing a field or local variable
- Memory is modified by writing to a field or local variable
- Location and size of data are not exposed
- Memory allocation is done by call in new

```
public class Main {
 static public
   void main(String[] a){
   Cell c1, c2 = null;
   while (true) {
     c1 = new Cell();
     c1.next = c2;
     c2 = c1;
```

Question:

- Does main () terminate?

```
class Cell {Cell next; }
```

Virtualizing Memory

- The semantics of new is as follows:
 - Allocate space for the object's fields and metadata fields
 - Initialize the metadata fields
 - Set all fields to null/zero/false
 - Invoke the user defined constructor method

Virtualizing memory

- Garbage collection is the technology that gives the illusion of infinite resources
- Garbage collection or GC is implemented by the programming language with the help of the compiler
 - Though for a some well-behaved C programs it is possible to link a special library that provides most of the benefits of GC
 - Question:
 - How does GC work?

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

- Mutation
- Stop-the-world
- Root scanning
- Marking
- Sweeping
- Compaction

Conclusion

- The Java Virtual Machine provides a level of abstract over the hardware and the operating system that hides their specificities
- Java source code is compiled to bytecode (javac)
- Bytecode is either interpreted or JIT-ed to execute by the JVM (java)

