C5240

—E

=\
r”;{‘s‘]
c G

PROGRAMMING
LANGUAGE

C Programming

Suresh Jagannathan
http://www.cs.purdue.edu/homes/cs240

http://www.cs.purdue.edu/homes/suresh/240-Fall2023

C

int a[]={@) 1) 2)3J4};

r((int)a, @, 5);

void r(int a, int i, int E) {
printf("%d\n",*((int*)a+i));
if (++1 < E) r(a, i, E);

}

Learning objectives

CS240 is your introduction to low-level programming

You will learn ...

~to solve problems computationally
~to design, implement, test, debug and evaluate complex algorithms

~about language-level and machine-level representations of control and
data

>to use production-level tools (C, Unix, Emacs, gdb, make, shell...)

Our programming language of choice is C, because
~it is widely used in the industry

~it gives you fine-grain control over resources

~it allows you to explore the interaction between software and hardware

Workload

13 homeworks (programming assignments), = 13 take-home
quizzes, ~ 7 in-class quizzes, 2 midterms, 1 final

Grade mix:
> homeworks and quizzes 45%, midterms 30%, final 25%

F’

M>

M

Piazza

Main forum for interacting with instructors, TAs, and other
students

> Link: www.piazza.com/CS240

Used to ask and clarify any issues pertaining to the course:
lectures

labs and projects

https://piazza.com/class/lkfjth9pkxlem/

Late policy
o4
None.

Rationale: In a large class it is not possible to accommodate requests for extensions

All assignments are handed on time.
A penalty of 5% per quarter hour will be charged to all assignments

submitted after :00 pm on the day the assignment is due.
* No assignment will be accepted after 11:59 PM on the due date.

Academic integrity

Any case of cheating will handled by the Dean of students

You are encouraged to discuss problems and approaches but:

>Sharing solution is not allowed.

>Buying solutions is not allowed.

>»Copying code from the internet is not allowed.
>»Copying code from other students is not allowed.

> Copying partial code from other students is not allowed.

http://homes.cerias.purdue.edu/~spaf/cpolicy.html

Each year we catch students... they end up with an
F... and a record... is it worth it?

Generative Al
8

e Useful as an additional resource
e Not as a substitute student
* Won’t be able to use them on exams!

Attendance
o4
Class attendance attendance is mandatory

~If you miss class, get someone else’s notes...

Lab attendance is optionadl

~If you miss a lab, try to get in on another session during the same week

Rationale:

> Slides may not be complete

» To prepare for exams, trust your notes and the book

Office hours

Lab sessions are your first line of defense

> Ask as many questions as you can...

Piazza is your second best bet

>»Can ask a question either in public or private

Quizzes

Short tests of your understanding of the lecture material

* Take-home: 24 hours to submit, 1 hour to complete once
started

* In-class: 5-7 minutes

Quizzes cover material directly found in the book

It is your responsibility to read the book and ask questions
ahead of class in case something is unclear

In-class quizzes will take place in the first five minutes of class
and are usually unannounced

Questions

Use the following algorithm

>~ Ask on Piazza
> Ask TA at lab
> Ask Prof during class

Regrading questions
~Regrading will only be done the week following release of the grade

> Contact the TA responsible for the assignment/exam (see syllabus)

> Midterm/Final issues are dealt by the Instructor, project/labs are dealt by
your TA and can be escalated to the Faculty member

Questions

How to ask a question on Piazza:

- Read the book, slides, notes

- Describe the problem clearly, using the right terms
- Add output from compiler

- Add any other relevant information
Be polite and respectful of TAs’ time and we’ll do the same

Avoid anonymous questions...

History

- ALGOLGO ,

B (programming language)

Multics U N Ix

UNIPLEXED
INFORMATION
COMPUTING SYSTEM

Programming

Is programming a craft? an art? a science?

>There are many ways to express some task

»How do we know which is best?

We need to understand the tradeoffs...

>e.g. iteration vs. recursion
int a[]={@, 1,2, 3)4};
void r(int* a, int i,
int E) { for (int i=0; i<5; i++)
printf("%d\n",a[i]);
printf("%d\n",*(a+i));
if (++1i < E)
r‘(a) i) E);

Programming

e
int a[]={0,1,2,3,4}; create a 5 element array

for

(int 1=0; oop from zero to
i<5; five
i++) step by one
i orint
printf(-th elem followed by
"%d\n", newline

al[i]);

... and in Java
a7

int[] a = new 1nt[]{0,1,2,3,4};
for (int i=0; i<5; i++)

System.out.println(a[i]);

int a[]={0,1,2,3,4};
for (int i=0; 1i<5; i++)

printf("%d\n",a[i1]);

(c) Fortran
(c) Swift
(c) Haskell
(v)C#
(¢) Go
(i) Dart
(v) F#
(i) JavaScript
(v) Racket
(i) TypeScript
(i) Hack
(i) PHP
(v) Erlang
(i) Lua
(i) Jruby
i) Rub
on

(i) Perl

(¢) Go
(c) Pascal

(¢) Ocaml

(v) C#

(v) Lisp

(c) Haskell

(c) Swift

(¢) Fortran

(v) F#

(i) JavaScript
(i) Dart

(v) Racket

(i) Hack

(i) PHP

(v) Erlang

(i) Jruby

(i) TypeScript
(i) Ruby

1.54
(v) Lisp 1.92
(c) Haskell 2.45
(i) PHP 2.57

Energy Efficiency across Programming Languages
How Do Energy, Time, and Memory Relate?

Rui Pereira Marco Couto
HASLab/INESC TEC
Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

HASLab/INESC TEC
Universidade do Minho, Portugal
ruipereira@di.uminho.pt

Jacome Cunha

Jo@o Paulo Fernandes

Francisco Ribeiro, Rui Rua
HASLab/INESC TEC
Universidade do Minho, Portugal
fribeiro@di.uminho.pt
rrua@di.uminho.pt

Joao Saraiva

NOVA LINCS, DI, FCT Release/LISP, CISUC HASLab/INESC TEC
Univ. Nova de Lisboa, Portugal Universidade de Coimbra, Portugal Universidade do Minho, Portugal
jacome@fct.unl.pt jpf@dei.uc.pt saraiva@di.uminho.pt
Abstract productivity - by incorporating advanced features in the lan-

This paper presents a study of the runtime, memory usage
and energy consumption of twenty seven well-known soft-
ware languages. We monitor the performance of such lan-
guages using ten different programming problems, expressed
in each of the languages. Our results show interesting find-
ings, such as, slower/faster languages consuming less/more
energy, and how memory usage influences energy consump-
tion. We show how to use our results to provide software
engineers support to decide which language to use when
energy efficiency is a concern.

CCS Concepts « Software and its engineering — Soft-
ware performance; General programming languages;

Keywords Energy Efficiency, Programming Languages, Lan-
guage Benchmarking, Green Software

ACM Reference Format:

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jacome Cunha,
Jodo Paulo Fernandes, and Jodo Saraiva. 2017. Energy Efficiency
across Programming Languages: How Do Energy, Time, and Mem-
ory Relate?. In Proceedings of 2017 ACM SIGPLAN International
Conference on Software Language Engineering (SLE’17). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3136014.3136031
1 Introduction

Software language engineering provides powerful techniques
and tools to design, implement and evolve software lan-
guages. Such techniques aim at improving programmers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SLE’17, October 23-24, 2017, Vancouver, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5525-4/17/10...$15.00
https://doi.org/10.1145/3136014.3136031

guage design, like for instance powerful modular and type
systems - and at efficiently execute such software - by de-
veloping, for example, aggressive compiler optimizations.
Indeed, most techniques were developed with the main goal
of helping software developers in producing faster programs.
In fact, in the last century performance in software languages
was in almost all cases synonymous of fast execution time
(embedded systems were probably the single exception).

In this century, this reality is quickly changing and soft-
ware energy consumption is becoming a key concern for
computer manufacturers, software language engineers, pro-
grammers, and even regular computer users. Nowadays, it
is usual to see mobile phone users (which are powerful com-
puters) avoiding using CPU intensive applications just to
save battery/energy. While the concern on the computers’
energy efficiency started by the hardware manufacturers, it
quickly became a concern for software developers too [28].
In fact, this is a recent and intensive area of research where
several techniques to analyze and optimize the energy con-
sumption of software systems are being developed. Such
techniques already provide knowledge on the energy effi-
ciency of data structures [15, 27] and android language [25],
the energy impact of different programming practices both in
mobile [18, 22, 31] and desktop applications [26, 32], the en-
ergy efficiency of applications within the same scope [2, 17],
or even on how to predict energy consumption in several
software systems [4, 14], among several other works.

An interesting question that frequently arises in the soft-
ware energy efficiency area is whether a faster program is
also an energy efficient program, or not. If the answer is yes,
then optimizing a program for speed also means optimizing
it for energy, and this is exactly what the compiler con-
struction community has been hardly doing since the very
beginning of software languages. However, energy consump-
tion does not depends only on execution time, as shown
in the equation Epergy = Time X Power. In fact, there are
several research works showing different results regarding

What conclusions can we draw

from these results?

What are the characteristics of a
programming language that influence
these characteristics?

Getting started

o
#include <stdio.h>

int main() {
printf("Hello World!\n");

public class Hello {
public static void main(String[] s) {
System.out.println("Hello World!”);

}

Compilation

#include <stdio.h>
#define HELLO "Hello World!\n"
int main() {

printf (HELLO);

gcc -std=c99 -c hello.c

gcc -o a.out hello.o 33 4§

hexdump a.o

C1
0000010
0000020
./a.out
0000040

ARARAAE A
VLUOLOSU

0000070
0000080

Compilation

#include <stdio.h>

#define HELLO "Hello World!\n"

int main() { T o
printf (HELLO); "<built-in>"

} "<command=line>"

1 "h.C"
37 "/usr/include/i386/
typedef signed char)

typedef unsigned char

gcc —Std=C99 -FE hello.c # 238 "/usr/include/stdio.h
int fprintf (FILE * , const char e attribute

)}
void perror (const char ¥*);
int printf (const char * ,

int puts (const char ¥);

500 "/usr/include/stdio.h™ 2 3 4
2 "h.c" 2

int main()
printf ("Hello World!\n");

Compilation

#include <stdio.h>
#define HELLO "Hello World!\n"
int main() {

printf (HELLO);

} \
gcc -c¢ hello.c

gcc -o a.out hello.o
./a.out

12 % nm a.out

000000100001048
000000100001050

})000000100001060
}1000000100000000
})000000100001058

)000000100000£00

)000000100000ecO

Roadmap
23 |

K

é&@l ‘®
0 @

’\:
<
Q¥

‘@ NSO O A

K

Goal?

R INCIUGE <51AI0. W,
int main(void)

1

NICE TRY.,

\
-

int count 2

for (count =13 count{=500 scounts++)

prmTE (“I will not Throw paper dirplangs class.”);
(eturn O; |

