[.Lab 5
Web Server

Tasks

® Basic Web Server

® Concurrent Web Server

® Defaults to the basic web
server in special cases

e Handles three different methods
for implementing concurrency

Basic Server

Components

® Opening the socket

®* Listening for incoming requests

* Accepting a request and processing it

®* Reading the HTTP header

® Getting the document path

®* Expanding the path*

® Figuring out the Content type

® Writing the HTTP reply header
* Writing data

® Close connection

Opening/Listening on a socket

Op ening (from daytime-server.cc)

int masterSocket = socket(PF_INET, SOCK_STREAM, 0)

int err = setsockopt(masterSocket, SOL SOCKET, SO REUSEADDR,
(char *) &optval, sizeof(int));
int error = bind(masterSocket,
(struct sockaddr *)&serverIPAddress,
sizeof(serverIPAddress));

Listening (again from daytime-server.cc)

int error = listen(masterSocket, QueueLength);

What i1s QueuelLength ?

Incoming Requests

® Waiting for an 1ncoming request

while(1){
int slaveSocket = accept(masterSocket,
(struct sockaddr *)&clientIPAddress,
(socklen t*)&alen)
b

e What 1s missing ?
while(1){

int slaveSocket = accept(masterSocket,

(struct sockaddr *)&clientIPAddress,
(socklen t*)&alen);

Incoming Requests

® Waiting for an 1ncoming request

while(1){
int slaveSocket = accept(masterSocket,
(struct sockaddr *)&clientIPAddress,
(socklen t*)&alen)
b

e What 1s missing ?
while(1){

int slaveSocket = accept(masterSocket,

(struct sockaddr *)&clientIPAddress,

(socklen t*)&alen)
processRequest(slaveSocket);
close(slaveSocket);

processRequest(socket)

1. Read the HTTP header(adapted from daytime-
SErver.cc)

while((n = read(socket, &newChar, sizeof(newChar)){

length++;
if(newChar == ' "){
if 1 have not seen GET
int gotGet = 1;

else if I have not seen docPath
curr_string[length-1]=0;

strcpy(docpath, curr_string);

b
else if(newChar == "n' && oldChar == "\r'){
break;

b

else{
oldChar = newChar;
currString[length-1] = newChar;

b

j

Read the remaining header and ignore it. We don't need it

2. get the document path

3. map the document path to the real file

char cwd[256] = {0};
cwd = getcwd(cwd);
if docpath begins with “/icons” make filepath

cwd+"http-root-dir/”+docpath
if docpath begins with “/htdocs” make filepath

cwd+"http-root-dir/”+docpath
else make filepath

cwd+"http-root-dir/htdocs’+docpath

When 1i1s the docpath *“/” ? what do we do ?
cwd+""http-root-dir/htdocs/index.html”

4. Expand filepath

Expand “..” , return error if 1t results in a
path which maps to

cwd+"/http-root-dir”
or higher

Invalid : lore:1234/dirl/subdirl/../../../

(will take you to the parent of
htdocs, which 1s INVALID)

How do we check this ?

Check 1f the length of the expanded path
i1s less than the length of

cwd+"/http-root-dir”

5. Determine Content type

if(endsWith(filepath, ““.html”) ||

endsWith(filepath, “.html/’)){
strcpy(contentType, “text/html”);

b
if(endsWith(filepath, “.gif”) ||
endsWith(filepath, “.gif/")){
strepy(contentType, “image/gif”);

else

strcpy(contentType, “text/plain’™);

what 1s endsWith(const char *, char *) ?

6. Open the file
If open() fails, you need to send a 404

7. Send HTTP Reply Header

Format

HTTP/1.0 <sp> 200 <sp> Document <sp> follows <crlf>

Server: <sp> <Server-Type> <crlf>

Content-type: <sp> <Document-Type> <crlf>
{<Other Header Information> <crlf>}*

<crlf>

<Document Data>

HTTP/1.0 <sp> 404 File Not Found <crlf>

Server: <sp> <Server-Type> <crlf>

Content-type: <sp> <Document-Type> <crlf>

<crlf>

<Error Message>

Example, sending 404, File Not Found

const char *notFound = “File not Found”;

write(socket,
write(socket,
write(socket,
write(socket,
write(socket,
write(socket,

write(socket,

write(socket,
write(socket,
write(socket,
write(socket,
write(socket,
write(socket,
write(socket,
write(socket,
write(socket,

write(socket,

protocol, strlen(protocol));
1);

"404", 3);

"File", 4);

"Not", 3);

"Found", 5);

clrf, 2);

space,

"Server:", 7);
1);
serverType, strlen(serverType));

clrf, 2);

space,

"Content-type:", 13);
space, 1);
contentType, strlen(contentType));

clrf, 2);
clrf, 2);

notFound, strlen(notFound));

e Sending the file , start writing after two <clrf>
in the reply header

while(count = read(from file)){

if(write(to socket) != count){
perror(“write”);

b

e Various error conditions to send a error reply
http header (like 404)

* [llegal access, request path is in or above http-root-
dir/ and 1s not http-root-dir/htdocs or http-root-

dir/icons
* File does not exist or the path is invalid, example :
contains “...”, open() will take care of this.

In the above cases send a error reply to the
client

Concurrent Web Server

Process based (-1)

Modify the logic for calling processRequest()
as follows

while(1){
int slaveSocket = accept(blah blah blah);
pid t slave = fork();
if(fork == 0){

processRequest(slaveSocket);
close(slaveSocket);
exit(EXIT SUCCESS);

h
//Why do we need this ??

close(slaveSocket);

Clean Up Zombie Child Processes , use code
from the SHELL project (lab 3).

Thread based (-t)

Modify the logic for calling processRequest()
as follows :
while(1){
int slaveSocket = accept(blah blah blah);

//initialize pthread attributes

pthread create(&tid, &attr, (void * (*)(void
*))processRequest, (void *)slaveSocket):

close(slaveSocket);

Will this work ?? why or why not ?

Thread based (-t)

Modify the logic for calling processRequest() as
follows

while(1){
int slaveSocket = accept(blah blah blah);

//initialize pthread attributes

pthread create(&tid, &attr, (void * (*)(void
*))processRequestThread, (void *)slaveSocket);

processRequestThread(int socket){

processRequest(socket);
close(socket);

Thread Pool based (-p)

Before blocking on accept, do the following, block on accept
in the threads instead.

pthread t tid[5];
for(int 1i=0; i< 0;i++){
pthread create(&tid, &attr,

(void *(*)(void *))poolSlave,
(void *)masterSocket);

b
pthread join(tid[0], NULL);

void poolSlave(int socket){
while(1){

int slaveSocket = accept(blah blah blah);
//check if accept worked

processRequest(slaveSocket);
close(slaveSocket);

Some Issues :

1. You can add a mutex around the accept call in poolSlave
as mentioned on the handout.

2. In the process based concurrent version, the accept can
return -1 if SIGINT 1is caused with SIGCHILD, so you should
modify the check for the value of slaveSocket as follows

if(slaveSocket == -1 && errno == EINTR){

continue;

b

This just continues in the while loop.

3. In the thread pool example, you should call accept() only
in the threads, you should start the threads after the call
to listen().

Arguments

If no argument is specified , assume default
port and basic server model (single threaded)

If only port 1s given, assume basic server mode
(single threaded)

Both concurrency type and port can be specified
as follows :

myhttpd [-f]-t]-p] [<port>]

It 1s a good idea to verify that the arguments
given for port and type of concurrency are
valid.

Other Instructions

* Edit the given Makefile, if you are using
pthreads (which you will for threaded
concurrency), you should add

-Ipthread
to the flags. Also add a target for myhttpd.

® Turnin instructions are on the handout.

®* Please read the handout and the FAQ.

All the Best :)

