
{C}
Lecture 6

Structures

Structures
2

In C
‣functions organize sequence of instructions into logical units
‣structures groups variables in logical units

A C struct is a named collection of one or more variables,
possibly of different types

struct slot {
 int x;
 char c;
 }

slot is the name (tag) of the structure; x and c are members

Comparison with Java
class Slot { struct slot {
 int x; int x;
 char c; char c;
} }

 Java C

Difference between the two:
‣No inheritance

‣No methods

‣A Java variable of type Slot is a pointer

‣A C variable of type slot denotes the structure with no indirection

3

Structures
 struct slot { int x; char c; }

Tag names can be used after a struct has been declared
 struct slot s1, s2;

The size of a struct is obtained by calling sizeof
 sizeof(s2)

Accessing a member is done with the dot operator
 s1.x

Pointers to structures can be defined
 struct slot* p = &s1;

Two equivalent syntactic ways to access members by reference
 p->x
 (*p).x

4

Size
If a structure contains dynamically allocated members, the size
of whole struct may not equal sum of its (referenced) parts

 struct word { char* w; int l; }

‣sizeof(struct word) is 8 bytes.
‣Internal padding means that sizeof may be larger than expected

 struct ex { int a; char b; int c; };
‣Is sizeof(struct ex) == 2*sizeof(int)+sizeof(char) ?

5

Structs in structs…
A structure can contain a member of another structure

 struct pos { int x; int y; }

 struct slot {
 struct pos p;
 char c;
 } s;

Access x via: s.p.x

The size of slot is exactly the same as if the fields of pos were
written inline in slot

In terms of performance there is no cost to nested structures

6

Recursive structures
What is the meaning of

 struct rec { int i; struct rec r; }

A structure cannot refer itself directly.
The only way to create a recursive structure is to use pointers

 struct node {
 char *word;
 int count;
 struct node *left,*right;
 }

7

Anonymous Structures
8

struct y;
struct x { struct y *p; /* ... */ };
struct y { struct x *q; /* ... */ };

struct s* p = NULL; // tag naming an unknown struct declares it
struct s { int a; }; // definition for the struct pointed to by p
void g(void)
{
 struct s; // forward declaration of a new, local struct s
 // this hides global struct s until the end of this block
 struct s *p; // pointer to local struct s
 // without the forward declaration above,
 // this would point at the file-scope s
 struct s { char* p; }; // definitions of the local struct s
}

http://en.cppreference.com/w/c/types/NULL

Structures and functions
Structures can be initialized, copied as any other value
They can not be compared directly
‣instead one must write code to compare members one by one
‣Or compare the addresses of the structures (usually not the right answer)

Functions can return structure instances
‣What is the cost in terms of memory allocation, copy, and performance?
‣What’s the difference between arrays and structures in this sense?

 struct pt { int x, y; };
 struct pt mkpt(int x, int y) {
 struct pt t; t.x = x; t.y = y; return t;
 }

 struct pt p1 = mkpt(0, 0);

9

Typedef
A declaration form that allows us to create new data type
names:

 typedef int len;

 len l1, l2;

 typedef struct { len x, y;} pos;

 pos p1, p2;
‣ Notice the difference. No struct needed when using the type.

 unsigned int uint5[5];

 typedef unsigned int uint5[5]

 uint5 arr = {1, 2, 3, 4, 5};

10

Example
struct coord {
 float x;
 float y;
 float z;
};
typedef struct coord coord_type;

coord_type add_coord(coord_type a, coord_type b) {
 coord_type sum = { 0.0, 0.0, 0.0 };
 sum.x = a.x + b.x;
 sum.x = a.x + b.x;
 sum.y = a.y + b.y; sum.z = a.z + b.z;
 return sum; }

#include <stdio.h>
void print_coord(coord_type coord) {
 printf(“(%f, %f, %f)”, coord.x,
 printf(“(%f, %f, %f)”, coord.x, coord.y, coord.z);

 return; }

11

Declaration vs Definition
struct hey {
 int foo;
 int bar;
};

struct point {
 int x;
 int y;
} pt;

12

A structure declaration

A structure definition

Generally, declarations occur outside functions, while
definitions typically occur inside. Why?

Initialization
13

struct person {
 char name[40];
 char title[15];
 int ssNum[9];
};

struct person ae = {“Albert”, “Prof”, {1,2,3,4,5,6,7,8,9}};
struct person z = {0};

struct {int sec, min, hour, day, mon, year;} z
 = {.day=31,12,2014, .sec=30,15,17};
 // initializes z to {30,15,17,31,12,2014}

struct example {
 struct addr_t { int port; } addr;
 struct {
 int a8[4];
 int a16[2];
 } in_u;
};
struct example ex2 = { // current object is ex2
 .in_u.a8[0]=127, 0, 0, 1, .addr=80};
struct example ex3 = {80, .in_u={ // changes current object
 127,
 .a8[2]=1 // this designator refers to the member of in_u
 } };

char person_name[20] = “Mike”;
char person_title[15] = “Guy”;
int id[9] = 123;
struct person mike = {person_name, person_title, id}

What about:

Initialization
14

#include <stdio.h>
typedef struct { int k; int l; int a[2]; } T;
typedef struct { int i; T t; } S;
T x = {.l = 43, .k = 42, .a[1] = 19, .a[0] = 18 };
 // x initialized to {42, 43, {18, 19} }
int main(void)
{
 S l = { 1, // initializes l.i to 1
 .t = x, // initializes l.t to {42, 43, {18, 19} }
 .t.l = 41, // changes l.t to {42, 41, {18, 19} }
 .t.a[1] = 17 // changes l.t to {42, 41, {18, 17} }
 };
 printf("l.t.k is %d\n", l.t.k); // .t = x sets l.t.k to 42 explicitly
 // .t.l = 41 would zero out l.t.k implicitly
}

Structure elements implicitly initialized to zero when defined outside a function; absent
any initialization, contain undefined elements inside a function. “Partially” initialized
structures have their implicitly initialized elements zeroed.

http://en.cppreference.com/w/c/io/fprintf

Aggregate Initialization
15

struct foo { char s[4]; int n; };
struct foo x[] = { { { "abc" }, 1 }, // inits x[0] to { {'a','b','c','\0'}, 1 }
 [0].s[0] = 'q' // changes x[0] to { {'q','b','c','\0'}, 1 }
 };
struct foo y[] = { { { "abc" }, 1 }, // inits y[0] to { {'a','b','c','\0'}, 1 }
 [0] = { // current object is now the entire y[0] object
 .s[0] = 'q'
 } // replaces y[0] with { {'q','\0','\0','\0'}, 0 }
 };

Readings
K&R - Chapter 6, pp. 127-143

16

