Lecture: Virtual Machines
Jan Vitek

CS
Spring 2011

Java Virtual Machine
| 2

Java Virtual Machine
Operating System
Hardware Platform

Multiple Platforms

What is the “Machine”?

Applications

Libraries/Runtime System

Operating System

Execution Hardware

System Interconnect Memory
(bus) Translation

IO devices and _
Networking Main Memory

[James Smith, VEE'05]

A tew words of history

* 71985 - James Gosling designs NeWS - Network/extensible Window
System for Sun Microsystems. NeWS is a portable dynamically-typed
object-oriented language, with garbage collection, a portable code
format, dynamic loading.

* 1992 - James Gosling designs Oak
- a statically-typed object-oriented
language for embedded devices.
Oak has inheritance,
garbage-collection, a portable
intermediate representation,
type-safe, but a syntax like C.

* 1995 - Java, aka Odk, is introduced.
It runs on devices with >20MB of
main memory.

From Source Code to Running Program
7

class HelloWorldApp {
public static void main(String[] args) {
System.out.println(”Hello World!”);
}
}

HelloWorldApp.java +

g Compiler

Java Virtualizes...
| 8 |

* ... locale

e ... threading

v €N d 'aNNess The Java™ Virtual Machine Specification (2nd Ed)
* ... memory models 2 imLihoim . ok Yol

* ... operating system

* ... program extension

* ... data representation

° ... memory management

A Main Reference Source

The book is on-line and available for download:

http://java.sun.com/docs/books/vmspec/

J AV N The Java Virtual
Virtual Machine Machine Specification
Second Edition

-af-.b....__A = - W I Py
OREILLY" Jon Meyor & Troy Dewning sy ’

Implementing programming languages
Kl

Usual Programming Language Implementation Another Programming Language Implementation

Compiler Compiler
Front-End Front-End

Compiler
Back-End

(Compile-time actions)

Run-time actions

And Another Implementation
Compiler
Front-End

Just-In-Time
Compiler

/-J

Run-time actions

An Overview it

e Source code is translated into an intermediate representation,
(IR)

 The IR can be processed in these different ways:
1 compile-time (static) translation to machine code
2 emulation of the IR using an interpreter

3 run-time (dynamic) translation to machine code = JIT (Just-
In-Time) compiling

What is IR?

IR is code for an idealized computer, a virtual machine.

A Small IR and its Interpreter (1/3)

We need a representation scheme for the bytecode. A simple
one is:

 to use one byte for an opcode,
 four bytes for the operand of LDI,
 two bytes for the operands of LD, ST, JMP and JMPF.

As well as 0 for STOP, we will use this opcode numbering:

LDI |LD |ST |ADD | SUB | EQ |NE |GT |JMP |JMPF |READ WRITE
1 2 3 4 3) 6 14 8 9 10 11 12

The order of the bytes in the integer operands is important. We
will use big-endian order.

A Small IR and its Interpreter (2/3)

It emulates the fetch/decode/execute stages of a computer.

for(; ;) A
opcode = code[pc++];
switch (opcode) ({
case LDI:
val = fetchd(pc); pc += 4;
push (val) ;
break;
case LD:
num = fetch2(pc); pc += 2;
push(variable[num]) ;
break;
case SUB:
right = pop(); left = pop();
push(right-left);

A Small IR and its Interpreter (3/3)

case JMP:
pc = fetch2 (pc) ;
break;
case JMPF':
val = pop() ;
if (val)
pc += 2;
else
pc = fetch2 (pc) ;
break;

} /* end of switch */
} /* end of for loop */

The Java Classfile

Misc. Attributes

Method #1
Fields description of one method
Interfaces Local Variable Table
Constant Pool Line Number Table
Class Header Info. Exception Table
Bytecode Array

Method Header
Method #1

JVM Architecture

The internal runtime structure of the JVM consists of:

* One: (i.e. shared by all threads)
- method area
- heap
 For each thread, a:
« program counter (pointing into the method area)
- Java stack
- native method stack (system dependent)

Runtime structure

class loader

class e subsystem

files

|
|
| y
: method Java pc native
heap ; method
| area stacks registers
| stacks
|
|
|
| runtime data areas
|
" rm— == t— ————— " native
execution : native method :4 method

engine B S interface | libraries

Datatypes

Primitive
Types

Numeric
Types

/

returnValue

Reference
Types

reference

float
| rp.
Types \. double %
>
\
\ Y
byte '
Integral ‘\
Types
ypP short ‘\
i
1
int :
e ———— — — —]
K class types long .
¢ 7 ‘ I
v N
t - -4 interface types | char 1 ,'
L 7 J 1
\ "I
S P —— = 1 v
*{ array types two words

Java Bytecode

int bar(int i) {

try {
if (i == 3) return this.foo();
} finally {
this.ladida();
}
return i;

Region Target
1-12 17
13-16 21

01
02
03

04
05
06
07
08
09

10

11
12

13
14
15
16

17
18
19
20

21

iload_1 // Push i

iconst_3 // Push 3

if_icmpne 10 // Goto 10 if i does not equal 3

// Then case of if statement

aload_0 // Push this

invokevirtual foo // Call this.foo

istore_2 // Save result of this.foo()

jsr 13 // Do finally block before returning
iload_2 // Recall result from this.foo()
ireturn // Return result of this.foo()

// Else case of if statement

jsr 13 // Do finally block before leaving try
// Return statement following try statement

iload_1 // Push i

ireturn // Return i

// finally block

astore_3 // Save return address in variable 3
aload_0 // Push this

invokevirtual ladida // Call this.ladida()

ret 3 // Return to address saved on line 13
// Exception handler for try body

astore_2 // Save exception

jsr 13 // Do finally block

aload_2 // Recall exception

athrow // Rethrow exception

// Exception handler for finally body
athrow // Rethrow exception

Virtualizing Memory

* Memory is a set of objects with
fields, methods and a class +
local variables of a method

* Memory is read by accessing a
field or local variable

* Memory is modified by writing while (true) {

to a field or local variable cl = new Cell();
* Location and size of data are

not exposed c2 = cl;
* Memory allocation is done by

call in new

» Question:

- Does main () terminate? C-|.CISS Ce'“_ {Cel'l_ next; }

Virtualizing Memory

EX
* Memory is a set of objects with public class Main {
fields, methods and a class + static public

local variables of a method

void main(String[] a){
Cell cl1, c2 = null;

* Memory is read by accessing a
field or local variable

* Memory is modified by writing while (true) {

to a field or local variable cl = new Cell();
* Location and size of data are cl.next = c2;

not exposed c2 = cl;
* Memory allocation is done by 1

call in new

3
¥
» Question:

- Does main () terminate? class Cell {Cell HEXt; }

Virtualizing Memory

* The semantics of new is as follows:
» Allocate space for the object’s fields and metadata fields

» Initialize the metadata fields
» Set all fields to null/zero/false
» Invoke the user defined constructor method

metadata fields

B ———————————eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeey

next

class +
methods

Virtualizing memory

* Garbage collection is the technology that gives the illusion of infinite
resources

* Garbage collection or GC is implemented by the programming

language with the help of the compiler

» Though for a some well-behaved C programs it is possible to link a special
library that provides most of the benefits of GC

» Question:
- How does GC work?

e Mutation

Garbage Collection

e Stop-the-world

Garbage Collection

8/0

AC)\[- e Root scanning

Garbage Collection

=

0 [
/i)\ ‘ e Marking

Garbage Collection

e Marking

Q
H

OO0

D@ C
EWL
000000

@00
DO00|,

00|

Garbage Collection

e Sweeping

Garbage Collection

e Sweeping

Garbage Collection

Oo0O000
0000000

e Compaction

Conclusion

* The Java Virtual Machine provides a level of abstract over the
hardware and the operating system that hides their specificities

* Java source code is compiled to bytecode (javac)

* Bytecode is either interpreted or JIT-ed to execute by the JVM (java)

