
{C}
Lecture 7

Arrays  and

Memory Layout




Arrays
char a[2][3];

Creates a two dimensional array of characters


What is the value of a?  


What is the address of a?


How is the data stored?


What is the relationship between arrays and pointers?


Can they be converted?

2



Experimenting… 
char a[2][3];                                                                                     
    
printf("%p\n",  a      );                                                                               
printf("%p\n", &a      );                                                                              
printf("%p\n", &a[0]   );                                                                           
printf("%p\n", &a[0][0]);                                                                        
printf("%p\n", &a[0][1]);                                                                        
printf("%p\n", &a[0][2]);                                                                        
printf("%p\n", &a[1][0]);                                                                        
printf("%p\n", &a[1][1]);             

3

0x7fff682ba976
0x7fff682ba976
0x7fff682ba976
0x7fff682ba976
0x7fff682ba977
0x7fff682ba978
0x7fff682ba979
0x7fff682ba97a



Arrays
char a[2][3];

An array variable’s value is the address of the array’s first 
element


A multi-dimensional array is stored in memory as a single array 
of the base type with all rows occurring consecutively


There is no padding or delimiters between rows


All rows are of the same size


4



Pointers and arrays
There is a strong relationship between pointers and arrays


   int a[10];
   int* p;

A pointer (e.g. p) holds an address while the name of an array 
(e.g. a) denotes an address


Thus it is possible to convert arrays to pointers


   p = a;

Array operations have equivalent pointer operations


   a[5]     ==     *( p + 5 )

Note that a=p or a++ are compile-time errors.

5



Pointers to arrays
char a[2][3];

Multi-dimensional array that stores two strings of 3 characters. 
(Not necessarily zero-terminated)


char a[2][3]={“ah”,”oh”};

Array initialized with 2 zero-terminated strings.


char *p = &a[1];

while( *p != ‘\0’ ) p++;

Iterate over the second string

6



Memory: on the hardware side
7

@ http://computer.howstuffworks.com/computer-memory.htm/printable



Memory: on the software side
8

Each computer programming languages offers a different 
abstraction 


The goal is to make programming easier and improve portability 
of the source code by hiding irrelevant hardware oddities


Each language offers a memory API -- a set of operations for 
manipulating memory


Consider the differences between C and Java



Memory: the C Story
C offers a story both simpler and more complex than Java

Memory is a sequence of bytes, read/written by providing an 
address

Addresses are values manipulated using arithmetic & logic 
operations

Memory can be allocated:

‣Statically

‣Dynamically on the stack

‣Dynamically on the heap


9

Heap

0x1000434



Memory layout
The OS creates a process by assigning memory 
and other resources

C exposes the layout as the programmer can take 
the address of any element (with &)

Stack: 

‣keeps track of where each active subroutine should return 
control when it finishes executing; stores local variables


Heap: 

‣dynamic memory for variables that are created with 
malloc, calloc, realloc and disposed of with free 


Data: 

‣global and static variables


Code: 

‣instructions to be executed

Stack

Heap

Code

Data

Virtual 
Memory

10



Static and Stack allocation
Static allocation 
with the 
keyword static
Stack allocation 
automatic by the 
compiler for 
local variables

printf can 
display the 
address of any 
identifier

11

#include <stdio.h>

static int sx;
static int sa[100];
static int sy;

int main() {
int lx;
static int sz;

printf("%p\n", &sx);
printf("%p\n", &sa);
printf("%p\n", &sy);
printf("%p\n", &lx);
printf("%p\n", &sz);
printf("%p\n", &main);

0x1029e0004
0x1029e0010
0x1029e01a0
0x30964404c
0x1029e0000
0x1029dbf20



Static and Stack allocation
Any value can 
be turned into 
a pointer


Arithmetics on 
pointers 
allowed


Nothing 
prevents a 
program from 
writing all 
over memory

12

static int sx;
static int sa[100];
static int sy;

int main() {
  for(p= (int*)0x100001084; 
      p <= (int*)0x100001230;
      p++) 
 {
    *p = 42;
  }
  printf("%i\n",sx);
  printf("%i\n",sa[0]);
  printf("%i\n",sa[1]);

42
42
42



Sizeof
In C, programmers must know the size of data structures

The compiler provides a way to determine the size of data using 
the sizeof function; it has no runtime effect 

13

struct {
 int i; char c; float cv;
} C;

int x[10];
printf("%i\n", (int) sizeof(char));
printf("%i\n", (int) sizeof(int));
printf("%i\n", (int) sizeof(int*));
printf("%i\n", (int) sizeof(double));
printf("%i\n", (int) sizeof(double*));
printf("%i\n", (int) sizeof(x));
printf("%i\n", (int) sizeof(C));

1
4
8
8
8
80
12


