
CS240

C Programming

Suresh Jagannathan

http://www.cs.purdue.edu/homes/cs240

{C}

http://www.cs.purdue.edu/homes/suresh/240-Fall2023

C
2

	int	a[]={0,1,2,3,4};

	r((int)a,	0,	5);

void	r(int	a,	int	i,	int	E)	{

		printf("%d\n",*((int*)a+i));

		if	(++i	<	E)	r(a,	i,	E);

}

Learning objectives
3

CS240 is your introduction to low-level programming

You will learn ...

‣to solve problems computationally

‣to design, implement, test, debug and evaluate complex algorithms

‣about language-level and machine-level representations of control and
data

‣to use production-level tools (C, Unix, Emacs, gdb, make, shell…)

Our programming language of choice is C, because

‣it is widely used in the industry

complex systems (from web browsers to operating systems) written in C/C++/Objective-C

‣it gives you fine-grain control over resources

whereas Java hides everything from you

‣it allows you to explore the interaction between software and hardware

C exposes architectural features

Workload
13 homeworks (programming assignments), ~13 take-home
quizzes, ~7 in-class quizzes, 2 midterms, 1 final

Grade mix:

‣ homeworks and quizzes 45%, midterms 30%, final 25%

4

2
6 1 2

4

M1

M2
F

3
7

0
6

1
4 5
8 9

2

13
11

12
10

Piazza

Main forum for interacting with instructors, TAs, and other
students

‣Link: www.piazza.com/CS240

Used to ask and clarify any issues pertaining to the course:

 lectures

 labs and projects

5

https://piazza.com/class/lkfjth9pkxlem/

None.

Rationale: In a large class it is not possible to accommodate requests for extensions

All assignments are handed on time.

• A penalty of 5% per quarter hour will be charged to all assignments

submitted after 9:00 pm on the day the assignment is due.

• No assignment will be accepted after 11:59 PM on the due date.

Late policy
6

Academic integrity
Any case of cheating will handled by the Dean of students

You are encouraged to discuss problems and approaches but:

‣Sharing solution is not allowed.

‣Buying solutions is not allowed.

‣Copying code from the internet is not allowed.

‣Copying code from other students is not allowed.

‣Copying partial code from other students is not allowed.

http://homes.cerias.purdue.edu/~spaf/cpolicy.html

Each year we catch students… they end up with an
F… and a record… is it worth it?

7

Generative AI
8

•Useful as an additional resource

•Not as a substitute student

•Won’t be able to use them on exams!

Attendance
Class attendance attendance is mandatory

‣If you miss class, get someone else’s notes…

Lab attendance is optional

‣If you miss a lab, try to get in on another session during the same week

Rationale:

‣ Slides may not be complete

‣ To prepare for exams, trust your notes and the book
‣

9

Office hours

Lab sessions are your first line of defense

‣Ask as many questions as you can…

Piazza is your second best bet

‣Can ask a question either in public or private

10

Quizzes
Short tests of your understanding of the lecture material

•Take-home: 24 hours to submit, 1 hour to complete once
started

•In-class: 5-7 minutes

Quizzes cover material directly found in the book

It is your responsibility to read the book and ask questions
ahead of class in case something is unclear

In-class quizzes will take place in the first five minutes of class
and are usually unannounced

11

Questions
Use the following algorithm

‣Ask on Piazza

‣Ask TA at lab

‣Ask Prof during class

 Rationale: This focuses the interaction and ensure best use of your time

Regrading questions

‣Regrading will only be done the week following release of the grade

‣Contact the TA responsible for the assignment/exam (see syllabus)

‣Midterm/Final issues are dealt by the Instructor, project/labs are dealt by
your TA and can be escalated to the Faculty member

It is your responsibility to check your grades!

12

Questions
How to ask a question on Piazza:

- Read the book, slides, notes

- Describe the problem clearly, using the right terms

-- Add output from compiler

- Add any other relevant information

Be polite and respectful of TAs’ time and we’ll do the same

Avoid anonymous questions...

13

History
14

Programming
Is programming a craft? an art? a science?

‣There are many ways to express some task

‣How do we know which is best?

We need to understand the tradeoffs…

‣e.g. iteration vs. recursion

15

void	r(int*	a,	int	i,	
int	E)	{

		
printf("%d\n",*(a+i));

		if	(++i	<	E)	

					r(a,	i,	E);

	}

	for	(int	i=0;	i<5;	i++)	

		printf("%d\n",a[i]);

int	a[]={0,1,2,3,4};

Programming
	int	a[]={0,1,2,3,4};

for	

		(int	i=0;	 
			i<5;	 
			i++)	

				printf(

						"%d\n", 
						a[i]);

16

create a 5 element array

loop from zero to
five
step by one

print
i-th elem followed by
newline

… and in Java
17

 int[] a = new int[]{0,1,2,3,4};
for (int i=0; i<5; i++)
 System.out.println(a[i]);

 int a[]={0,1,2,3,4};

for (int i=0; i<5; i++)

 printf("%d\n",a[i]);

Why C?
18

RELATED POSTS

Using DevOps
Automation to Deploy
Lambda APIs across
Accounts and
Environments

Build, train, and deploy
Amazon Fraud Detector
models using the open
source Python SDK

Python support policy
updates for AWS SDKs
and Tools

NEW in AWS Amplify
Flutter version 0.4.0

Deploying Sample UI
Forms using React,
Formik, and AWS CDK

Automate code reviews
with Amazon CodeGuru
Reviewer

New for Amazon
CodeGuru Reviewer –
Detector Library and
Security Detectors for
Log-Injection Flaws

Learn Amazon Simple
Storage Service transfer
configuration with Syne
Tune

Learn About AWS

What Is AWS?

What Is Cloud Computing?

AWS Inclusion, Diversity & Equity

What Is DevOps?

What Is a Container?

What Is a Data Lake?

AWS Cloud Security

What's New

Blogs

Press Releases

Resources for AWS

Getting Started

Training and Certification

AWS Solutions Portfolio

Architecture Center

Product and Technical FAQs

Analyst Reports

AWS Partner Network

Developers on AWS

Developer Center

SDKs & Tools

.NET on AWS

Python on AWS

Java on AWS

PHP on AWS

JavaScript on AWS

Help

Contact Us

File a Support Ticket

Knowledge Center

AWS re:Post

AWS Support Overview

Legal

AWS Careers

Create an AWS AccountCreate an AWS Account

! " # $  &

Amazon is an Equal Opportunity

Employer: Minority / Women /
Disability / Veteran / Gender
Identity / Sexual Orientation /
Age.

Language عربي | Bahasa Indonesia | Deutsch | English | Español | Français | Italiano | Português | Tiếng Việt | Türkçe | Ρусский | ไทย | ⽇本語 | 한국어 | 中⽂ (简体) | 中⽂ (繁體)

Privacy | Site Terms | Cookie Preferences | © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Go Rust

Synchronous Concurrent

AWS Open Source Blog

Sustainability with Rust
by Shane Miller and Carl Lerche | on 11 FEB 2022 | in Developer Tools, DevOps, Open Source, Sustainability | Permalink | ' Comments |

(Share

Rust is a programming language implemented as a set of open source projects. It combines the performance and

resource efficiency of systems programming languages like C with the memory safety of languages like Java. Rust started

in 2006 as a personal project of Graydon Hoare before becoming a research project at Mozilla in 2010. Rust 1.0 launched

in 2015, and in 2020, support for Rust moved from Mozilla to the Rust Foundation, a non-profit organization created as a

partnership between Amazon Web Services, Inc (AWS), Google, Huawei, Microsoft, and Mozilla. The Foundation’s mission

is to support the growth and innovation of Rust, and the member companies have grown from the founding 5 to 27

companies in the first year.

At AWS, Rust has quickly become critical to building infrastructure at scale. Firecracker is an open source virtualization

technology that powers AWS Lambda and other serverless offerings. It launched publicly in 2018 as our first notable

product implemented in Rust. We use Rust to deliver services such as Amazon Simple Storage Service (Amazon S3),

Amazon Elastic Compute Cloud (Amazon EC2), Amazon CloudFront, and more. In 2020, we launched Bottlerocket, a

Linux-based container operating system written in Rust, and our Amazon EC2 team uses Rust as the language of choice

for new AWS Nitro System components, including sensitive applications, such as Nitro Enclaves.

At AWS, we believe leaders create more than they consume and always leave things better than they found them. In

2019, AWS was proud to become a sponsor of the Rust project. In 2020, we started hiring Rust maintainers and

contributors, and we partnered with Google, Huawei, Microsoft, and Mozilla to create the Rust Foundation with a mission

to support Rust. AWS is investing in the sustainability of Rust, a language we believe should be used to build sustainable

and secure solutions.

Energy Efficiency in the CloudEnergy Efficiency in the Cloud

Source: IEA (2021), Global data centre energy demand by data centre type, 2010-2022, https://www.iea.org/data-and-
statistics/charts/global-data-centre-energy-demand-by-data-centre-type-2010-2022. All rights reserved.

Worldwide, data centers consume about 200 terawatt hours per year. That’s roughly 1% of all energy consumed on our

planet. There are a couple of really interesting things about the details of that energy use. If you look at the graph of

energy consumption, the top line is basically flat going back as far as 2010. That’s incredibly counter-intuitive give the

tremendous growth of big data, machine learning, and edge devices our industry has experienced over that same period

of time.

The second interesting detail is that while the top line of the graph is flat, inside the graph, the distribution over

traditional, cloud, and hyperscale data centers has changed dramatically in the same period. Those cloud and hyperscale

data centers have been implementing huge energy efficiency improvements, and the migration to that cloud

infrastructure has been keeping the total energy use of data centers in balance despite massive growth in storage and

compute for more than a decade.

There have been too many data center efficiency improvements to list, but here are a few examples. In compute, we’ve

made efficiency improvements in hardware and implemented smarter utilization of resources to reduce idle time. We’ve

slowed the growth of our servers with support for multi-instance and multi-tenant, and we’ve improved drive density

and efficiency for storage. We’ve also adopted more energy efficient building materials and cooling systems.

As incredible as that success story is, there are two questions it raises. First, is the status quo good enough? Is keeping

data center energy use to 1% of worldwide energy consumption adequate? The second question is whether innovations

in energy efficiency will continue to keep pace with growth in storage and compute in the future? Given the explosion we

know is coming in autonomous drones, delivery robots, and vehicles, and the incredible amount of data consumption,

processing, and machine learning training and inference required to support those technologies, it seems unlikely that

energy efficiency innovations will be able to keep pace with demand.

The energy efficiency improvements we’ve talked about so far have been the responsibility of AWS, but just like security,

sustainability is a shared responsibility. AWS customers are responsible for energy efficient choices in storage policies,

software design, and compute utilization, while AWS owns efficiencies in hardware, utilization features, and cooling

systems. We are also making huge investments in renewable energy.

AWS is on a path to have 100% of our data centers powered with renewable energy by 2025, but even renewables have

an environmental impact. It will take about half a million acres of solar panels to generate the 200 terawatt hours of

energy used by data centers today. The mining, manufacturing, and management of that many solar panels has

substantial environmental impact. So, while we’re really proud of our success with renewable energy, as Peter DeSantis,

SVP, AWS said at re:Invent 2020, “The greenest energy is the energy we don’t use.”

Renewables should not replace energy efficiency as a design principle. In the same way that operational excellence,

security, and reliability have been principles of traditional software design, sustainability must be a principle in modern

software design. That’s why AWS announced a sixth pillar for sustainability to the AWS Well-Architected Framework.

What that looks like in practice is choices like relaxing SLAs for non-critical functions and prioritizing resource use

efficiency. We can take advantage of virtualization and allow for longer device upgrade cycles. We can leverage caching

and longer TTLs whenever possible. We can classify our data and implement automated lifecycle policies that delete data

as soon as possible. When we choose algorithms for cryptography and compression, we can include efficiency in our

decision criteria. Last, but not least, we can choose to implement our software in energy efficient programming

languages.

Energy Efficient Program LanguagesEnergy Efficient Program Languages

There was a really interesting study a few years ago that looked at the correlation between energy consumption,

performance, and memory use. This is a really common conversation in sustainability. Given how little visibility we have

into energy or carbon use by our services, is there a metric that can serve as a proxy? Can I look at my existing service

dashboards with infrastructure costs, performance, memory, etc and use the trends I see to infer something about the

trends in my service’s energy consumption?

What the study did is implement 10 benchmark problems in 27 different programming languages and measure execution

time, energy consumption, and peak memory use. C and Rust significantly outperformed other languages in energy

efficiency. In fact, they were roughly 50% more efficient than Java and 98% more efficient than Python.

It’s not a surprise that C and Rust are more efficient than other languages. What is shocking is the magnitude of the

difference. Broad adoption of C and Rust could reduce energy consumption of compute by 50% – even with a

conservative estimate.

So the question is why not use more C? The language and developer tools are extremely mature, and the size of the

developer community is much bigger than Rust. During his keynote at Open Source Summit in 2021, Linus Torvalds, the

creator of Linux, acknowledged that implementing code in C can be like juggling chainsaws. As a lifelong C programmer,

Torvalds knows that, “[C’s subtle type interactions] are not always logical [and] are pitfalls for pretty much anybody.”

Torvalds called Rust the first language he’s seen that might actually be a solution. Rust delivers the energy efficiency of C

without the risk of undefined behavior. We can cut energy use in half without losing the benefits of memory safety.

Several analyses have concluded that more than 70% of the high severity CVEs that occur in C/C++ would be prevented

by implementing those same solutions in Rust. In fact, the Internet Security Research Group (ISRG), the nonprofit that

supports the Let’s Encrypt project, the Certificate Authority for 260 million websites, has a goal to move all internet

security sensitive infrastructure to memory safe languages. The projects underway include support for Rust in the Linux

kernel and migrating curl to Rust implementations of TLS and HTTP.

Looking again at that study about correlation, we have measurements for more than just energy consumption. The

middle column shows the results for execution time, and the times for Rust and C are really similar. Both languages are

executing faster than other languages. That means, when you choose to implement your software in Rust for the

sustainability and security benefits, you also get the optimized performance of C.

Rust Customer Success StoriesRust Customer Success Stories

https://medium.com/tenable-techblog/optimizing-700-cpus-away-with-rust-dc7a000dbdb2

Tenable is a cyber security solutions provider focused on exposure visibility tools, and they had a sidecar agent that

filtered out unnecessary metrics. It was written in JavaScript and had been working in production for a few months when

the performance started to degrade due to scaling. Tenable decided to rewrite the filter in a more efficient language, and

they chose Rust for its performance and safety. The result was about a 50% improvement in latency at both the median

and the P95.

50% performance improvements are great, but here are some other graphs from that migration. Tenable also saw a 75%

reduction in CPU usage and a 95% reduction in memory usage. That is substantial savings, and that’s not just dollars

saved – that’s energy saved. These are the graphs of an energy efficient, sustainable implementation.

Rust is being used today to ship real world production software, but developers aren’t choosing Rust to reduce carbon

emissions. When we ask Rust developers why they started using Rust, by far the most common answer is some variant of

runtime performance, whether it is because Rust is faster or because Rust has more reliable tail latencies. It’s almost

always about performance.

https://discord.com/blog/why-discord-is-switching-from-go-to-rust

Discord started as a mostly Python, Go, and Elixir shop, and they had a problem with one of their key Go services. It was a

pretty simple service, but it had slow tail latencies. Because Go is a garbage collection (GC) language, as objects are

created and released, every so often, the garbage collector needs to stop execution of the program and run a garbage

collection pass. While the GC is running, the process is unable to respond to requests, and you can see the spikes on the

CPU and response time graphs when it’s running.

To fix the issue, Discord decided to try rewriting the service in Rust, and these are the results. The Go implementation is

on the left and the Rust implementation is on the right. While the GC spike pattern is gone on the Rust graph, the really

amazing difference is the magnitude of the change. The Go and Rust graphs are actually using different units.

The Rust version is more than 10 times faster over all with the worst tail latencies reduced 100 times. These are

incredible improvements, and because the server is able to respond to requests far more efficiently, fewer servers are

needed, which means that less energy is used. While Discord didn’t decide to start using Rust to reduce energy

consumption, that’s the impact.

Again, Rust isn’t the first efficient language. C has been around for a long time, but Rust is the first mainstream

programming language that is efficient without sacrificing safety. 70% of all high severity security vulnerabilities written

with C and C++ are due to memory unsafety, and Rust gives you efficiency without feeling like you’re playing with fire.

Revealing the Rust Secret SauceRevealing the Rust Secret Sauce

Most languages achieve memory safety by automatically managing memory at runtime with a garbage collector.

Garbage collectors track outstanding references to a piece of memory and when all references go out of scope, the

associated memory can be freed.

Instead of using a garbage collector to maintain safety, Rust uses ownership and borrow checking. Ownership is fairly

simple but has deep implications for the rest of the Rust programming language. In Rust, all memory is owned by a

single variable. That variable is called its owner. There can be only one owner at a time, but ownership of the data can be

passed around.

First, here is an example of message passing with Go. On the left side, we create a gift, then send it via the channel. On

some other go routine on the right side, the gift is received and opened. The Go’s garbage collector is going to manage

the memory for us. However, in the code on the left side, we accidentally opened the gift after sending it into the

channel. The gift is going to be opened twice, resulting in a bug.

Here is the same message passing example with Rust. The gift is created and assigned. We say that the `gift` variable

owns the data. Ownership of the gift is passed into the channel. The channel consumer receives the gift, taking

ownership, and is able to open it. If we try to open the gift after sending it into the channel, the compiler will shout at us,

because we are violating the ownership rules. Already, we are seeing how Rust helps us prevent bugs.

Because Rust enforces the rule that only one variable owns data, when that variable goes out of scope without passing

off ownership, there is no possible way for the data to be accessed. Rust takes advantage of that and will automatically

free the memory at that point. There is no need to manually free the memory.

Rust’s ownership model is part of the type system and based on a concept called affine types. An affine type imposes a

rule that every variable is used at most once. The key is to define what “used” means. In the context of Rust, a use is

either moving the data or dropping it. By using affine types, the Rust compiler is able to reason about a program and

enforce its ownership rules.

The affine type system used by Rust is based on the work done in the early 1990s, when some folks attempted to design

a garbage collector free lisp. While successful, they found that they lost a lot of runtime performance due to the

excessive copying introduced by not being able to have multiple references to the same piece of data.

And this gets us to the second innovation that has enabled Rust: the borrow checker. When writing larger programs we

tend to use abstractions to help organize ideas. One abstraction that you’re probably familiar with is a function.

Functions often require arguments. With only ownership, to call a function, we would need to pass ownership of the data

into the function and the function would need to pass ownership of the data back when returning. This requires copying

memory around and was the source of garbage collector-less lisp performance challenges.

To solve this, Rust lets you borrow data. So, if we have a gift, we own it. It is ours. If our friend wants to admire it, she can

borrow it for a moment, but then she has to give it back to us. Also, while our friend is borrowing the gift, we cannot

hand off ownership of the gift to anyone else, because it is currently being borrowed. Most crucially, the Rust compiler

enforces these rules, so our friend can’t just run off with the gift. And because the Rust compiler enforces that guarantee,

when borrowing data, memory doesn’t have to be copied. The memory stays where it is, and a pointer is passed around.

The pointer is guaranteed to be valid. When you put it all together, you have a system that is efficient and prevents bugs,

even as the program gets larger and more complex.

And the same system that prevents memory unsafety can also prevent data races, a category of concurrency bug. A data

race happens when two or more threads are concurrently accessing the same data and at least one of those accesses is a

mutation. The type system that models ownership and borrowing is able to uphold the same guarantee across multiple

threads, enabling more aggressive use of concurrency.

Here is an example of how easy it can be to safely add concurrency to a Rust application. We have a function that iterates

through an array of numbers and sums all even numbers. This is a highly parallelizable operation and for very large

arrays, we could see the function getting significantly faster by adding concurrency.

The left side shows a single threaded version and the right side shows you the parallel version using the rayon library.

And look at how similar the functions are. You get all the power of concurrency, without the hazards, by basically writing

the same code. The only difference is that we use the par_iter() method instead of iter().

The parallel version will spread the computation across many threads, all while avoiding copying the array of numbers

being passed as the argument. Rayon is able to provide this API safely thanks to Rust’s ownership and borrow checking

system. All the checks to guarantee safety happen at compile time.

Getting Started with RustGetting Started with Rust

Hopefully, by now we have gotten you interested in Rust and starting your journey of sustainability in the cloud. So

where to start? The good news is, all the content you need is available online and there are places you can go to get

started.

First, you will need to learn the Rust programming language. The Rust book is an excellent resource to get started

learning the language. It will help you get the Rust toolchain installed and teach you the language. The website also has

exercises and lots of code examples to read. If you get stuck at any point, have questions, or need clarification, you can

post on the user forum or talk directly on the community Discord server. The Discord server is usually the fastest way to

get help. There are always people active there who can answer questions in real time.

Once you have gone through the Rust website, you should be comfortable enough to start building things, but there is

another resource we want to call out for diving deeper. The Crust of Rust is a great youtube channel by Jon Gjenset. He

does really deep dives on various Rust related topics, popping the hood and explaining how things work. His videos are

multiple hours long, but we keep hearing from people how valuable they are for learning Rust.

The Future of RustThe Future of Rust

https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html

Rust is challenging to learn. Of the more than 8,000 developers responding to the 2020 Rust user survey, only about 100

identified as “expert”, and of the respondents that said they were no longer using Rust, 55% cited learning or

productivity as their reason for abandoning the language.

It takes experienced engineers 3-6 months of study, supported by access to subject matter experts, to become productive

with Rust. Some engineers have likened learning Rust to learning to eat your vegetables, and while many of them love it

once they are productive, a lot of engineers are deciding against learning it or abandoning the effort before they become

productive. The potential impact of Rust on sustainability and security will only materialize if we turn the broccoli into a

brownie.

SlashData, State of the Developer Nation Q3 2021

No one developer, service, or corporation can deliver substantial impact on sustainability. Adoption of Rust is like

recycling; it only has impact if we all participate. To achieve broad adoption, we are going to have to grow the developer

community.

The Rust developer community has been the fastest growing over the last two years, but based on historical trends, we

know that of the half million developers that joined the Rust community in the last 12 months, most of them are not yet

proficient with the language. We have some work to do on the Rust developer experience.

The question that raises is which developer experience? Engineers working on the Linux kernel have a very different ideal

developer experience than an engineer building a database service or an engineer delivering a retail website. We can

identify the Rust user personas by looking at three dimensions.

The first distinction is their reason for coming to Rust. Are they choosing Rust for performance? For security? For

sustainability? The second distinction is domain. Are they working in an embedded environment with restricted

resources? Are they working in machine learning with long running jobs that have huge amounts of data in incremental

computations? The third distinction is the developer’s experience. Are they a systems programmer? Maybe they’ve only

worked with dynamically typed languages?

We need to evolve those permutations of priority, domain, and developer experience into personas that allow us to

develop a robust understanding, a common vocabulary, and an explicit set of engineering trade offs. We usually give

these personas names, so let’s consider an example we’ll call “Bob”.

Bob is building a cryptographic solution, and he’s choosing Rust for the security properties. Bob has a distinct set of

engineering trade offs. Bob prioritizes security over performance; he prioritizes security over operations. What that

means in practice is that Bob would rather have a slow response than plain text, and he would rather have an outage

than respond to an unsigned request.

For each of these personas, there are unique engineering trade offs, and what we want to do is to create a space in the

Rust landscape that’s well-defined and easily discoverable and empowers all the Bobs to collaborate on building the best,

whole developer experience for themselves without negatively impacting other personas.

Rust is an amazing technology to sustain and secure our industry, and you can start doing that today. We have a lot of

work to do before everyone can use Rust, and the Rust Foundation is working to create platforms for effective, cross

industry collaboration on that work. We hope you’ll join us.

Shane Miller

Shane Miller leads the AWS Rust team, and she is chair of the Rust Foundation. Shane started working in

software development as an engineer nearly 30 years ago. Since then, she’s held the roles of principal

engineer, university faculty, business owner, principal technical program manager, and senior engineering

manager.

Carl Lerche

Carl Lerche has been involved in open source for the past fifteen years. He first got involved with Ruby on

Rails and co-authored the Bundler package manager for Ruby. Carl was an early contributor to the Rust

programming language landscape and authored much of the asynchronous I/O infrastructure, including

Tokio. Carl is currently a Principal Engineer at AWS where he leads the development on the Tokio stack.

TWh

225

200

175

150

125

100

75

50

25

Hyperscale

Cloud(non-hyperscale)
Traditional

201 2012 2013 101 2018 2019 2020 202 202

' View Comments

AWS Podcast
Subscribe for weekly AWS news

and interviews

Learn more)

AWS Partner Network
Find an APN member to

support your cloud business

needs

Learn more)

AWS Training & Certifications
Free digital courses to help you

develop your skills

Learn more)

Resources

Follow

Open Source at AWS

Projects on GitHub

* AWS Open Source

* AWS Cloud

+ Facebook

, LinkedIn

Twitch

- Open Source RSS

. Email Updates

AWS Events
Discover the latest AWS events in your
region
Learn more)

Blog Home Category / Edition / Follow / Search Blogs 0

Contact Us Support / My Account /

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More

Click here to return to Amazon Web Services homepage Create an AWS AccountCreate an AWS AccountSign In

Energy E�ciency across Programming Languages
How Do Energy, Time, and Memory Relate?

Rui Pereira
HASLab/INESC TEC

Universidade do Minho, Portugal
ruipereira@di.uminho.pt

Marco Couto
HASLab/INESC TEC

Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

Francisco Ribeiro, Rui Rua
HASLab/INESC TEC

Universidade do Minho, Portugal
fribeiro@di.uminho.pt
rrua@di.uminho.pt

Jácome Cunha
NOVA LINCS, DI, FCT

Univ. Nova de Lisboa, Portugal
jacome@fct.unl.pt

João Paulo Fernandes
Release/LISP, CISUC

Universidade de Coimbra, Portugal
jpf@dei.uc.pt

João Saraiva
HASLab/INESC TEC

Universidade do Minho, Portugal
saraiva@di.uminho.pt

Abstract
This paper presents a study of the runtime, memory usage
and energy consumption of twenty seven well-known soft-
ware languages. We monitor the performance of such lan-
guages using ten di�erent programming problems, expressed
in each of the languages. Our results show interesting �nd-
ings, such as, slower/faster languages consuming less/more
energy, and how memory usage in�uences energy consump-
tion. We show how to use our results to provide software
engineers support to decide which language to use when
energy e�ciency is a concern.

CCS Concepts • Software and its engineering → Soft-
ware performance; General programming languages;

Keywords Energy E�ciency, Programming Languages, Lan-
guage Benchmarking, Green Software

ACM Reference Format:
Rui Pereira,Marco Couto, Francisco Ribeiro, Rui Rua, JácomeCunha,
João Paulo Fernandes, and João Saraiva. 2017. Energy E�ciency
across Programming Languages: How Do Energy, Time, and Mem-
ory Relate?. In Proceedings of 2017 ACM SIGPLAN International
Conference on Software Language Engineering (SLE’17). ACM, New
York, NY, USA, 12 pages. h�ps://doi.org/10.1145/3136014.3136031

1 Introduction
Software language engineering provides powerful techniques
and tools to design, implement and evolve software lan-
guages. Such techniques aim at improving programmers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
h�ps://doi.org/10.1145/3136014.3136031

productivity - by incorporating advanced features in the lan-
guage design, like for instance powerful modular and type
systems - and at e�ciently execute such software - by de-
veloping, for example, aggressive compiler optimizations.
Indeed, most techniques were developed with the main goal
of helping software developers in producing faster programs.
In fact, in the last century performance in software languages
was in almost all cases synonymous of fast execution time
(embedded systems were probably the single exception).

In this century, this reality is quickly changing and soft-
ware energy consumption is becoming a key concern for
computer manufacturers, software language engineers, pro-
grammers, and even regular computer users. Nowadays, it
is usual to see mobile phone users (which are powerful com-
puters) avoiding using CPU intensive applications just to
save battery/energy. While the concern on the computers’
energy e�ciency started by the hardware manufacturers, it
quickly became a concern for software developers too [28].
In fact, this is a recent and intensive area of research where
several techniques to analyze and optimize the energy con-
sumption of software systems are being developed. Such
techniques already provide knowledge on the energy e�-
ciency of data structures [15, 27] and android language [25],
the energy impact of di�erent programming practices both in
mobile [18, 22, 31] and desktop applications [26, 32], the en-
ergy e�ciency of applications within the same scope [2, 17],
or even on how to predict energy consumption in several
software systems [4, 14], among several other works.

An interesting question that frequently arises in the soft-
ware energy e�ciency area is whether a faster program is
also an energy e�cient program, or not. If the answer is yes,
then optimizing a program for speed also means optimizing
it for energy, and this is exactly what the compiler con-
struction community has been hardly doing since the very
beginning of software languages. However, energy consump-
tion does not depends only on execution time, as shown
in the equation Ener�� = Time ⇥ Power . In fact, there are
several research works showing di�erent results regarding

256

What conclusions can we draw

from these results?

What are the characteristics of a

programming language that influence

these characteristics?

Getting started

#include <stdio.h>
int main() {
 printf("Hello World!\n");
}

19

public class Hello {
 public static void main(String[] s) {
 System.out.println("Hello World!”);
}

Compilation
#include <stdio.h>
#define HELLO "Hello World!\n"
int main() {
 printf(HELLO);
}

gcc -std=c99 -c hello.c

gcc -o a.out hello.o

./a.out

20

Start with a human readable file containing your
source program and possibly some references to
libraries

Call the C compiler to obtain an executable file,
which is a sequence of numbers that can run on
the target hardware

Compilation
#include <stdio.h>
#define HELLO "Hello World!\n"
int main() {
 printf(HELLO);
}

gcc -std=c99 -E hello.c

21

The compiler works in phases that transform the
program into the executable one step at a time.

One of the first steps is to expand

macro definitions and include

external declarations.

Compilation
#include <stdio.h>
#define HELLO "Hello World!\n"
int main() {
 printf(HELLO);
}

gcc -c hello.c
gcc -o a.out hello.o
./a.out

22

The compiler works in phases that transform the
program into the executable one step at a time.

The last step links libraries, e.g. I/O, to create

a stand alone executable binary

Roadmap
23

Int
rod

uc
tio

n

La
ng

ua
ge

 O
ve

rvie
w

Data
typ

es
, F

ile
I/O

More
 Fi

le
I/O

Con
tro

l-fl
ow

, a
sse

rt()

HW 2

HW 1

HW 0

Stru
ctu

res

Arra
ys,

 M
em

ory

More
 on

 m
em

ory

lay
ou

t

Bifie
lds

, u
nio

n

Poin
ter

s

More
 on

 Poin
ter

s

HW 5HW 4

HW 3

Add
res

s-o
f, m

allo
c

Lin
ke

d L
ists

Ind
ire

cti
on

Midt
erm

 Rev
iew

Fu
nc

tio
n P

oin
ter

s

HW 7

HW 6

Rec
urs

ion

Tre
es

Bitw
ise

 O
pe

rat
ion

s

Typ
es

Prep
roc

es
so

r

Callb
ac

ks

HW 10

Lib
rar

ies

More
 on

 Li
bra

rie
s

Buff
er

Ove
rflo

w

Rus
t

HW 13

More
 on

 R
us

t

Rev
iew

No C
las

s

No C
las

s

No C
las

s

No C
las

s

HW 8

HW 9

HW 11

HW 12

M
id

te
rm

M
id

te
rm

Goal?
24

