Name: Career Account ID: Recitation#: 1

CS180 Spring 2011 Exam 1 with solutions, 28 February, 2011
Prof. Chris Clifton

Turn Off Your Cell Phone. Use of any electronic device during the test is prohibited.

Time will be tight. If you spend more than the recommended time on any question, go on to the next
one. If you can’t answer it in the recommended time, you are either going in to too much detail or the
question is material you don’t know well. You can skip one or two parts and still demonstrate what I believe
to be an A-level understanding of the material.

For multiple choice questions, please circle the letter next to your choice. If a question says “circle all that
are true”, then you will get one point for each correct one you circle, and lose one point for each incorrect
one you circle (you will not receive less than 0 points for a question.)

I would expect someone with an A-level knowledge of the material to score at least 33, someone with a B
level knowledge to score at least 24. If you received less than 14, you should probably come talk to me.

1 Types (1 minute, 2 points)
Which of the following is not a legal statement (or sequence of statements). Circle only one.

A boolean b;

b = true;
B String s;
s = true;

C int i = 3;
D String s = "3";

E double f;
f = 3;

Only B is not legal - the boolean value true cannot be assigned to a String.

2 Methods (7 minutes, 6 points)

Given the following method:

public int longerThan (String s, int len)
{
return s.length() - len;

}
Note: The exam as given had “string”, not “String”, for the first argument type. If you showed evidence
that you noticed this, then several other answers are possible.
2.1 Calling a Method (2 minutes, 2 points)

Assume you are calling it from another method in the same class. One of the following statements might
not compile; all the others do.
Circle the one that might be incorrect.

A if (longerThan ("abc", 3) > 0)
System.out.println("The String abc is longer than 3");

B System.out.println(longerThan(abc, 3));

C int a = 2 * longerThan("abc", 2);

Name: Career Account ID: Recitation#: 2

D longerThan("a", 4);

B is correct. If you showed evidence that you noticed the argument wasn’t a String, then
any answer consistent with your answer to 2.2 is acceptable.

2.2 Calling a Method part 2 (2 minutes, 2 points)

Explain your answer to 2.1. For full credit, describe conditions under which it would compile.
B will only compile if abc is declared as a variable of type String (String abc = ””;)
If you noted that longerThan takes a string, not a String, there are many other acceptable answers.
Scoring: 1 point for showing evidence you knew why it might not compile, 1 for conditions under which
it would.

2.3 Calling a Method part 3 (3 minutes, 2 points)

Assume that you had a main method in the same class as the longerThan method. I claim that none of the
statements in question 2.1 could be used in the main method. Explain why.

You cannot call a non-static method without having an object.

Main is static, so it is not running in an object. Hence a call to longerThan would not have
an object.

Again, if you noted that longerThan takes a string, not a String, there are many other acceptable answers.

3 Looping (10 minutes, 7 points)

Given the following for loop:

sum = 0;
for (int i = 0; i < 10; sum++)
i=1+ 2;

3.1 Code Execution (3 minutes, 2 points)
What is the value of sum after executing the above code (circle only one)?
AO
B 4
C5
D9
E 10

3.2 Proper Use of Loops (2 minutes, 2 points)

The above for loop is a poor style for using a for loop. Explain why (briefly).

The variable modified in the third part of the for should be the variable that is checked for
termination (1 point), the variable i should not be modified elsewhere (otherwise a while loop
would be more appropriate) (1 point), variables other than that used to check termination of
the loop should not be modified in the for statement (1 point), and the variable modified in the
for statement should not be used after the loop (1 point).

Name: Career Account ID: Recitation#: 3

3.3 Better Style (3 minutes, 3 points)

Rewrite the above loop (you may use a for, while, or do-while) in a better style. sum should have the same
value when the loop is complete as the above code.

sum = 0
int i =
while (i < 10) {
i=1i

or

sum = 0;
for (int 1 = 0; 1 < 10; 1i =1 + 2)
sum++;

Scoring: One point for having the same outcome using a loop to increment sum; one point each for
correcting style errors mentioned part 3.2.

4 Data Abstraction (2 minutes)

Which of the following statements are true regarding interfaces and data abstraction (circle all that are
true)? You will receive one point for each correct answer circled, and lose one point for each incorrect answer
circled.

A An interface can define the body of the functions within it.
B An interface can be used to provide an abstraction of some functionality.

C Defining a class which describes the attributes and behavior of a student is an example
of data abstraction.

D Data abstraction requires an interface to be designed and implemented.

5 Classes and Interfaces (5 minutes)

Consider the following interface and class signatures:

public interface I public class A implements J
{ {

public void £Q); //

public void gQ); }
}

public class B implements I

public interface J {
{ //

public void pQ); }

public void qQ);
}
5.1 Short Answer: Implementing an Interface (2 minutes, 2 points)

Minimally, how many methods must be written inside class A7 Name the methods.
2 methods (1 point), p and q (1 point).

Name: Career Account ID: Recitation#: 4

5.2 Multiple Choice: Creating Objects with Classes and Interfaces (2 minutes)

Which of the following declaration, object instantiation, and assignments are valid. (Circle all that are legal;
you get one point for each correct, and lose one point for each wrong one.)

AIi=newlIQ;
B I i = new BO;
C J j = new AQ);
D A a=new JO;

E B b = new BO;

B, C, and E are correct.
6 Chess Program (25 minutes, 16 points)

For the next few questions, you will work with the following program that
simulates a chess board. You don’t have to know how to play chess to do
this (and if you do, forget what you know, as our chess will have simplified
rules.)

A chessboard has rows and columns. The columns are named with letters.
(e.g., ’a’ or 'b’). The rows are numbered starting with 1.

public interface ChessPiece

{

boolean move(char toColumn, int toRow);
/* If toColumn and toRow is a legal place
* for this piece to move to, move it there
* and return true. Otherwise don’t move,
* and return false. */

void showPosition();
// Print the current position on System.out

}

public class Pawn implements ChessPiece
{

private char atColumn;

private int atRow;

public Pawn(char startingColumn)

{
atRow = 2; // Pawns always start in row 2.
atColumn = startingColumn;

}
public void showPosition()
{
System.out.println("Pawn is at " + atColumn + atRow);
}

}

Name: Career Account ID: Recitation#: 5

public class PlayChess

{
public static void main(String args[])
{
ChessPiece qp = new Pawn(’d’);
if (gp.move(’d’, 3))
System.out.println("You made a legal move");
else
System.out.println("Bad move") ;
// Done
}
}

6.1 Multiple Choice: Compilation (2 minutes, 2 points)
When you try to compile the above code, it gives the following error:
A variable qp might not have been initialized
B incompatible types. found: int, required: boolean
C Pawn is not abstract and does not override abstract method
D move(char,int) in ChessPiece cannot be applied to (int,int)
E cannot find symbol : constructor Pawn(char,int)

All are plausible errors, but only C occurs in the given code. For example, the constructor “Pawn(char,int)”
doesn’t exist, but since nobody tries to call such a constructor, it doesn’t matter.

A:1;B,C:0
6.2 Multiple Choice: Objects (2 minutes, 2 points)

Assume the error in Question 6.1 has been fixed, and the program compiles and runs without errors. When
the program reaches the line “// Done” in the main method, what objects are there in the system?

A No objects have been created.

B 1: a ChessPiece object.

C 1: a Pawn object.

D 2: a ChessPiece object and a Pawn object.

E 3: a ChessPiece object, a PlayChess object, and a Pawn object.

ChessPiece is an interface, you can’t create an object for an interface.

6.3 Short Answer: Using Interfaces (3 minutes, 3 points)

Assume that I have written a Knight class that implements the ChessPiece interface. I have also created a
knight object kk. Write a statement that will move the object kk to column f row 3. Hint: You do not write
any code that goes in the Knight class — that is already written, and you just have to use it. For full credit,
you should also check if this was a legal move and print a message if it was not.

if (! kk.move(‘f’,3)) System.out.println(“Not a legal move.”);

Scoring: 1 for using the kk object, 1 for correct arguments, 1 for checking result.

Name: Career Account ID: Recitation#: 6

6.4 Code: Implementing Interfaces (10 minutes, 9 points)

The Pawn class does not have the move method that is required by the ChessPiece interface. Write that
method. Assume that a pawn only moves one space forward at a time; that is, it always stays in the same
column, and moves to the next row (e.g., if a pawn is at column d row 2, it can only move to column d row
3; an attempt to move it anywhere else is not allowed.) Everything else you need to know is contained in
the code above.

public boolean move(char toColumn, int toRow)
{
if (toColumn == atColumn && toRow == atRow + 1) {
atRow = toRow;
return true;
}
else
return false;

3

Scoring: 1 for a "move” method, 1 for public, 1 for correct return type, 1 for correct arguments, 1 for
check on column, 1 for check on row, 1 for returning boolean, 1 for updating row, 1 for logically correct.

A common error was to use “toColumn.equals(atColumn)”. Since a char is a primitive type, and not an
object, you cannot call a method on it.

