
The VLDB Journal
https://doi.org/10.1007/s00778-024-00863-y

SPEC IAL ISSUE PAPER

Optimizing LSM-based indexes for disaggregatedmemory

Ruihong Wang1 · Chuqing Gao1 · Jianguo Wang1 · Prishita Kadam1 ·M. TamerÖzsu2 ·Walid G. Aref1

Received: 15 March 2023 / Accepted: 4 June 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
The emerging trend of memory disaggregation where CPU and memory are physically separated from each other and are
connected via ultra-fast networking, e.g., over Remote Direct Memory Access (RDMA), allows elastic and independent
scaling of compute (CPU) and main memory. This paper investigates how indexing can be efficiently designed in the memory
disaggregated architecture. Although existing research has optimized the B-tree for this new architecture, its performance
is unsatisfactory. This paper focuses on LSM-based indexing and proposes dLSM,the first highly optimized LSM-tree for
disaggregated memory. dLSM introduces a suite of optimizations including reducing software overhead, leveraging near-data
computing, tuning for byte-addressability, and an instantiation over RDMA as a case study with RDMA-specific customiza-
tions to improve system performance. Experiments illustrate that dLSM achieves 2.3× to 11.6× higher write throughput than
running the optimized B-tree and four adaptations of existing LSM-tree indexes over disaggregated memory. dLSM is written
in C++ (with approximately 54,400 LOC), and is open-sourced.

Keywords Log-structured merge (LSM) tree · Disaggregated memory · RDMA

1 Introduction

Memory disaggregation is an emerging trend in modern data
centers to allow independent and elastic scaling. Companies,
e.g., Microsoft, Alibaba, and IBM, experiment with memory
disaggregation [1, 27, 56]. Unlike traditional data centers
that consist of a collection of traditional converged servers,
where compute (CPU) and memory are tightly coupled into
the same physical servers (Fig. 1a), withmemory disaggrega-
tion, compute and memory are physically separated and are

B Jianguo Wang
csjgwang@purdue.edu

Ruihong Wang
wang4996@purdue.edu

Chuqing Gao
gao688@purdue.edu

Prishita Kadam
pkadam@purdue.edu

M. TamerÖzsu
tamer.ozsu@uwaterloo.ca

Walid G. Aref
aref@purdue.edu

1 Purdue University, West Lafayette, IN, USA

2 University of Waterloo, Waterloo, ON, USA

connected via fast networking (Fig. 1b). In the new architec-
ture, there are two distinct types of servers in data centers to
provide compute and memory: compute nodes and memory
nodes.1 Each compute node has powerful computing capa-
bility, e.g., 100 s of CPU cores but limited local memory, e.g.,
a few GBs, while each memory node has weak computing
power, e.g., a few CPU cores, but abundant memory, e.g.,
100 s of GBs [27, 66, 79, 81, 88, 93–96].

Memory disaggregation provides substantial benefits for
data centers [1, 27, 56, 79, 81, 93–96]. It allows elastic and
independent scaling of compute and memory, and improves
memory utilization, which can be translated into lower total
cost of ownership (TCO) because memory is an expensive
resource. Also, it provides higher reliability as compute and
memory can fail and be upgraded independently without
affecting each other. Finally, it breaks the memory bound-
ary within a single machine and facilitates easier sharing of
main memory among multiple machines.

This paper focuses on indexing techniques for disaggre-
gated memory, where the majority of data is stored in remote
memory while caching hot data in local memory. Prior work,
e.g., Sherman [80], studies how to optimize B-tree indexing
for memory disaggregation. However, the write performance

1 With storage disaggregation, there are also dedicated storage nodes,
but this paper focuses mainly on memory disaggregation.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00863-y&domain=pdf


R. Wang et al.

Fig. 1 Traditional architecture vs. memory disaggregation

is unsatisfactory (as shown in Sec. 11). To improve per-
formance, this paper focuses on LSM-based (log-structured
merge tree) indexing [65] in the presence of memory disag-
gregation.

Why Disaggregated LSM-tree? (1) The LSM-tree fits
naturally into the two-level hierarchy of the disaggregated
memory setting with local memory and remote memory,
where the new updates are accumulated into local buffers
and are regularly flushed to the remote memory in the back-
ground. This can move network accesses off the write path,
because writes hit local buffers first. (2) The LSM-tree can
achieve high write performance by converting small random
writes to large sequential writes to best leverage network-
bandwidth [63, 80]. As in our experiments on Remote Direct
Memory Access (RDMA)Mellanox EDR ConnectX-4 NIC,
there is a 100× performance difference between transferring
the same amount of data in 64 byte units vs. 1MB units based
on the RDMA benchmark [7]. (3) Our experiments (Sec. 11)
show that the LSM-tree is feasible for disaggregated mem-
ory and, as expected, it outperforms the optimized B-tree on
writes (i.e., Sherman [80]) in this new architecture.

Challenges. There are unique challenges in realizing an
optimized LSM-tree over disaggregated memory. (1) The
ultra-fast networking significantly narrows the performance
gap between local and remote memories. Thus, software
overhead that traditionally has not been a concern for slower
devices, e.g., SSDs orHDDs, has now become a performance
bottleneck for modern hardware with high-performance net-
works. Thus, it makes sense to minimize software overhead
in this new setting. (2) The memory node has CPU cores to
performarbitrary computing that does not exist in othermem-
ory hierarchies. (3) In contrast to being block-addressable as
is the case in conventional storage devices, remote memory
is byte-addressable. Thus, index design needs to be aware
of byte-addressability. (4) Another challenge is the effec-
tive use of the complex communication interfaces as they
become crucial in the case of memory disaggregation, e.g.,
RDMA is non-trivial as it involves many alternative primi-
tives, e.g., one- vs. two-sided RDMA (Sec. 2.2). Realizing
efficient RDMA communication requires careful design.

The dLSM Approach. This paper presents dLSM, a
purpose-built LSM-based index for disaggregated memory.
dLSM investigates LSM-based indexing in this setting, and
introduces a number of optimizations to address the afore-
mentioned challenges. dLSM reduces the software overhead,
e.g., the synchronization. dLSM offloads LSM-tree com-
paction selectively to the remote memory node to reduce
data movement by exploiting the CPUs in memory nodes
if possible. dLSM tunes the index layout to leverage byte-
addressability in the remote memory. dLSM optimizes com-
munication including customized remote procedure calls
(RPC, for short) and asynchronous I/O.

The paper makes the following contributions:

• Index design over disaggregated memory:We present
the design of dLSM, the first optimized LSM-based index
for disaggregated memory. dLSM is implemented in C++
(with approximately 54,400 LOC), and is available as
open-source at https://github.com/ruihong123/dLSM.

• Reducing software overhead: dLSM reduces the soft-
ware overhead, e.g., the synchronization overhead.

• Near-data computing for remote compaction: dLSM
leverages the idea of near-data computing in the context
of the disaggregated memory architecture, and selec-
tively pushes down the LSM-tree compaction to the
remote memory to significantly reduce data transfer.

• Customized optimizations for byte-address -ability:
dLSM is tuned to deprecate the concept of block struc-
tures to leverage the byte-addressability in disaggregated
memory to improve performance.

• Customized optimizations for RDMA: We instanti-
ate dLSM over RDMA-enabled disaggregated memory.
dLSM applies RDMA-specific optimizations, e.g., asyn-
chronous I/O and customized RPC for high performance.

We instantiate dLSM over RDMA as a case study. How-
ever, many of the ideas (e.g., reducing software overhead
and customized optimizations for byte-addressability) can
be applied to other technologies, e.g., CXL [4].

Overview of Experiments. We conduct experiments to
evaluate dLSM using the standard RocksDB benchmark [9]
with 100 million key-value pairs (over a 40GB dataset).
We compare dLSM with five baseline solutions (Nova-LSM
[49], disk- and memory-optimized RocksDB, and Sherman
[80]) over the memory disaggregated architecture. Experi-
ments show that dLSM achieves 2.3× to 11.6× higher write
throughput while losing up to 12.5

This article is an extended version of the conference
version presented in [82]. We have the following new con-
tributions.

• We develop a new adaptive compaction strategy to auto-
matically adjust the LSM compaction to the remote

123

https://github.com/ruihong123/dLSM


Optimizing LSM-based indexes for disaggregated memory

memory node depending on varied computing power in
the remote memory node (Sec. 5.3).

• We introduce a new technique to optimize the usage of
buffer memory in the compute node, which makes the
index perform well when the data volume is large and
the local buffer size is limited (Sec. 6).

• Wedevelop a non-blocking transaction-consistent check-
pointing technique to make dLSM persistent (Sec. 8).

• We provide more technical details that are omitted in
the conference version [82], e.g., thread local queue
pair (Sec. 10.2.1), RDMA Memory Region allocator
(Sec. 10.2.2), and RDMA-based file system implemen-
tation (Sec. 11.1).

• We add new experiments for more comprehensive eval-
uation (Fig. 14 and Fig. 16).

Paper Organization. The rest of this paper proceeds as
follows. Sec. 2 presents background material. Sec. 3 demon-
strates the overall systemarchitecture. Sec. 4 presents the new
optimizations to reduce software overhead. Sec. 5 presents
optimizations that leverage near-data computing in the con-
text of remote compaction. Sec. 6 introduces optimizations
for byte-addressability. Sec. 7 introduces optimizations to
deal with the mixed workload. Sec. 8 demonstrates the way
to efficiently make dLSM persistent. Sec. 9 discusses the
method to extend dLSM onto multiple compute and mem-
ory nodes. Sec. 10 discusses the instantiation of dLSM over
RDMA-enabled disaggregated memory. Sec. 11 presents the
experimental evaluation of dLSM. Sec. 12 reviews related
work. Sec. 13 concludes the paper.

2 Background

2.1 Resource disaggregation

Resource disaggregation is an innovative technology in data
centers [27, 28, 66, 80, 88, 92, 94, 96], in large part due to the
recent breakthroughs in fast networking technologies, e.g.,
RDMA [51, 55]. Traditionally, data centers are composed of
servers that physically contain predefined amounts of com-
pute, memory, and storage connected by high-speed buses on
the same server box. However, in a fully disaggregated data
center, resources are separated into “disaggregated" compo-
nents connected by a fast network fabric. This brings inmany
benefits, e.g., higher resource utilization, better elasticity, and
lower cost [1, 27, 56, 93–96].

There are two popular types of resource disaggregation:
(1) Storage disaggregation that decouples compute from stor-
age; (2)Memory disaggregation that separates compute from
memory. Industrial-strength systems, e.g., Amazon AWS,
Alibaba Cloud, and Microsoft Azure, have deployed stor-
age disaggregation into production. They have reinvented

database systems, e.g., Aurora [76], PolarDB [26], and
Socrates [14] to explicitly optimize for disaggregated stor-
age.

Recently, memory disaggregation has gained significant
attention in both industry and academia [1, 5, 27, 53, 93, 94,
96]. In contrast to storage disaggregation, it is more challeng-
ing to optimizeDBMSs formemorydisaggregation due to the
increased severity of performance issues [53, 92–94]. More-
over, memory disaggregation usually relies on a high-speed
network fabric, e.g., RDMA, while storage disaggregation
can be built on conventional RPCs [76].

2.2 Interconnection for disaggregatedmemory

Ultra-fast networking technologies exist for interconnect-
ing compute and memory nodes. For example, RDMA is
a high-speed inter-memory communication mechanism with
low latency. It allows direct access to memory in remote
nodes [51]. It bypasses the host operating systemwhen trans-
ferring data to avoid extra data copy. RDMA operates over
Infiniband or lossless Ethernet. Its kernel-bypassing and low-
latency features make it applicable to high-performance data
centers [1, 5, 27, 96]. Another promising communication
technology is Compute Express Link (CXL) [4], which is
a high-speed interconnection between advanced CPU and
peripheral devices, e.g., CXL-extended memory. CXL con-
nection protocols guarantee cache coherence between CPU
cache and connected memory. Thus, the CPU can directly
access the remote CXL-based memory via load and store.
This paper focuses on RDMA as it is more mature.

2.3 Log-structuredmerge (LSM) tree

TheLSM-tree [65] is awidely used index inmodern data sys-
tems. It is optimized for write-intensiveworkloads by trading
randomwrites for sequential writes. It has a memory compo-
nent and multiple disk components. Writes are first inserted
into thememory component, andwhen it gets full, it is flushed
to disk to form a new disk component. The disk components
can be merged through a compaction phase to form multiple
layers. The LSM-tree is an immutable index structure as all
the disk components are immutable.

There aremany implementations of the LSM-tree. Among
these, RocksDB [10] – improved version of LevelDB [6] –
is one of the most widely adopted implementation. We use
the RocksDB implementation to introduce LSM-tree con-
cepts and terminology. Entry inserts, updates, and deletes
are all appended into a write buffer. The entries are first
written into a write batch that are committed all at once.
Then, the write batches are assigned with sequence numbers
to reflect the time order of the entries. To guarantee durabil-
ity, the write batch is written to a write-ahead log (WAL).
Then, the key-value pairs are inserted into an in-memory

123



R. Wang et al.

skip list [69], termed the MemTable. When the size of the
MemTable reaches a certain threshold, it is switched to an
immutable read-only table that waits for a scheduled flushing
task. Flushing serializes theMemTable to files termed sorted
string tables (SSTables, for short) that contain data blocks,
index blocks, and Bloom filters.

ptThe SSTables are organized into different levels. The
newly flushed SSTables are dumped into Level 0. Since the
SSTables in Level 0 are not sorted to improve write perfor-
mance, there is a limit (level0_stop_writes_trigger) for the
total number of SSTables in Level 0; exceeding the limit
results in a write stall. When the number of SSTables at one
level reaches a preset threshold, a compaction process is trig-
gered to merge data files into the next level. Compaction
works as follows. The target SSTables are picked from two
consecutive levels. All the SSTables within one level will be
ordered, and they do not have overlaps (except Level 0).Mul-
tiple background threads handle flush and compaction tasks.
When a task finishes, a background threadmodifies the LSM-
tree metadata to record this change in LSM-tree structure.

In order for a reader to fetch a key-value pair, a sequence
number is assigned for this reader to ensure that the proper
version is read, and any read-write conflicts are resolved
through snapshot isolation [10]. In order to have a consis-
tent view of the LSM-tree, the reader gets an immutable
copy of the LSM-tree metadata that corresponds to a snap-
shot. During the read process, the reader thread traverses
the MemTable and immutable tables, and then traverses the
SSTables from Levels 0 to n. Whenever the reader finds
the matched key-value pair, it returns directly and skips the
remaining tables. It also leverages Bloom filters to improve
read performance because if a key-value is not present in the
Bloom filter of a SSTable then it is not necessary to check
that SSTable.

3 Overview of dLSM architecture

Figure 2 gives the architecture of dLSM deployed on one
compute node and one memory node following prior LSM-
tree designs, e.g., as in RocksDB [10] and LevelDB [6] that
are designed for a single-node setting. This is appropriate
to describe dLSM’s design. Even in this configuration, there
are non-trivial and interesting challenges as mentioned in
Sec. 1. In Sec. 9, we discuss how to extend dLSM to multiple
compute and memory node configurations.

In the disaggregated memory setup that we study, a
compute node has strong computing resources and lim-
ited memory capacity, while a memory node has limited
computing power and large memory size. This asymmetric
architecture is exploited in dLSM so that the compute and
memory nodes hold different components of an LSM index.
The compute node keeps the MemTables while the memory

Fig. 2 Overall architecture of dLSM

node stores the SSTables. Moreover, the compute node keeps
the LSM-tree metadata, index blocks, and Bloom filters for
the SSTables to improve read performance.

Writes. dLSM supports concurrent writes and guarantees
snapshot isolation with minimal software overhead to best
unlock the potential of low-latency remote memory (Sec. 4).
The MemTable is implemented as a lock-free skip list [43,
69]. When the MemTable is full, it is switched into an
immutable MemTable ready to be flushed. Multiple back-
ground threads flush the immutable MemTable to remote
memory using asynchronous I/O.When the flushing finishes,
the background thread modifies the LSM-tree metadata in a
copy-on-write manner to support snapshot isolation.

Compaction. To reduce data movement among compute
and memory nodes, dLSM offloads the compaction process
to the memory node. This is termed near-data compaction
(Sec. 5).Basically, the compute nodedecideswhichSSTables
to compact, and sends relevant metadata information to the
memory node via an RPC. The memory node gets the input
SSTables’ metadata from the RPC to perform compaction.
After compaction completes, the compute node receives a
reply to modify the LSM-tree metadata accordingly. dLSM
addresses a number of challenges related to near-data com-
paction to improve performance (Sec. 5).

Reads. The reader traverses the MemTable, immutable
MemTable, and SSTables in the LSM-tree from the newest to
the oldest according to theLSM-treemetadata.With snapshot
isolation, a read refers to a proper version of the LSM-tree
metadata before searching the tables. A read does not con-
flict with the background compaction or flushing processes.
To accelerate reads, dLSM uses Bloom filters, and has a
new index layout to directly locate a single key-value pair
without fetching the whole block to take advantage of byte-
addressability in the remote memory (Sec. 6).

4 Minimizing software overhead

We present one optimization to improve dLSM’s through-
put by minimizing software overhead. For relatively slow

123



Optimizing LSM-based indexes for disaggregated memory

Fig. 3 Concurrent in-memory writes in dLSM

storage devices (e.g., SSDs or HDDs), software overhead
is negligible. However, it can be a performance bottleneck
for the ultra-fast networks such as RDMA. Significant soft-
ware overhead is present in existing disk-based LSM-tree
implementations [46]. This is due to maintaining concur-
rency control in the presence of concurrent writes to the
MemTable. Snapshot Isolation [21] is a concurrency tech-
nique that provides consistent reads in the presence of writes
and background compaction.

To support efficient concurrent writes to the MemTable,
dLSM follows existing systems in using a lock-free skip list
to minimize lock use. To support snapshot isolation, dLSM
relies on an atomic sequence number generator implemented
by fetch_and_add to assign a sequence number to each
writer without locking (Fig. 3). However, correctly switching
the MemTable to be immutable when multiple writers detect
that it is full remains a challenge, especially if we want to
minimize the lock synchronization to avoid its overhead.

A straightforward solution is to use double-checked lock-
ing to guarantee that only one writer switches the MemTable
successfully. With double-checked locking, the lock is not
acquired unless the writer finds that the current MemTable
exceeds its size limit. However, this is problematic, because
a newer MemTable cannot be guaranteed to contain the
most updated version of a key. The reason is that assign-
ing the sequence number and inserting the key-value pair to
MemTable are not collectively atomic. To illustrate, suppose
there are twowritersw1 andw2 inserting two different values
v1 and v2, respectively, for the same key k, and assume that
w1’s sequence number is larger thanw2’s (implying that v1 is
the newer version). Using the above approach, it is possible,
forw1 to insert v1 into the oldMemTable whilew2 inserts v2
into the newMemTable. Then, it is problematicwhen a reader
later searches for k. The result will be v2 and not v1 because
the read process stops upon finding the first matched key.

The dLSM Approach. dLSM introduces a new approach
to make MemTables immutable. To avoid the problem
mentioned above, each MemTable in dLSM is assigned a
predefined range of sequence numbers at its creation, e.g.,
4000−4999 inFig. 3. ThenewMemTable’s range is a consec-
utive range after the currentMemTable’s range.Whenwriters
insert the key-value pair into the MemTable, they check
the sequence number against the sequence number range
of the current MemTable to decide if a MemTable switch
is required. Figure3 gives an example where the sequence

Algorithm 1: In-memory write in dLSM.

1 Input : Write operation w.
2 Atomically get a sequence number n from sequence number
generator for w;

3 if n ≤ MemTable′s largest seq. number then
4 if n ≥ MemTable′s smallest seq. number then
5 InsertToMemTable(w);
6 else
7 Find the correct table in immutable table list;
8 InsertToMemTable(w);

9 else
10 Acquire the mutex lock for MemTable switching;
11 if n ≤ MemTable′s largest seq. number then
12 Switch the MemTable to be immutable;
13 Create a new MemTable;
14 InsertToMemTable(w);
15 else
16 if n ≥ MemTable′s smallest seq. number then
17 InsertToMemTable(w);
18 else
19 Find the correct table in the immutable table list;
20 InsertToMemTable(w);

number range of the current MemTable is 4000 − 5000.
Four concurrent writers try to insert key-value pairs into
the MemTable. Writers of 4999, 5000 insert directly into
the current MemTable as the sequence number is within the
range. The writers of 5001 and 5002 are outside the range of
the current MemTable’s sequence number range. Both try to
switch the MemTable. Double-checked locking guarantees
that only one writer can switch the MemTable. This solution
predefines which MemTable each key-value pair belongs to
so that a key-value pair with a new sequence number is guar-
anteed to be inserted into a new table. If the Memtable’s
sequence number range is sufficiently large, the writers will
rarely have their sequence numbers outside the MemTable’s
range, so the lock is rarely used. Thus, synchronization over-
head of in-memory writes is minimized.

Algorithm 1 lists the write process in dLSM. Before writ-
ing to a MemTable, the writer checks if this key-value’s
sequence number iswithin the range of the currentMemTable
(Lines 2 and 3). If so, the writer writes directly to the
MemTable without a lock (Line 4). Due to CPU schedul-
ing, the sequence number of a writer may also belong to an
immutable table. Then, thewriter iterates over the immutable
table list to find which immutable MemTable to insert the
key-value pair into (Lines 6 and 7). If the sequence num-
ber is larger than the upper-bound of the current MemTable,
then it is made immutable. The writer obtains the lock and
switches the MemTable to be immutable (Line 9). Multi-
ple writers may detect that the MemTable is full, but only
the first writer that successfully acquires the lock switches
the MemTable, and creates a new MemTable (Lines 11-13).
If any other writer’s sequence number is within the range of

123



R. Wang et al.

the newly createdMemTable, it directly inserts the key-value
pair (Line 16). Else, it finds the right immutable MemTable
to insert the key-value pair (Lines 18 and 19).

5 Near-data compaction

Near-data compaction leverages the compute capability of
the remote memory node. It can improve performance by
reducing data movement.

Main Idea.Near-data computing [8, 22, 25, 49, 87]moves
execution closer to data to reduce data movement. dLSM
adopts this strategy by offloading some of the LSM-tree com-
paction process to the remotememory node. The compaction
phase, if executed on the compute node, would read many
SSTables from the memory node, and then would write back
the merged SSTable to the memory node. This would lead
to significant data transfer over the network. However, push-
ing down all the compaction process to the remote memory
is sub-optimal because the remote computing power may
be limited. Furthermore, there is currently no consensus
regarding the amount of computing power available in the
disaggregated memory. The pushdown strategy should be
automatically adjusted according to the hardware configura-
tion (e.g., the number of remote CPU cores) and real-time
CPU usage in the memory node.

Near-data computing has been around for decades in
several contexts, e.g., database machines [35, 36], object
databases [44, 77], active disks [52, 71], Smart SSDs [38,
50, 67, 78], and storage disaggregation [8, 22, 25, 49]. We
investigate its use in realizing an LSM-based index for disag-
gregated memory. The novelty in dLSM is in applying near-
data computing to this new environment and in handling all
implementation challenges. dLSM differs from other works
on LSM-tree remote compaction for storage disaggregation,
e.g., Rockset [8], Nova-LSM [49], andHailstorm [22]. Rock-
set [8] offloads the compaction, but fetches the SSTables over
the network as the data is stored separately in S3.

Challenges. Efficiently offloading compaction to remote
memory in challenging. In dLSM, we address the follow-
ing questions: (1) How to place LSM-tree’s metadata to
ensure efficient near-data compactionwhile facilitatingquery
processing? (Sec. 5.1), and (2) How to perform garbage col-
lection in the context of near-data compaction? (Sec. 5.2)
(3) How to design an adaptive push-down strategy for com-
paction to achieve high performance regardless of hardware
configuration (e.g., the number of cores in remote memory)?
(Sec. 5.3)

5.1 Placing LSM-treemetadata

An important issue for near-data compaction is to decide
where to store the LSM-tree metadata. Metadata is critical to

LSM reads, writes, and compaction as it maintains SSTable,
e.g., the position and structures of the table contents in remote
memory. The metadata can be placed in remote memory to
easily perform the compaction task and efficiently access the
metadata for compaction. However, this significantly hurts
query performance as readers need to access the metadata
from remote memory (e.g., using RDMA read) to find the
SSTables. Thus, query latency will be high.

dLSM maintains the LSM-tree metadata in the compute
node.2 The compute node decides which SSTables to com-
pact, and triggers near-data compaction through a customized
RPC (Sec. 10.4). When the memory node receives the RPC,
it compacts these SSTables. dLSM applies the compaction
strategy as in Sec. 2.3. To reduce write-stalls from Level 0,
it uses multiple background compaction threads to divide a
large compaction task into multiple parallel sub-compaction
tasks. When compaction finishes, the memory node sends
an acknowledgement to the compute node that in turn issues
anotherRPC to copy themetadata of the compacted SSTables
to the desired working space.

dLSM has several optimizations to avoid network round
trips and memory copy by allowing the memory node to
allocate memory locally. Memory in the memory node is
divided into two disjoint memory regions where one region
is controlled (and allocated) by the compute node for regular
MemTable flushing while the other memory region is con-
trolled by the memory node itself for near-data compaction.
Then, the memory node can perform compaction in its pri-
vate memory space. After compaction finishes, the memory
node sends the metadata of the new SSTables to the com-
pute node in an RPC reply. The compute node modifies the
LSM-treemetadata according to the reply andmakes the new
SSTables visible to readers. From our experiments, on aver-
age, the SSTable metadata is modified every 0.02s. Thus,
metadata updates are synchronized by a mutex lock.

5.2 Garbage collection

As dLSM supports multiple versions, it becomes necessary
to perform garbage collection on obsolete data. Even though
SSTable compaction logically clears out old data versions,
the remote memory occupied by these obsolete SSTables
cannot be immediately reclaimed. This is because there may
still be readers referring to these old data versions.As a result,
garbage collection of remote memory remains a challenging
task. The following issues need to be addressed:

2 Note that it is possible to store a copy of LSM-tree metadata in the
memory node but the key point is that the compute node initiates and
controls the timing of compaction and the memory node performs the
task.

123



Optimizing LSM-based indexes for disaggregated memory

• How to garbage collect the obsoleted SSTables in the
remote memory efficiently and correctly when both com-
pute and memory nodes are involved in remote memory
allocation (due to near-data compaction)?

• When to garbage collect the SSTables?

To address the first issue, in dLSM, memory allocated
for near-data compaction is recycled by the memory node
while memory allocated for flushing is recycled by the com-
pute node. In dLSM, the SSTable metadata contains the node
ID denoting its origin. During garbage collection, a com-
pute node’s garbage collector identifies from the node ID
where the table is originally created. If it is local, the garbage
collector recycles its remote memory by the local allocator.
Otherwise, an RPC (See Sect. 10.4) is triggered to recycle the
tables’ memory remotely. To reduce communication, multi-
ple garbage collection tasks are grouped locally first and are
sent in batch to the remote memory.

To address the second issue, during reads, a dLSM’s reader
pins a snapshot of LSM-tree metadata before searching the
SSTables. The LSM-tree metadata snapshot further pins all
the SSTables that it contains. When a MemTable flush or
SSTable compaction finishes, the LSM-treemetadata ismod-
ified in a copy-on-write manner to create multiple LSM-tree
metadata snapshots. When reading finishes, a reader unpins
the LSM-tree metadata snapshot and unpins relevant SSTa-
bles that are garbage collected automatically.

5.3 Adaptive near-data compaction

Another significant design decision for near-data compaction
is to determine which compaction tasks should be delegated
to the remote memory node and which compaction tasks
should be executed at the compute node. Blindly pushing
down all compaction tasks may not achieve the best perfor-
mance because the computing power in the remote memory
node may be limited. Thus, an optimal compaction strategy
would dynamically consider the hardware configuration (in
the remotememory node) and the workload in order to adjust
its compaction strategy accordingly.

Main Idea. The compute node regularly monitors CPU
utilization on both sides and dynamically determines where
the compaction should be performed (see Algorithm 2). The
algorithm gives priority to Level-0 compaction (Line 2) due
to its significant impact on performance. For Level-0 com-
paction, we dynamically estimate the execution time using
the collected information and then allocate the compaction
to the side with the smaller estimated time. For compactions
at other levels, we assess the availability of cores in the
remote memory. If there are available cores, dLSM delegates
the compaction to the remote memory; otherwise, the com-
paction is performed at the compute node.

Challenges.There are a fewchallenges to realize the adap-
tive compaction strategy. (1) How to collect the essential
information for decision-making? (Sec. 5.3.1) (2) How to
prioritize Level-0 compaction and dynamically decide where
the compaction tasks should be placed? (Sec. 5.3.2) (3) How
to estimate the execution time with the given information for
Level-0 compaction? (Sec. 5.3.3)

Algorithm 2: Adaptive near-data compaction strategy
Input : Compaction task c.
Output: Decision for compaction placement.

1 Boolean NeedNearDataCompaction;
2 if c is in Level 0 then
3 if isLongTask(c) then
4 Estimate the execution time on both sides via the number

of all cores;
5 else
6 Estimate the execution time on both sides via the number

of available cores;

7 if the estimated execution time on the memory node is less
than that on the compute node then

/* push down the compaction */
8 NeedNearDataCompaction = true;
9 else

/* perform the compaction locally */
10 NeedNearDataCompaction = false;

11 else
12 repeat
13 Check the CPU utilization in both sides;
14 until memory_node.CPU_utilization < θ or

compute_node.CPU_utilization < θ ;
15 if memory_node.CPU_utilization < θ then
16 NeedNearDataCompaction = true;
17 else
18 NeedNearDataCompaction = false;

19 Return NeedNearDataCompaction;

5.3.1 Collecting essential information for compaction

Thenumber ofCPUcores aswell as the dynamicCPUutiliza-
tion for both sides are essential information for the adaptive
compaction policy. When dLSM is started, the compute node
gathers the CPU information from both sides. Then, the
memory node sends heartbeat RPCs (Sec. 10.4) to the com-
pute node every t milliseconds. The remote memory attaches
its current CPU utilization within each heartbeat. Thus, the
remote CPU utilization is refreshed every t milliseconds. t
should be far smaller than the time elapsed of a compaction
task,3 so the compaction decision can respond to workload
changes rapidly.

3 By our observation, a compaction lasts for at least 100 milliseconds.
Thus, we set t to 25ms by default.

123



R. Wang et al.

5.3.2 Algorithm for adaptive compaction

A straightforward algorithm for adaptive compaction is to
assign a compaction task to remote memory as long as there
is available computing power on the remote side. If the
compute node detects that the remote memory is about to
saturate all its computing resources, then the compute node
schedules compaction to local compute-side threads. How-
ever, this approach is sub-optimal for two reasons. First, it
treats Level-0 compaction the same as those of the other
levels. This is problematic due to the fact that Level-0 com-
paction takes longer time than the compaction of other levels
because all the SSTables in Level-0 are compacted together.
In addition, as noted earlier, Level-0 compaction has a more
significant impact on performance since only the over-sizing
in Level 0 causes write stall. Therefore, Level-0 compaction
should havehigher schedulingpriority. Second, this approach
ignores the fact that it is not ideal to always push down Level-
0 compaction to the remote memory node. To accelerate
the execution of Level-0 compaction, dLSM divides it into
multiple parallel tasks followingRocksDB.However, if com-
paction is always pushed down, a weak computing power of
the remote side may impede parallelism. For instance, if the
remote memory only has one core, then compacting on the
compute node with multiple threads performs better. Thus, it
is necessary for the compute node to estimate the execution
time on both sides before scheduling Level-0 compaction.

dLSM schedules Level-0 compaction with higher prior-
ity, as in Algorithm 2, by distinguishing it from compaction
at the other levels (Line 2). It uses different strategies to
determine where the compaction should be performed. For
Level-0 compaction, it estimates the execution time coarsely
for both sides (Sect. 5.3.3). Based on the estimated time for
both sides, it determines where to place Level-0 compaction.

For the other levels, it is beneficial to push down the com-
paction when there are available CPU cores on the remote
side. The reason is that the compaction tasks at these levels
only contain a few tables and are only handled by a single
thread, so the execution time is always shorter in the remote
memory if there are remote CPU cores available. As a result,
the compute node checks for CPU utilization on the remote
memory every time it schedules compaction outside Level-0.
If CPU utilization is smaller than a defined threshold θ , then
compaction is executed there.4 Otherwise, it is performed on
the compute node until the local compute power is exhausted.

5.3.3 Execution time estimation for compaction

We decide on the location of Level-0 compaction by roughly
estimating the execution time on both the compute andmem-

4 By default, θ equals to the CPU utilization when there is only one
core available.

ory nodes. Theoretically, the execution time of compaction
is proportional to the total size of SSTables participating in
the compaction divided by the parallelism the compaction
can achieve during execution. The total size of the SSTables
can be roughly determined by the number of SSTables to be
compacted, because most of the SSTables are of similar sizes
(64MB). Let T K

i be the estimated execution time for com-
pacting i SSTables, where K can be either compute side (C)
or memory side (M). T K

i can be calculated as follows:

T K
i = i × t Kavg

min((1 − μK ) × cK ,P)
(1)

where P is the maximum parallelism the compaction task
can support regardless of the given number of cores,5 μK

represents the most-recent known CPU utilization and cK
represents the number of the cores on side K . We use (1 −
μK )×cK to roughly quantify the number of unoccupied cores
at the moment. It also leverages t Kavg; the average compaction
execution time per unit SSTable given a single thread on side
K . We find that t Mavg is about half of t

C
avg , due to the network

I/O introduced by the execution on the compute node.
The above estimation function is accurate for short com-

paction tasks (smaller than 1 μs) but not for long ones. The
reason is that (1−μK )×cK can only represent the available
core temporarily. As current compaction tasks get finished,
the available number of CPU cores for Level-0 compaction
increases gradually and finally includes the total number
of CPU cores. Thus, Algorithm 2 prioritizes Level-0 com-
paction while the other compactions will be scheduled such
that Level-0 compaction is not overloaded. Therefore, if com-
paction takes too long, we replace the currently available
number of cores (1 − μK ) × cK with the total number of
cores cK , which leads to the following formula:

T K
i = i × t Kavg

min(cK ,P)
(2)

Therefore, in Algorithm 2, the compute node determines
whether the compaction task is a long-time compaction
before deciding on which side the compaction should be
placed. Note that whether a compaction is long or short is
relative to the current compaction task being executed. Thus,
we classify a Level-0 compaction as long when the estimated
execution time is longer than the execution time of the other
levels, which only contains few SSTables. Since we do not
know in advancewhich side the compactionwill be assigned,
we select Formula 2 to the memory side to roughly estimate
the execution time. Since the compactions at non-zero levels
are executed by a single thread, the execution time is equal

5 P equals the number of files in the second level of the compaction
input.

123



Optimizing LSM-based indexes for disaggregated memory

Fig. 4 Byte-addressable SSTable layout in dLSM

to i × t Kavg . Overall, we use the formula below to classify
whether a compaction is long or not:

i × t Kavg

min(cM ,P)
< s × t Kavg (3)

where the left-hand side is the time estimate following For-
mula 2 on the memory node, while the right-hand side is the
time estimate for compacting s SSTables. Empirically,dLSM
performs best when s is around 5.

6 Optimizing for byte-addressability

SSTables can be optimized for byte-addressability. LSM
indexes, e.g., RocksDB, use block-based SSTables as the
table format because they are optimized for block-based disk
storage, e.g., HDDs and SSDs. However, for memory dis-
aggregation, remote memory is byte-addressable. Existing
designs become sub-optimal as fetching a single key-value
pair still requires accessing awhole block causing read ampli-
fication. Although there are other data formats for SSTables,
e.g., Cuckoo Hashing table format [16] or PlainTable [39],
they fall short, e.g., Cuckoo Hashing does not support range
queries efficiently; PlainTable relies on mmap that cannot be
efficiently applied to remote memory settings.

Next,we introduce anoptimizedSSTable design for disag-
gregated memory to leverage byte-addressability in Sec. 6.1,
and further improve it in Sec. 6.2.

6.1 Byte-addressable SSTable layout

Data layout. dLSM drops the notion of “blocks” to directly
access a single key-value pair (Fig. 4). This improves read
performance by reducing read amplification as a single key-
value pair can be directly fetched without fetching a whole
block. This design can improve write performance by elimi-
nating extra memory copies as it is not necessary to wrap
key-value pairs into blocks anymore. Thus, building an

SSTable is accelerated as key-value pairs are directly seri-
alized to the target buffer without waiting to form blocks.
To efficiently support range queries, key-value pairs for an
SSTable are sorted and stored in contiguousmemory regions.

Index layout. To benefit from byte-addressability, the
indexneeds to directly address every key-value pair.Note that
the index mentioned in Section VI indexes the blocks inside
the SSTables. Key-value pairs are variable-length. Thus, an
index entry contains the key, offset, and length. dLSM uses
binary search to answer point and range queries. To avoid
network round trips during query processing, the compute
node caches the index. Index size is expected to fit in a
compute node’s local memory as it only stores keys (not
values). If a compute node has limited memory, dLSM uti-
lizes the optimization in Sect. 6.2 to switch back some cold
Byte-addressable SSTables to block-based SSTables.

Supporting point and range queries.Refer to Fig. 4. For
a point query, the compute node uses a Bloom filter to check
if the target key is in this table, and if so, the reader uses
the index to locate the address of the target key-value pair.
Then, the reader issues a network read to fetch the single
key-value pair from remote memory. In contrast, for range
queries, dLSM prefetches large chunks of key-value pairs
by sequential I/O. Specifically, when handling a range query,
the compute node creates an iterator with sub-iterators across
all levels. The sub-iterators locate the first keys in the range
by the LSM-tree meta-data and the SSTable’s index. Then,
the sub-iterators prefetch the data chunks in the SSTable.
The outer iterator scans the next key-value pairs of all sub-
iterators until the end of range.

6.2 Optimization for limited cache space

A limitation of the byte-addressable SSTables is the con-
sumption of substantial memory in compute nodes due to
caching of SSTable index blocks, especially when the size of
keys and values are large. The growth of data volume, com-
bined with the limited local cache size at compute nodes,
can result in frequent cache misses of index blocks, lead-
ing to an increase in network accesses. Additionally, the
byte-addressable index blocks are larger than the traditional
block-based index blocks, exacerbating the performance
degradation. Next, we describe how dLSM addresses this
issue.

Main idea. When the local cache reaches its maximum
size, it becomes necessary to convert some of the byte-
addressable SSTables to block-based SSTables to achieve
a balance between minimizing cache misses and maximiz-
ing performance gains from the byte-addressable SSTables.
Moreover, when the compute node converts byte-addressable
SSTables to block-based SSTables, it is beneficial to give

123



R. Wang et al.

Algorithm 3:Decision module for compaction outputs’
table type
Input : A compaction c, remaining cache space S.
Output: The type T of all new-generated SSTables.

1 Let S be the remaining cache space.;
2 c.TableT ype is table type of c’s output SSTables;
3 Lc is the level of compaction c;
4 f c ← (Lmax − Lc)/Lmax ;
5 if S × f c < � then

/* generate block-based SSTable with
probability p */

6 p = (� − S × f c)/�;
7 a ← A ∼ U(0, 1) ;
8 if a ≤ p then
9 c.TableT ype = block_based;

10 else
11 c.TableT ype = byte_addressable;

12 else
13 c.TableT ype = byte_addressable;

14 Return c.TableT ype;

priority to the bottom-levels because those data are not fre-
quently accessed.6

Challenges. There are two challenges to realize the solu-
tion described above. (1) How to dynamically adjust the
proportion of byte-addressable SSTables? The goal is to
minimize the impact of the SSTable conversion on perfor-
mance. (Sec. 6.2.1) (2) How to prioritize the bottom-levels
when converting the tables from byte-addressable SSTables
to block-based SSTables? (Sec. 6.2.2)

6.2.1 SSTable type decision during compaction

For the first challenge, observe that the increase in index size
in the cache always comes from the new data loaded into
the system that may trigger frequent compactions. Thus, we
piggyback SSTable type conversion to those triggered com-
pactions to save on computing resources. dLSM employs a
decision module on the compaction scheduler of compute
nodes to determine dynamically the type of the newly gen-
erated SSTables.

During the startup phase, all generated SSTables are set to
be byte-addressable by default as the local memory usage is
low. We introduce a threshold�7 for the available space that
is predefined to reserve enough space to ensure that SSTable
conversions take effect before the cache reaches its limit.
As the local cache size of index blocks approaches its limit,
the compaction scheduler prefers to generate block-based
SSTables to decrease memory usage. Conversely, if the local
cache size falls and the idle space exceeds the threshold,

6 Note that we view Level 0 as the top level, and Level n as the bottom
level.
7 We set � to 256MB by default.

compactions continue to generate byte-addressable SSTables
to enhance performance.

dLSM regularly removes the entries of outdated SSTables,
i.e., those that have been compacted into the next level, and
immediately caches all index blocks of the newly created
SSTables in local memory. Therefore, the decision module
can acquire more accurate real-time cache information.

6.2.2 Level priority in SSTables’ type conversion

For the second challenge, we prefer the bottom-levels when
converting the byte-addressable SSTables to block-based
ones. To achieve that, we scale the remaining cache space
S by a level prioritized factor fc to get a weighted remaining
cache space Sweighted . fc should be larger at the top-levels
and smaller at the bottom-levels. Thus, the compactions at
the bottom-levels are more likely to generate block-based
tables due to the smaller weighted remaining cache space.
We define fc as:

fc = Lmax − Lc

Lmax
(4)

where Lmax represents the max level in the LSM-tree set by
configuration, and Lc represents the upper level where the
input of compaction c is located. Thus, the weighted remain-
ing cache space is computed as:

Sweighted = S × fc. (5)

We can compare the weighted size of remaining cache
space Sweighted against the predefined threshold � to decide
whether there is a need for SSTable conversion. Therefore,
cases where byte-addressable SSTables are not preferred are
those where

Sweighted < �. (6)

If Formula 6 holds, then the available space is approaching
its limit. A straightforward followup step can be to generate
block-based SSTables only when the formula holds true, and
generate byte-addressable SSTables otherwise. However, if
the compaction workload is heavy, this approach can con-
vert more tables than necessary, since there is a lag before
the compaction result takes effect. To avoid converting many
SSTables at one time, we introduce a probability factor p
for generating the block-based SSTables. The probability
approaches 1 as the remaining cache space approaches zero.
The less the cache space that is left, the more eager we are
to perform SSTable type conversions. On the contrary, if
Sweighted is close to �, then there is still sufficient cache,
so we can safely slow down the conversion. Therefore, the

123



Optimizing LSM-based indexes for disaggregated memory

probability factor is devised as below:

p = (� − Sweighted)

�
(7)

The optimized algorithm is listed in Algorithm 3. When
the weighted remaining cache space is larger than �, the
compaction generates byte-addressable SSTables only. If
the weighted remaining space is smaller than the threshold
described in Formula 6, the compute node has only a proba-
bility p to generate the block-based SSTables.

7 Optimizing for mixed R/Wworkloads

Observe that dLSM with logs disabled achieves moderate
performance on the mixed workloads with reads and writes
when compared to the performance of the 100

Toaddress this challenge,we followNova-LSM’s approach
[49] to divide the entire key range into λ (λ ≥ 1) shards based
on the range information and build a separate LSM-tree per
shard. This adds more parallelism to Level 0’s compaction
and also reduces the number of SSTables that a reader needs
to traverse.We evaluate the impact of λ in Fig. 11. The results
show that the performance drop of mixed workload can be
mitigated by sharding the data within the compute node. The
higher the λ is, the smaller the performance drop will be.

8 Persistence

dLSM is an LSM index targeted for use in main-memory
databases (e.g., VoltDB [11]) with memory disaggregation.
Thus, we do not provide the whole procedure for data
recovery in the index part (following the prior index works
including Sherman [80], an optimized B-tree index for dis-
aggregated memory, and other indexing works, e.g., [37, 85,
97, 98]) because data persistence is achieved at the database
layer. To illustrate, many modern main-memory databases,
e.g., VoltDB [11], BatchDB [61], and PACMAN [84], do not
use traditional redo/undo logging for persistence in order to
achieve fast performance. Instead, they use an alternative
technique termed command log [62] that logs the high-
level operations, e.g., SQL and stored procedures, in contrast
to logging the physical updates into the index. The index
is periodically flushed to disk. If the system crashes, the
logged operations are re-executed from the last transaction-
consistent checkpoint. Thus, as long as the index provides a
transaction-consistent checkpoint, the overall database sys-
temcan be recovered by the command log.How to implement
such a transaction-consistent checkpoint is the research ques-
tion in this section. To the best of our knowledge, there is no

Fig. 5 Combinations of compaction results

prior work on how to implement the transaction-consistent
checkpoint for an in-memory LSM-tree.

Main Idea.dLSMoffers anLSM-based index that natively
provides a transaction-consistent checkpoint. The check-
pointing in dLSM is to regularly copy the SSTables and their
metadata to durable storage. Compared to checkpointing
in in-memory database systems, checkpointing in-memory
LSM-trees does not require a complete scan and flush of all
SSTables every time; it only requires the changes since the
last checkpoint to be synchronized to durable storage. There-
fore, when an SSTable compaction or MemTable flushing is
completed in dLSM, the background threads on the remote
memory ensure that any additions, deletions, and metadata
changes to the SSTables are replayed in durable storage.

Furthermore, tomake the checkpoint transaction-consistent,
a transaction writes all its updates into a single MemTable
that becomes a single SSTable after flushing. As long as
the checkpoint is prepared in the granularity of SSTables,
it is impossible for the checkpoint to contain only part of
a transaction’s updates. Thus, the checkpoint is guaranteed
to be transaction-consistent. Note that the new updates are
stored in local memory while the checkpointing process per-
forms in remote memory. This isolation enables dLSM to
offer a non-blocking transaction-consistent checkpoint auto-
matically, which is hard to achieve for other traditional index
types.

Challenge. The design outlined above faces a challenge
that the checkpoint in the durable storage may significantly
lag behind the LSM-tree in the disaggregated memory under
a write-intensive workload. Consequently, this issue results
in unbounded usage of remote memory since the SSTa-
bles cannot be garbage collected until they are persisted in
durable storage. The reasons for falling behind stem from
two aspects. (1)MemTable flushing and SSTable compaction
result in the addition and deletion of a very high num-
ber of SSTables for write-intensive workloads. (2) The I/O
bandwidth between the compute node and the disaggregated

123



R. Wang et al.

memory is much larger than that between the disaggregated
memory and the durable storage, which further slows down
checkpointing.

To deal with this challenge, we merge the SSTable
compaction results since the last checkpoint to reduce the
amount of I/O that the checkpointing requires. Specif-
ically, we observe that when replaying the compaction
results, some output SSTables in one compaction are the
input SSTables in another compaction. These intermedi-
ate SSTables can be omitted in the checkpointing process.
For example, in Fig. 5 left-hand side, there are two suc-
cessive compactions (A, B,C −→ D, E, F), and then
(E, F, H , I , J ) −→ (K , L, M, N , O). The compaction
results together are equivalent to the compaction result on the
right-hand side (A, B,C, H , I , J ) −→ (D, K , L, M, N , O).
The combined result omits the intermediate results E and F ,
saving the bandwidth for checkpointing.

9 Multi-compute andmulti-memory nodes

To serve massive amounts of data and improve scalability,
dLSM can be distributed and deployed across multiple com-
pute and memory nodes. dLSM’s scale-out consists of two
parts: Scaling out for compute nodes and for memory nodes.
For compute nodes, the key question is how to guarantee
cache coherence across multiple compute nodes. Existing
solutions include single-writer-multiple-readers [27, 76],
software-level cache coherence protocol [68, 81] or range
sharding across the compute nodes [49]. For the first solution,
the update throughput is bounded by the single writer node
and other reader nodes cannot see the updates buffered in the
MemTables immediately. The second solution can bring in
huge overhead for the cache coherence protocol. In dLSM,
we follow the sharding solution, which is popular among
existing LSM-based systems [2, 3, 8, 13, 48, 74].

To scale out memory nodes, a key question is how to dis-
tribute data among memory nodes. A finer granularity (by
uniformly distributing the data chunks for every SSTable)
benefits load balancing, but it forces near-data compaction
to have high network I/O. To benefit from near-data com-
paction, we distribute the data in the granularity of small
shards so that all the data in the same range are stored in the
same node.

Let c,m, and λ be the number of compute nodes, memory
nodes, and shards within a compute node, respectively. From
Fig. 6,dLSM initially assigns the c·λ shards evenly among the
m memory nodes in round-robin fashion to achieve best load
balancing. For each shard, dLSM builds an individual LSM-
tree that is stored in a single memory node with MemTables
being cached in a single compute node. In addition, the shards
can move their counterparts among the compute nodes and
memory nodes later to balance the workload. One advantage

of this design is that there is no synchronization overhead
for single-shard key-value accesses but at the expense of dis-
tributed transactions for cross-shard accesses. Sec. 11.3.10
evaluates this multi-node design for dLSM.

10 Instantiating dLSM over RDMA

RDMA-enabled disaggregated memory is well-studied [42,
80, 90, 98]. Thus, we use it to instantiate and test dLSM.
However, several of the designs presented in this work can
also be applied to CXL-based memory disaggregation, e.g.,
the designs discussed in Sects. 4, 6, 7, 8, 9.

10.1 dLSM Codebase

We build dLSM from scratch but reuse certain data struc-
tures and algorithms (e.g., concurrent skip list, Bloom filters,
immutableMemTables, SSTable compaction) fromLevelDB
and RocksDB. dLSM contains approximately 54,400 lines of
C++ code in which 4,500 lines of code are from RocksDB,
24,300 lines of code are from LevelDB.

10.2 RDMAmanager

Efficiently utilizing RDMA primitives plays an important
role in designing the LSM index over disaggregatedmemory.
In dLSM, the RDMAmanager is the intermediate implemen-
tation connecting dLSM’s codebase to RDMA verbs.

10.2.1 Thread local queue pair for concurrent accesses

To support highly concurrent accesses, a unique challenge in
RDMA programming lies in how to organize multiple queue
pairs in the system. Since a single queue pair can have atmost
one completion queue, all the threads accessing the same
queue pair will have their completion notifications mixed
up. Existing completion notification mechanisms, such as
using wr_id, introduce synchronization overhead when dis-
tinguishing their own completion from the queue. To remove
the synchronization overhead, in dLSM, every thread that
needs to perform one-sided RDMA has a local queue pair in
the RDMA manager. When transmitting the data, the thread
uses its thread-local queue pair if it exists, or creates one
otherwise. This way, threads do not collide when perform-
ing one-sided RDMA, and no synchronization is needed to
access the queue pairs.

10.2.2 Allocating RDMAmemory region

For each RDMA operation, both the source and destination
memory buffers need to be registered in the NIC through
ibv_reg_mr. The registration pins the memory, and prevents

123



Optimizing LSM-based indexes for disaggregated memory

Fig. 6 Supporting multi-compute and multi-memory nodes

it from being swapped. Performing frequent RDMA registra-
tions can introduce non-negligible overhead. It is important
to minimize this overhead.

Many systems (e.g., [40, 63]) tend to pre-register large
memory regions, and then reallocate memory in the user
space.dLSM follows this approach.dLSM allocates theMem-
ory Region in a memory pool method, because the memory
pool allocator has less memory fragmentation and mainte-
nance overhead. When initializing dLSM, the memory node
preregisters multiple 1GB-sized memory regions. During
execution, various worker threads request memory from dif-
ferentmemory pools. If thememory pools are out ofmemory,
they request a 1GBmemory region through the RDMAman-
ager, and divide it into chunks. When a thread allocates a
memory chunk, the pool allocator returns ibv_mr that con-
tains not only the pointer but also the local/remote access key
for this chunk. In dLSM, to reduce RDMA round trips during
MemTable flushing, the compute node prefetches 1GB-sized
memory regions from remotememory andmanages it locally
by the memory pool allocator. Thus, the memory node
preserves some of the 1GB-sized memory regions for the
compute node. The compute node issues an RDMA RPC to
get the registered remote memory regions from the mem-
ory node. Then, the compute node can allocate the remote
memory by its own memory pool allocator.

10.3 Asynchronous I/O for MemTable flushing

Local memory in compute nodes is limited. Thus, MemTa-
bles are flushed periodically to remote memory. When
flushing cannot catch up with in-memory writes, the writ-
ers slow down their write rate or wait until the background
flush completes. Thus, improving MemTable flush speed is
essential.

Main Idea. The RDMA primitives allow us to issue
RDMA work request and check the work request’s comple-
tion separately. We redesign the MemTable flushing process
to take advantage of this asynchronous feature. In dLSM,

Fig. 7 Efficient flushing in dLSM

background workers do not wait for I/O completion and con-
tinue to serialize the data over new buffers instead.

Challenges. Utilizing asynchronous I/O does not simply
replace the I/O interface. One issue is how to seamlessly
integrate asynchronous I/O into the flushing process.Another
issue is buffer recycling.When the data in a buffer is success-
fully transmitted to the remote node using RDMA write, we
call the buffer a finished buffer. The flushing thread needs to
recycle the finished buffers to reduce memory footprint. But
asynchronous I/O for RDMA does not specify which buffer
the finished RDMA operation refers to. Thus, it needs a new
way to recycle the finished buffers.

ThedLSMApproach.Fig. 7 illustratesdLSM’s design. To
address the first challenge, dLSM prepares multiple buffers
for the MemTable flushing thread. Asynchronous flushing
in dLSM proceeds as follows: (1) The thread directly seri-
alizes the data into the write buffer without any data copy.
(2) When the buffer is full, the asynchronous write work
request is submitted, and the thread continues to serialize
the data into the next buffer without blocking. (3) The write
request is processed on the RDMA Network Interface Card
(NIC). Multiple work requests can be pending in the send
queue. (4) The writer thread checks for work request com-
pletions every time it submits a new request. If it finds that
a work request has been finished, it can reuse the old buffer.
Otherwise, it allocates a new buffer for the next serialization
and flushing task.

123



R. Wang et al.

To handle the second challenge, dLSM leverages the FIFO
feature of the RDMAwork request queue. The pending flush
buffers are organized as a linked-list-style queue that reflects
the order of the issued work requests. The flushing thread
maintains pointers to the linked list’s head and tail. The head
is the buffer that is about to finish data transmission, and the
tail is the newest buffer that is still being serialized.When the
background threads fill a buffer and issue an RDMA write,
the thread may allocate a new buffer and append it to the
tail of the linked list. When an I/O finishes in the completion
queue, the linked list’s head is popped and is recycled.

10.4 Customized RPC for near-data compaction

One way to implement RPC is to use two-sided RDMA send
& receive. But this needs a centralized message dispatcher to
forward the message to the target thread. This could create a
potential bottleneck for RPC throughput with heavy traffic.
dLSM utilizes one-sided RDMA write to issue a reply mes-
sage so that themessage can bypass the dispatcher. Below,we
describe the general-purpose RPC in dLSM to handle sim-
ple operations such as queue pair establishing and remote
memory allocation and the customized RPC for near-data
compaction.

10.4.1 General-purpose RPC

The RPC for the general case. proceeds as below.

1. The requester allocates an RDMA-registered buffer to
receive the reply message.

2. The address and the remote-access key (rkey) of the
buffer are attached to the RPC request (realised by
RDMA send & receive).

3. The responder processes the RPC, and returns the results
by an RDMA write to the reply buffer.

4. The requester continuously polls a boolean flag at the end
of the reply buffer. When the polling result is TRUE, the
message is guaranteed to be ready. The polling thread can
directly handle the reply message.

The reply message bypasses the dispatcher. Thus, dLSM
can achieve higher RPC throughput. If necessary, dLSM can
maintain multiple dispatchers and queue pairs.

10.4.2 Customized RPC for near-data compaction

The RPC of near-data compaction is more complex than that
of the general case for the following reasons:

• Usually, near-data compaction takes longer time than the
general case. Thus, the compute node needs a sleep and

wake upmechanism throughRDMA to avoidwasting the
CPU resources on the compute node.

• Also, the size of an RPC argument (e.g., metadata of
many SSTables to compact) for near-data compaction is
usually bigger than the general case that requires special-
ized handling for high performance.

We introduce a customizedRPC for near-data compaction.
Sleep&wake up through RDMAwrite with immediate.

dLSM uses RDMA write with immediate to make the RPC
dispatcher aware of the reply message and wake up the cor-
responding requester thread to handle the replymessage. The
requester attaches a 4-byte number as the unique ID in the
near-data compaction RPC request, and goes to sleep. When
the responder sends the reply, it sets the unique ID as the
immediate in the RDMAwrite replymessage. The unique ID
helps the thread notifier identify which requester this reply
message belongs to so the thread notifier can awaken the
corresponding thread.

Large RPC argument throughRDMAread.To support
highly concurrent RPCs, the request message in a general-
purposeRPC is usually small, e.g., 10 s of bytes, to reduce the
overheadofmessage dispatchingon the responder side.How-
ever, for near-data compaction, the argument size is larger,
e.g., 100 s to 1000s of bytes as the argument contains all
necessary metadata for SSTables compaction.

dLSM does not attach the compactionmetadata in theRPC
request message. Instead, compaction metadata is serialized
into an RDMA registered buffer. Then, the address, size, and
remote key for the serialized buffer are attached to theRDMA
request message. Upon having an RDMA request, the remote
memory node gets the required compaction metadata from
the compute node via anRDMA read. Uponmetadata access,
RPCworkers in the thread pool can read the remote table con-
tent locally in the memory node. After compaction finishes,
the memory node sends the metadata of the new SSTables to
the compute node using an RDMA write.

11 Experiments

11.1 Baselines

Since there is no prior LSM index over disaggregated mem-
ory, we use the following baselines to evaluate dLSM:

Baseline #1:RocksDB-RDMA (8KB). This baseline is a
port of an existing LSM-tree to the RDMA-extended remote
memory. We choose RocksDB due to its wide adoption and
its recognition as the prototypical LSM implementation. We
refer to this baseline by “RocksDB-RDMA (8KB)". The
block size is 8KB by default in RocksDB’s benchmark.
Write-ahead logging is disabled for fair comparison (see
Sec. 8).

123



Optimizing LSM-based indexes for disaggregated memory

Baseline #2: RocksDB-RDMA (2KB). This is similar to
Baseline #1 with one difference being a smaller block size
to better leverage byte-addressability in the remote memory.
We choose 2KB and term this baseline “RocksDB-RDMA
(2KB)".

Baseline #3: Memory-RocksDB-RDMA. This baseline
uses an even smaller block size that matches the size of
a key-value pair. The SSTable index blocks are cached on
the compute node for better performance. Prefetching is
enabled to accelerate sequential reads during compaction.We
term this baseline “memory-optimized RocksDB-RDMA"
(or “Memory-RocksDB-RDMA", for short).

Baseline #4: Nova-LSM [49]. This baseline is an opti-
mized LSM-tree for storage disaggregation (instead of mem-
ory disaggregation). We use Nova-LSM’s available source
code [49]. We configure the file system in Nova-LSM as
tmpfs, a memory-oriented file system in Linux that stores
all the files in main memory to avoid disk accesses. Besides
that, write-ahead logging is also disabled.

Baseline #5:Disaggregated B-tree (Sherman [80]). The
last baseline is a highly optimized B-tree termed Sherman
[80] for thememory disaggregated architecture.Weuse Sher-
man’s available source code [80].

11.2 Experimental setup

Platform. We conduct the experiments mostly on a plat-
form consisting of two servers each having 8 NUMA nodes),
but our experiments only use one NUMA node per server
to eliminate the impact of NUMA remote memory access.
EachNUMAnode has aXeon Platinum 8168CPU (24 cores,
2.7GHz) and 384GB of DRAM. Two servers are connected
by an RDMA-enabled Mellanox EDR Connectx-4 NIC with
a bandwidth of 100Gb/s. Each node runsUbuntu 18.04.5. For
the scalability experiments that requiremultiple compute and
memory nodes, we use CloudLab [41] (as in Sec. 11.3.10).

Datasets.We run the standard benchmark “db_bench" of
RocksDB. We insert 100 million random key-value pairs in
each system by default. The default key size is 20 bytes and
value size is 400 bytes. The query set is 100million key-value
pairs.

Parameter Configurations. We set the same parameters
of dLSM and other baseline solutions. The SSTable file size
is 64MB and the Bloom filters’ key size is 10 bits. For in-
memory buffers, the MemTable size is 64MB. We set 12 and
4 background threads for compaction and flushing, respec-
tively. The number of immutable tables is 16 to fully utilize
the background flushing threads. To accelerate compaction
further, subcompaction is enabled with 12 workers. These
parameters are largely consistent with RocksDB’s settings.
By default, we disabled the WAL in all the systems. Unless
otherwise stated, dLSM is configured to have 1 shard. For
Nova-LSM [49], the subrange is 64 tomaximize concurrency

Fig. 8 Evaluating write performance

Fig. 9 Evaluating read performance

in background compaction. In Sherman [80], we follow the
default block size (1KB) in the source code. To minimize
RDMA remote accesses, we follow [80] to cache the inter-
nal nodes of the B-tree in local memory.

11.3 Results

11.3.1 Evaluating write performance

In this experiment, we evaluate the write performance of
dLSM by comparing it with the five baseline solutions. We
use the “randomfill" benchmark in RocksDB to generate 100
million random key-value pairs, and insert them into the dif-
ferent systems.

In this benchmark, an important parameter, termed
level0_stop_writes_trigger, represents the maximum num-
ber of unsorted files (i.e., SSTables) in Level 0 in LSM-tree
variants. When the number of files exceeds the predefined
parameter, the writers stall to wait for the compaction of
Level 0 to complete. Thus, the smaller the number of files,
the more frequent the write stall becomes. In this exper-

123



R. Wang et al.

Fig. 10 Evaluating varied data sizes

iment, we evaluate dLSM in two modes with different
level0_stop_writes_trigger:

• Normal mode: level0_stop_writes_trigger is 36 that is
the default value in RocksDB.

• Bulkloadmode: level0_stop_writes_trigger is infinity. In
this case, there is no write stall triggered.

Figure 8(a) gives the write throughput with different num-
bers of threads under the “Normal mode." The random write
throughput of dLSM can achieve as high as 2.6 million oper-
ations per second and dLSM outperforms the other baseline
solutions significantly. Specifically, dLSM is 1.7× ∼ 3.5×
faster thanRocksDB-RDMA(8KB), 1.9×∼3.6× faster than
RocksDB-RDMA (2KB), 1.9× ∼ 4.0× faster thanMemory-
RocksDB-RDMA, 2.9× ∼ 3.0× faster than Nova-LSM,
and 2.3× ∼ 11.6× faster than Sherman [80]. The perfor-
mance advantage of dLSM demonstrates the effectiveness of
dLSM’s optimizations including reducing software overhead,
near-data compaction, optimized RDMA communications,
and byte-addressable index design. Observe that Sherman
[80] only caches internal B-tree nodes in local memory and
stores leaf nodes in remote memory. Thus, in Sherman every
write operation needs to invoke an RDMA read operation to
fetch the leaf page to local memory, modifies it, and writes
back to the remote memory. This creates considerable per-
formance overhead. dLSM improves write performance by
buffering writes to local memory (MemTables) first and con-
verts random writes to large sequential writes. We observe
a bottleneck for LSM-based competitors when the number
of threads increases. The reason is that background com-
paction at Level 0 cannot catch up with SSTable flushing
from the compute node, making the front-end writers stall.
The “Bulkload mode” removes this bottleneck by allowing
infinite number of files in Level 0.

Figure 8(b) gives the write throughput for the “Bulkload
mode" when varying the number of threads. In this mode,
there are no write stalls resulting from background com-
paction. Every writer completes its task as soon as it inserts
the key-value pair into the MemTable. Therefore, the system

performance purely represents the in-memory write perfor-
mance without write stalls.dLSM outperforms all competitor
baselines and demonstrates the effectiveness of minimizing
software overhead (as in Sec. 4). Specifically, dLSM is up
to 5.2× faster than RocksDB-RDMA (8KB), 4.2× faster
than RocksDB-RDMA (2KB), 4.0× faster than Memory-
RocksDB-RDMA, and 4.0× faster than Nova-LSM. Note
that Sherman [80] is not applicable to this mode.

11.3.2 Evaluating read performance

We evaluate the random read performance of dLSM against
the baseline solutions. We run the “randomread" bench-
mark in RocksDB. We run 100 million random key-value
queries and report the throughput. The generated keys have
the same range as the keys in the “randomfill" bench-
mark. To remove the impact of overlapped SSTables, the
benchmark starts after all the background compaction tasks
finish. All the competitors utilize memory on the compute
node to accelerate the read. dLSM, Memory-RocksDB-
RDMA, RocksDB-RDMA (2KB), RocksDB-RDMA (8KB)
take 2.62GB, 1.37GB, 0.33GB and 0.15GB, respectively, for
SSTable index and Bloom filters. Sherman takes around 2.53
GB to cache the level-0 internal nodes. Fig. 9 gives the results
for various numbers of threads. All the systems achieve good
scalability as we increase the number of threads. dLSM out-
performs all other LSM-tree solutions. The reason is that
dLSM is optimized for byte-addressable remotememory (See
Sec. 6). Memory-RocksDB-RDMA and RocksDB-RDMA
(2KB) are faster than RocksDB-RDMA (8KB) due to the
smaller block size that can reduce the amount of unneces-
sary data accessed. dLSM has higher read performance than
Memory-RocksDB because it does not need to go through
the block wrapper. Nova-LSM is slower due to the long read
path and memory copy when fetching a key-value from the
remote node’s tmpfs.

When compared with Sherman [80], dLSM has slightly
worse read performance (up to 8.5

123



Optimizing LSM-based indexes for disaggregated memory

Fig. 11 Evaluating mixed read-write performance

11.3.3 Evaluating varied data sizes

In this experiment, we evaluate the performance of dLSM
under various data sizes. We run “randomfill” and then
“randomread” with increased number of key-value pairs
and report the throughput. The inserted key range is also
increased with the number of loaded key-value pairs. Fig-
ure10 gives the performance results. There is decrease in
performance for all the competitors when increasing data
size. For LSM-based indexes, a larger data size increases the
compaction workload, resulting in slow write performance.
A similar trend has been observed in existing LSM-tree stud-
ies [17]. Besides that, read latency for LSM-trees increases
because the datafills upmore levels, resulting inmoreRDMA
reads. Note that increasing the data within one memory node
is not the ideal way to accommodate a large data set. A bet-
ter way is to increase the data over multiple memory nodes
(see Sect. 11.3.10). For Sherman, the performance decreases
mainly due to the higher CPU cache misses and the bigger
memory footprint. Observe that space usage in the remote
memory is different across the competitors. With 100 mil-
lion key-value pairs, RocksDB-RDMA (8KB) takes 39GB,
RocksDB-RDMA (2KB) takes 44GB, Memory-RocksDB-
RDMA takes 52GB, dLSM takes 59GB, and Sherman takes
68GB.

11.3.4 Evaluating mixed performance

We evaluate the performance of dLSM against the base-
lines on the mixed workloads with reads and writes by using
the “randomreadrandomwrite" benchmark inRocksDB. This
benchmark has the same number of keys and the same key
range as in the previous experiments. Recall that in Sec. 7,
dLSM can have different number of shards. We use dLSM-λ
to indicate that dLSM uses λ shards.

Figure 11 gives the results for various read/write ratios.
dLSMoutperforms all LSM-tree variants in all cases although
it loses to Sherman slightly when the read ratio is 95

Fig. 12 Evaluating range query performance

11.3.5 Evaluating range query performance

In this experiment, we evaluate dLSM’s performance during
table scan by running “readseq" in RocksDB. The bench-
mark creates an iterator iterating through the whole database.
All LSM systems enable table prefetching to improve per-
formance by sequential I/O. Sherman [80] uses the cached
internal nodes to accelerate the sequential read for table
scan. We only test the benchmark with a single thread
to avoid saturating the infiniband bandwidth (dLSM takes
around 2.5 GB/s by 1 thread, while the hardware limit is
12.5GB/s). We omit the result of Nova-LSM in this exper-
iment due to a bug on the range index for Nova-LSM.
The results in Fig. 12 demonstrate that dLSM outperforms
RocksDB-RDMA (8KB) by 1.5×, RocksDB-RDMA (2KB)
by 1.8×, Memory-RocksDB-RDMA by 3.0× and Sherman
by 2.1×. Compared to LSM-tree competitors, the huge per-
formance advantage of dLSM comes from the removal of
block unwrapping. Another reason is that the iterators in
RocksDB baselines is still block-based that needs to access
the SSTable index frequently, while dLSM can directly parse
the key-value pairs from the prefetched buffer. Compared
with Sherman [80], the performance advantage of dLSM
comes from the larger chunk (several MBs) prefetching with
one RDMA round trip, while Sherman fetches data in blocks
(1KB). The reason RocksDB-RDMA (8K) is faster than
RocksDB-RDMA (2K) and Memory-RocksDB-RDMA is
that RocksDB-RDMA (8KB) unwraps the block less fre-
quently due to the larger block size.

11.3.6 Evaluating compaction

In this experiment, we study the impact of near-data com-
paction todLSM.We separate the experiments into two parts.
In the first part, we disable the adaptive compaction strat-
egy and explore the performance of the purely push-down
compaction strategy. Then, in the second part, we enable the
adaptive compaction strategy to see its benefits compared to
the pure push-down strategy.We run the “randomfill" bench-
mark under normal mode with 16 threads.

Pure push-down strategy. In the first experiment, we test
the pure push-down performance with different remote com-
puting power and different pressures of front-end insertion.

123



R. Wang et al.

Fig. 13 The impact of remote CPU cores for pure push-down strategy

Besides that, we compare the results of performing com-
paction purely in the compute vs. memory nodes to demon-
strate the effect of purely near-data compaction (Sec. 5).
Figure13 presents the results. The percentage over the bar
represents the CPU utilization over all cores during the
benchmark. From left to right, the figure shows the impact
of near-data compaction with different remote computing
power. The last group of bars represents the system perfor-
mance without near-data compaction. When there is little
computing power,CPUutilization is very high and the perfor-
mance is bounded by the background compaction, but there
is an upper limit (for 12 cores). The reason is that Level 0’s
compactions are overlapped so they have to be done together.
When there is a small number of front-end writers, e.g., 1
front-end writer, near-data compaction does not help much
because performance is bounded by the front-end insertions.
With sufficient front-end writes, near-data compaction can
boost dLSM’s performance by 60

Adaptive push-down strategy. In this experiment, to
show the benefit of our adaptive approach, we compare the
performance of our adaptive strategy against two other strate-
gies. One pushes down all compactions (push-down only)
and the other performs all the compactions locally only
(local only). We vary the remote computing power from 1
to 24 cores to show the impact of remote computing power
to different strategies. As in Fig. 14, the “push-down only"
approach performs poorlywhen the remote computing power
is insufficient while the “local only" compaction strategy per-
forms moderately across all the cores. Our adaptive strategy
shows better performance compared to the other strategies
when the remoteCPUcore is limited. It is only slightly slower
than pure push-down when the remote computing power is
larger than 12 cores because of the overhead for dynamic
decision-making.

11.3.7 Evaluating byte-addressable SSTable

In this experiment, we study the impact of byte-addressable
SSTables for read and write. We enable and disable the byte-
addressable index design of Sec. 6, termed dLSM and dLSM-
Block, respectively. dLSM-Block uses 8KB as the block size

Fig. 14 The impact of adaptive compaction push-down strategy

Fig. 15 Evaluating byte-addressable SSTable

for SSTables. We run the “randomfill" and “randomread"
benchmarks to test the performance of random writes and
reads. From Fig. 15, dLSM is faster than dLSM-Block for
both writes and reads, especially for reads (up to 60 The
reason is that byte-addressability enables directly fetching a
single key-value pair without accessing a whole block.Write
performance is improved due to eliminating unnecessary data
copy once the notion of “block" is removed.

11.3.8 Evaluating local cache space optimization

In this experiment, we study the performance of our opti-
mizations for the limited cache space described in Sec. 6.2
by running Benchmark “readwhilewrite." “readwhilewrite"
contains one thread loading the data and 16 other threads
reading the data concurrently. The loading thread inserts 400
million key-value pairs, and the whole loading process is
divided into 100 batches (4 million insertions in each batch).
The benchmark reports the read throughput after each batch
loading. The local cache size limit is set to 4 GB.

We compare our approach with two others: one that
only contains block-based SSTables in the tree (Block-based
only), and the other only contains byte-addressable SSTa-
bles in the tree (Byte-addressable only). As in Fig. 16, the
“byte-addressable only" competitor experiences a signifi-
cant performance drop at around the 30th batch. The reason
behind this is that the local cache reaches its limit, resulting
in cachemisses for index blocks. The block-based-only com-
petitor does not have an apparent performance degradation
but it performs moderately throughout the experiment. Our

123



Optimizing LSM-based indexes for disaggregated memory

Fig. 16 The impact of limited cache space optimization

Fig. 17 Evaluating the impact of data persistence

optimization has the best of the two worlds; it shows similar
performance compared to “byte-addressable only" initially
and does not degrade in performance in the longer term.

11.3.9 Evaluating persistency design

In this experiment, we evaluate the optimizations for per-
sistence mentioned in Sect. 8 by running benchmark “ran-
domfill" and “readwhilewrite" (with 50 to represent the redo
log. As for the checkpoint, the baseline implementation is
to persist all the generated SSTables for compactions, while
the optimized one merges the compaction results before we
persist them to avoid unnecessary SSTable persistence.

As shown in Fig. 17, the command log and optimized
checkpoint outperform the redo log and naive checkpoint
implementations, especially in write-intensive workloads.
The primary reason for this improvement is that the command
log reduces log synchronization and log size. Additionally,
the optimized checkpoint closely aligns with the pace of
front-endwrites, ensuring thatmemoryusage always remains
within the specified limit. As a result, the remote mem-
ory allocator never reaches its limit and does not wait for
garbage collection. Compared to the system without persis-
tence, enabling our optimized persistence mechanism barely
incurs any performance penalty, except in the case of a pure
write workload. The performance drop in pure write work-
loads is expected because command logging and checkpoint
operations involve storage I/O.

11.3.10 Evaluating multi-node design

In this experiment, we evaluate the multi-node design of
dLSM to support multiple compute nodes andmultiple mem-

ory nodes as described in Sec. 9. We use CloudLab8 [41]
that provides multiple nodes. We choose the instance type
of c6220, where each node contains two Xeon E5-2650v2
processors (8 cores each, 2.6GHz) and 64GB memory. The
nodes are connected by an RDMA-enabled Mellanox FDR
Connectx-3NICwith a bandwidth of 56Gb/s. Each node runs
Ubuntu 18.04.1.

We show three experiments: scale outmemory nodes only;
scale out compute nodes only; scale out both compute and
memory nodes. We run the benchmarks “randomfill" and
“randomread" under normal mode, with minor modifica-
tions to support the multi-node setup. All the other LSM-tree
parameters are set the same as in the previous experiments.

In the first experiment, we fix the number of compute
nodes to 1 and scale out memory resources as well as the
data volume from 1 node (50 million key-value pairs) to
16 nodes (800 million key-value pairs). This experiment
shows a different way to increase the data size compared
to Sect. 11.3.3, in which data is increased within a single
server. From Fig. 18(a), increasing the data size over multi-
ple memory nodes leads to performance degradation for both
reads and writes. The reason is the same as the reason when
increasing the data size within a single server (Sect. 11.3.3).
In Fig. 18(a), we add a black dotted line to represent the result
of holding the same amount of data within a single server.
Notice that increasing the data size over multiple memory
servers has better scalability than that in a single server, espe-
cially for the writes. The reason is that the remote computing
power increases as we add the memory nodes, which accel-
erates the compaction.

In the second experiment, we fix the number of memory
nodes to 1 and scale out the compute resources from 1 to
8 nodes. We set the data size to 50 million key-value pairs.
From Fig. 18(b), writing has better scalability than reading.
The reason is that the sequential I/Os for writes can uti-
lize more RDMA bandwidth than random I/Os for reads.
Besides that, we find that scaling up the computing node will
increase the space consumption in the memory node, making
the experiment out of memory at 8 nodes.

Finally, we vary the number of compute and memory
nodes together from1 to8 and thedata size has been increased
from 50 Million to 400 Million. We use xCyM to indicate x
compute nodes and y memory nodes in the system and set
λ to 8. Sherman and NovaLSM are also tested in this setup.
Figure19 gives the results, indicating that dLSM scales well
for multiple nodes and dLSM achieves better performance
compared to the other competitors.

8 https://www.cloudlab.us/

123

https://www.cloudlab.us/


R. Wang et al.

Fig. 18 Evaluating scalability

Fig. 19 Evaluating multi-node design

12 Related work

Resource Disaggregation. Resource disaggregation offers
great benefits in data centers for cost efficiency, resource uti-
lization, and elasticity. Achieving good performance in dis-
aggregated architectures requires redesign of many aspects,
e.g., operating systems [73], hardware [57], and networking
[45, 47]. dLSM focuses on the data indexing aspect.

Databases for Disaggregated Architectures. Database
systems require significant rethinking to leverage disaggre-
gated architectures, see [79] for a recent survey. Cloud-native
databases (OLTP and OLAP) are re-designed to follow this
trend, e.g., Aurora [76], OpenAurora [66], PolarDB [26],
Socrates [14], Taurus [34], Snowflake [28], and FlexPush-
downDB [87] are built on top of a distributed shared storage
pool. The innovation is in separating storage from compute
to support independent scaling (of compute and storage) and
elasticity. Many optimizations are adopted, e.g., caching,
offloading, and shipping logs. These works still couple com-
pute with memory in the same server, while dLSM focuses
on memory disaggregation.

Recently, works that optimize databases for memory dis-
aggregation, e.g., Zhang et al., [93, 94] study the impact of
memorydisaggregation onOLAPdatabases (both disk-based
and memory-based) [93, 94] and report significant perfor-
mance degradation that motivates further optimization as
shown in [95]. Farview [53] is an analytical database system
optimized for memory disaggregation using FPGA. It sep-
arates query processing from buffering, and uses near-data
computing to offload operations, e.g., selection and aggrega-
tion, to reduce data transfer.dLSM offloads compaction of the
LSM-tree. PolarDB is a customized cloud-native database

that disaggregates memory [27, 96] with index prefetching,
optimistic locking, and optimized recovery. Zuo et al. [98]
develop a hash index for disaggregated memory but it can-
not support range queries as in dLSM. Sherman [80] is a
highly optimized B-tree index structure for the disaggregated
memory architecture. dLSM focuses on LSM indexes with
disaggregated memory and has not been studied in [27, 53,
80, 93, 94, 96]. Experiments show that dLSM achieves much
faster write performance over Sherman [80] while offering
comparable read performance (Fig. 8 and Fig. 9).

RDMA-optimized Databases. Many works optimize
databases for RDMA networking, e.g., see [18, 23] for an
overview. Proposals include using RDMA to extend mem-
ory [55] and remote cache [92] to improve query processing
[19, 72], B-tree [97], hashing [63], transactions [89], and
enhancing availability [90]. In contrast, dLSM targets LSM-
tree indexing for RDMA-enabled remote memory.

Distributed Shared Memory. Proposals exist for build-
ing distributed shared memory from multiple servers con-
nected by RDMA [12, 24, 40, 42, 54, 64, 68, 75]. The main
idea is to implement a shared memory pool that can elasti-
cally provide any amount of memory resources as needed.
dLSM’s memory node can be replaced by a shared memory
pool to mimic a near-infinite memory resource.

Log-structuredMerge Tree There are prior studies opti-
mizing LSM over traditional storage. For example, SlimDB
[70] and Monkey [29] reduce the false positive rate for the
Bloom filters. SuRF [91] and Rosetta [60] introduce range
filters to avoid unnecessary I/Os for range queries. Chucky
[32] shows that Cuckoo filters can achieve a lower false posi-
tive ratewith a smallermemory footprint compared to Bloom
filters. Dostoevsky [30] and LSM-bush [31] introduce LSM
trees with an adaptive merging policy to achieve optimal per-
formance given a workload. Spooky [33] proposes a novel
compaction granulation method to reduce write amplifica-
tion.

In a disaggregated memory architecture, local and remote
memories form a hierarchy similar to that of local and non-
volatile memories, e.g., Intel 3D Xpoint. Recent research
optimizes the LSM-tree (or key-value stores, in general) for
non-volatile memory, e.g., [15, 20, 58, 59, 83, 86]. However,
there are at least two main differences in dLSM: (1) The
remote memory node in dLSM supports offloading (i.e.,
near-data compaction) while non-volatile memory does not
provide offloading. Even if there are Smart SSDs [38, 50,
78], they can perform very limited offloading. (2) dLSM has
RDMA-specific optimizations that those works do not have.

13 Conclusion

In this paper, we investigate realizing an LSM-based index
over disaggregated memory. dLSM utilizes several opti-

123



Optimizing LSM-based indexes for disaggregated memory

mizations to best leverage the communication layer’s fea-
tures, e.g., the byte-addressable low-latency ofRDMA-based
remote memory. The main ideas include reducing soft-
ware overhead, near-data compaction, byte-addressability,
and efficient RDMA communication. Experiments show that
dLSM achieves higher performance than porting existing
LSM-trees or running the optimized B-tree to the disaggre-
gated memory architecture.

Acknowledgements Walid Aref acknowledges the support of the
National Science Foundation under Grant Number IIS-1910216. M.
Tamer Özsu’s research is funded in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. Jianguo Wang
acknowledges the support of the National Science Foundation under
Grant Number IIS-2337806.

References

1. Advancing Cloud with Memory Disaggregation. https://www.
ibm.com/blogs/research/2018/01/advancing-cloud-memory-
disaggregation/

2. Apache Cassandra. https://cassandra.apache.org/
3. Apache HBase. https://hbase.apache.org/
4. Compute express link: the breakthrough CPU-to-device intercon-

nect. https://www.computeexpresslink.org/about-cxl
5. Intel RSD. https://www.intel.com/content/www/us/en/

architecture-and-technology/rack-scale-design-overview.html
6. LevelDB. https://github.com/google/leveldb
7. Open Fabrics Enterprise Distribution (OFED) Performance Tests.

https://github.com/linux-rdma/perftest
8. Remote Compactions in RocksDB-Cloud. https://rockset.com/

blog/remote-compactions-in-rocksdb-cloud/
9. RocksDB Benchmarking Tools. https://github.com/facebook/

rocksdb/wiki/Benchmarking-tools
10. RocksDB. http://rocksdb.org/
11. VoltDB. https://www.voltdb.com/
12. Aguilera, M. K., Amit, N., Calciu, I., Deguillard, X., Gandhi, J.,

Subrahmanyam, P., Suresh, L., Tati, K., Venkatasubramanian, R.,
Wei, M.: Remote memory in the age of fast networks. In: Proceed-
ings of the Symposium on Cloud Computing (SoCC), pp. 121–127
(2017)

13. Alsubaiee, S., Altowim, Y., Altwaijry, H., Behm, A., Borkar,
V.R., Bu, Y., Carey, M.J., Cetindil, I., Cheelangi, M., Faraaz, K.,
Gabrielova, E., Grover, R., Heilbron, Z., Kim, Y., Li, C., Li, G.,
Ok, J.M., Onose, N., Pirzadeh, P., Tsotras, V.J., Vernica, R., Wen,
J., Westmann, T.: AsterixDB: a scalable, open source BDMS. Pro-
ceedings of the VLDB Endowment (PVLDB) 7(14), 1905–1916
(2014)

14. Antonopoulos, P., Budovski, A., Diaconu, C., Saenz, A. H., Hu, J.,
Kodavalla, H., Kossmann, D., Lingam, S., Minhas, U. F., Prakash,
N., Purohit, V., Qu, H., Ravella, C. S., Reisteter, K., Shrotri, S.,
Tang, D.,Wakade, V.: Socrates: The New SQL Server in the Cloud.
In: Proceedings of the ACM International Conference on Manage-
ment of Data (SIGMOD), pp. 1743–1756 (2019)

15. Arulraj, J., Levandoski, J.J., Minhas, U.F., Larson, P.: BzTree: a
high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment (PVLDB) 11(5), 553–565
(2018)

16. Balasundaram, R.: Cuckoo hashing table format (http://rocksdb.
org/blog/2014/09/12/cuckoo.html) (2014)

17. Balmau, O., Dinu, F., Zwaenepoel, W., Gupta, K., Chandhi-
ramoorthi, R., Didona, D.: SILK: preventing latency spikes in

log-structured merge key-value stores. In: USENIX Annual Tech-
nical Conference (ATC), pp. 753–766 (2019)

18. Barthels, C., Alonso,G., Hoefler, T.: Designing databases for future
high-performance networks. IEEEDatabase EngBull 40(1), 15–26
(2017)

19. Barthels, C., Loesing, S., Alonso, G., Kossmann,D.: Rack-scale in-
memory join processing usingRDMA. In: Proceedings of theACM
International Conference on Management of Data (SIGMOD), pp
1463–1475 (2015)

20. Benson, L., Makait, H., Rabl, T.: Viper: an efficient hybrid PMem-
DRAM key-value store. Proceedings of the VLDB Endowment
(PVLDB) 14(9), 1544–1556 (2021)

21. Berenson, H., Bernstein, P. A., Gray, J., Melton, J., O’Neil, E. J.,
O’Neil, P. E.: A Critique of ANSI SQL isolation levels. In: Pro-
ceedings of the ACM international conference on management of
data (SIGMOD), pp. 1–10 (1995)

22. Bindschaedler, L., Goel, A., Zwaenepoel, W.: Hailstorm: disaggre-
gated compute and storage for distributed LSM-based databases.
In: Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 301–316 (2020)

23. Binnig, C., Crotty, A., Galakatos, A., Kraska, T., Zamanian, E.:
The end of slow networks: it’s time for a redesign. Proceedings of
the VLDB Endowment (PVLDB) 9(7), 528–539 (2016)

24. Cai, Q., Guo,W., Zhang, H., Agrawal, D., Chen, G., Ooi, B.C., Tan,
K., Teo, Y.M.,Wang, S.: Efficient distributedmemorymanagement
with RDMA and caching. Proceedings of the VLDB Endowment
(PVLDB) 11(11), 1604–1617 (2018)

25. Cao, W., Liu, Y., Cheng, Z., Zheng, N., Li, W., Wu, W., Ouyang,
L., Wang, P., Wang, Y., Kuan, R., Liu, Z., Zhu, F., Zhang, T.:
POLARDB meets computational storage: efficiently support ana-
lytical workloads in cloud-native relational database. In: USENIX
Conference on File and Storage Technologies (FAST), pp. 29–41
(2020)

26. Cao, W., Liu, Z., Wang, P., Chen, S., Zhu, C., Zheng, S., Wang,
Y., Ma, G.: PolarFS: an ultra-low latency and failure resilient dis-
tributed file system for shared storage cloud database. Proceedings
of the VLDB Endowment (PVLDB) 11(12), 1849–1862 (2018)

27. Cao, W., Zhang, Y., Yang, X., Li, F., Wang, S., Hu, Q., Cheng, X.,
Chen, Z., Liu, Z.,Fang, J., Wang, B., Wang, Y., Sun, H., Yang, Z.,
Cheng, Z., Chen, S., Wu, J., Hu, W., Zhao, J., Gao, Y., Cai, S.,
Zhang, Y., Tong, J.: PolarDB Serverless: a cloud native database
for disaggregated data centers. In: Proceedings of the ACM Inter-
national Conference on Management of Data (SIGMOD), pp.
2477–2489 (2021)

28. Dageville, B., Cruanes, T., Zukowski, M., Antonov, V., Avanes, A.,
Bock, J., Claybaugh, J., Engovatov, D., Hentschel, M., Huang, J.,
Lee, A.W., Motivala, A., Munir, A.Q.,Pelley, S., Povinec, P., Rahn,
G., Triantafyllis, S., Unterbrunner, P.: The snowflake elastic data
warehouse. In: Proceedings of the ACM International Conference
on Management of Data (SIGMOD), pp. 215–226 (2016)

29. Dayan, N., Athanassoulis, M., Idreos, S.: Monkey: optimal nav-
igable key-value store. In: Proceedings of the ACM International
Conference onManagement of Data (SIGMOD), pp. 79–94 (2017)

30. Dayan, N., Idreos, S.: Dostoevsky: better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superflu-
ousmerging. In: Proceedings of theACM International Conference
on Management of Data (SIGMOD), pp 505–520 (2018)

31. Dayan, N., Idreos, S.: The log-structured merge-bush and the
WackyContinuum. In: Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD), pp. 449–466 (2019)

32. Dayan, N., Twitto, M.: Chucky: a succinct cuckoo filter for LSM-
tree. In: Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pp. 365–378 (2021)

33. Dayan, N.,Weiss, T., Dashevsky, S., Pan,M., Bortnikov, E., Twitto,
M.: Spooky: granulating LSM-tree compactions correctly. In: Pro-

123

https://www.ibm.com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/
https://www.ibm.com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/
https://www.ibm.com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/
https://cassandra.apache.org/
https://hbase.apache.org/
https://www.computeexpresslink.org/about-cxl
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://github.com/google/leveldb
https://github.com/linux-rdma/perftest
https://rockset.com/blog/remote-compactions-in-rocksdb-cloud/
https://rockset.com/blog/remote-compactions-in-rocksdb-cloud/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
http://rocksdb.org/
https://www.voltdb.com/
http://rocksdb.org/blog/2014/09/12/cuckoo.html
http://rocksdb.org/blog/2014/09/12/cuckoo.html


R. Wang et al.

ceedings of the VLDB endowment (PVLDB), pp. 3071–3084
(2022)

34. Depoutovitch,A., Chen, C., Chen, J., Larson, P., Lin, S., Ng, J., Cui,
W., Liu, Q., Huang,W., Xiao, Y., He, Y.: Taurus database: how to be
fast, available, and frugal in the cloud. In: Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pp.
1463–1478 (2020)

35. DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A.: A perfor-
mance analysis of the gamma databasemachine. In: Proceedings of
the ACM International Conference on Management of Data (SIG-
MOD), pp. 350–360 (1988)

36. DeWitt, D.J., Hawthorn, P.B.: A performance evaluation of data
base machine architectures (invited paper). In: International Con-
ference on Very Large Data Bases (VLDB), pp. 199–214 (1981)

37. Diaconu, C., Freedman, C., Ismert, E., Larson, P., Mittal, P.,
Stonecipher, R., Verma, N., Zwilling, M.: Hekaton: SQL server’s
memory-optimized OLTP engine. In: Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pp.
1243–1254 (2013)

38. Do, J., Kee, Y., Patel, J.M., Park, C., Park, K., DeWitt, D.J.: Query
processing on smart SSDs: opportunities and challenges. In: Pro-
ceedings of the ACM International Conference on Management of
Data (SIGMOD), pp. 1221–1230 (2013)

39. Dong, S.: PlainTable—a new file format. (http://rocksdb.org/blog/
2014/06/23/plaintable-a-new-file-format.html) (2014)

40. Dragojevic, A., Narayanan, D., Castro, M., Hodson, O.: FaRM:
Fast remote memory. In: Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), pp.
401–414 (2014)

41. Duplyakin, D., Ricci, R.,Maricq,A.,Wong,G., Duerig, J., Eide, E.,
Stoller, L., Hibler,M., Johnson,D.,Webb,K.,Akella, A.,Wang,K.,
Ricart, G., Landweber, L., Elliott, C., Zink, M., Cecchet, E., Kar,
S., Mishra, P.: The design and operation of CloudLab. In: USENIX
Annual Technical Conference (ATC), pp. 1–14 (2019)

42. Fent, P., van Renen, A., Kipf, A., Leis, V., Neumann, T., Kemper,
A.: low-latency communication for fast DBMS using RDMA and
shared memory. In: International Conference on Data Engineering
(ICDE), pp. 1477–1488 (2020)

43. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists.
In: ACM Symposium on Principles of Distributed Computing
(PODC), pp. 50–59 (2004)

44. Franklin, M. J., Jónsson, B. T., Kossmann, D.: Performance trade-
offs for client-server query processing. In: Proceedings of theACM
International Conference on Management of Data (SIGMOD), pp.
149–160 (1996)

45. Gao, P.X., Narayan, A., Karandikar, S., Carreira, J., Han, S., Agar-
wal, R., Ratnasamy, S., Shenker, S.: Network requirements for
resource disaggregation. In: USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 249–264 (2016)

46. Golan-Gueta, G., Bortnikov, E., Hillel, E., Keidar, I.: Scaling con-
current log-structured data stores. In: Proceedings of the tenth
european conference on computer systems (EuroSys), pp. 32:1–
32:14 (2015)

47. Gu, J., Lee, Y., Zhang, Y., Chowdhury, M., Shin, K.G.: Efficient
memory disaggregation with Infiniswap. In: Proceedings of the
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), pp. 649–667 (2017)

48. Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F., Shen, L.,
Tang, L., Zhou, Y., Huang, M., Wei, W., Liu, C., Zhang, J., Li, J.,
Wu, X., Song, L., Sun, R., Yu, S., Zhao, L., Cameron, N., Pei, L.,
Tang, X.: TiDB: a raft-based HTAP database. Proceedings of the
VLDB Endowment (PVLDB) 13(12), 3072–3084 (2020)

49. Huang, H., Ghandeharizadeh, S.: Nova-LSM: a distributed,
component-based LSM-tree key-value store. In: Proceedings of
the ACM International Conference on Management of Data (SIG-
MOD), pp. 749–763D (2021)

50. István, Z., Sidler, D., Alonso, G.: Caribou: intelligent distributed
storage. Proceedings of the VLDB Endowment (PVLDB) 10(11),
1202–1213 (2017)

51. Kalia, A., Kaminsky, M., Andersen, D.G.: Design guidelines for
high performance RDMA systems. In: USENIX Annual Technical
Conference (ATC), pp. 437–450 (2016)

52. Keeton,K., Patterson,D.A., Hellerstein, J.M.: A case for intelligent
disks (IDISKs). SIGMOD record 27(3), 42–52 (1998)

53. Korolija, D., Koutsoukos, D., Keeton, K., Taranov, K., Milojicic,
D.S., Alonso, G.: Farview: disaggregated memory with operator
off-loading for database engines. In: Conference on Innovative
Data Systems Research (CIDR) (2022)

54. Lagar-Cavilla, H. A., Ahn, J., Souhlal, S., Agarwal, N., Burny, R.,
Butt, S., Chang, J., Chaugule, A., Deng, N., Shahid, J., Thelen,
G., Yurtsever, K.A., Zhao, Y., Ranganathan, P.: Software-defined
far memory in warehouse-scale computers. In: Proceedings of the
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pp. 317–330
(2019)

55. Li, F., Das, S., Syamala, M., Narasayya, V.R.: Accelerating rela-
tional databases by leveraging remote memory and RDMA. In:
Proceedings of theACM International Conference onManagement
of Data (SIGMOD), pp. 355–370 (2016)

56. Li, H., Berger, D.S., Hsu, L., Ernst, D., Zardoshti, P., Novakovic, S.,
Shah, M., Rajadnya, S., Lee, S., Agarwal, I., Hill, M.D., Fontoura,
M., Bianchini, R.: Pond: CXL-based memory pooling systems for
cloud platforms. In: Proceedings of the InternationalConference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 574–587 (2023)

57. Lim KT., Chang, J., Mudge, T.N., Ranganathan, P., Reinhardt,
S. K., Wenisch, T. F.: Disaggregated memory for expansion and
sharing in blade servers. In: International Symposium on Com-
puter Architecture (ISCA), pp. 267–278 (2009)

58. Liu, J., Chen, S., Wang, L.: LB+-trees: optimizing persistent index
performance on 3DXPoint memory. Proceedings of the VLDB
Endowment (PVLDB) 13(7), 1078–1090 (2020)

59. Lu, B., Hao, X., Wang, T., Lo, E.: Dash: scalable hashing on per-
sistent memory. Proceedings of the VLDB Endowment (PVLDB)
13(8), 1147–1161 (2020)

60. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W., Idreos,
S.: Rosetta: ARobust Space-TimeOptimizedRange Filter for Key-
Value Stores. In: Proceedings of theACMInternational Conference
on Management of Data (SIGMOD), pp. 2071–2086 (2020)

61. Makreshanski, D., Giceva, J., Barthels, C., Alonso, G.: BatchDB:
Efficient isolated execution of hybrid OLTP+OLAP workloads for
interactive applications. In: Proceedings of the ACM International
Conference onManagement of Data (SIGMOD), pp. 37–50 (2017)

62. Malviya, N., Weisberg, A., Madden, S., Stonebraker, M.: Rethink-
ing main memory OLTP recovery. In: International Conference on
Data Engineering (ICDE), pp. 604–615 (2014)

63. Mitchell, C., Geng, Y., Li, J.: Using one-sided RDMA reads to
build a fast, CPU-efficient key-value store. In: USENIX Annual
Technical Conference (ATC), pp. 103–114 (2013)

64. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S.,
Oskin, M.: Latency-tolerant software distributed shared memory.
In: USENIX Annual Technical Conference (ATC), pp. 291–305
(2015)

65. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-
structured merge-tree (LSM-Tree). Acta Informat. 33(4), 351–385
(1996)

123

http://rocksdb.org/blog/2014/06/23/plaintable-a-new-file-format.html
http://rocksdb.org/blog/2014/06/23/plaintable-a-new-file-format.html


Optimizing LSM-based indexes for disaggregated memory

66. Pang, X., Wangm J.: Understanding the performance implications
of the design principles in storage-disaggregated databases. In: Pro-
ceedings of ACMConference onManagement of Data (SIGMOD)
(2024)

67. Picoli, I.L., Bonnet, P., Tözün, P.: LSM management on compu-
tational storage. In: Proceedings of the International Workshop on
Data Management on New Hardware (DaMoN), pp. 17:1–17:3
(2019)

68. Pröbstl,M., Fent, P., Schüle,M.E., Sichert,M., Neumann, T., Kem-
per,A.:One buffermanager to rule themall: using distributedmem-
ory with cache coherence over RDMA. In: InternationalWorkshop
on Accelerating Analytics and Data Management Systems Using
Modern Processor and Storage Architectures (ADMS@VLDB),
pp. 17–26 (2021)

69. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM (CACM) 33(6), 668–676 (1990)

70. Ren, K., Zheng, Q., Arulraj, J., Gibson, G.: SlimDB: a space-
efficient key-value storage engine for semi-sorted data. Proceed-
ings of the VLDB Endowment (PVLDB) 10(13), 2037–2048
(2017)

71. Riedel, E., Gibson, G.A., Faloutsos, C.: Active storage for large-
scale data mining and multimedia. In: International Conference on
Very Large Data Bases (VLDB), pp. 62–73 (1998)

72. Salama, A., Binnig, C., Kraska, T., Scherp, A., Ziegler, T.: Rethink-
ing distributed query execution on high-speed networks. IEEEData
Engineering Bulletin 40(1), 27–37 (2017)

73. Shan, Y., Huang, Y., Chen, Y., Zhang, Y.: LegoOS: A dissemi-
nated, distributed OS for hardware resource disaggregation. In:
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pp. 69–87 (2018)

74. Taft, R., Sharif, I.,Matei,A.,VanBenschoten,N., Lewis, J.,Grieger,
T., Niemi, K., Woods, A., Birzin, A., Poss, R., Bardea, P., Ranade,
A., Darnell, B., Gruneir, B., Jaffray, J., Zhang, L., Mattis, P.:
CockroachDB:The resilient geo-distributed SQLdatabase. In: Pro-
ceedings of the ACM International Conference on Management of
Data (SIGMOD), pp. 1493–1509 (2020)

75. Taranov, K., Girolamo, S. D., Hoefler, T.: CoRM: Compactable
remote memory over RDMA. In: Proceedings of the ACM Inter-
national Conference on Management of Data (SIGMOD), pp.
1811–1824 (2021)

76. Verbitski, A., Gupta, A., Saha, D., Brahmadesam, M., Gupta, K.,
Mittal, R., Krishnamurthy, S., Maurice, S., Kharatishvili, T., Bao,
X.: Amazon aurora: design considerations for high throughput
cloud-native relational databases. In: ACM Conference on Man-
agement of Data (SIGMOD), pp. 1041–1052 (2017)

77. Voruganti, K., Özsu, M. T., Unrau, R.C.: An adaptive hybrid server
architecture for client caching ODBMSs. In: International Confer-
ence on Very Large Data Bases (VLDB), pp. 150–161 (1999)

78. Wang, J., Park, D., Kee, Y.-S., Papakonstantinou, Y., Swanson, S.:
SSD In-storage computing for list intersection. In: Proceedings of
the International Workshop on Data Management on New Hard-
ware (DaMoN), pp 4:1–4:7 (2016)

79. Wang, J., Zhang, Q.: Disaggregated Database Systems. In: Pro-
ceedings of the ACM International Conference on Management of
Data (SIGMOD), pp. 37–44 (2023)

80. Wang, Q., Lu, Y., Shu, J.: Sherman: a write-optimized distributed
B+Tree index on disaggregated memory. In: ACM International
Conference on Management of Data (SIGMOD), pp. 1033–1048
(2022)

81. Wang, R., Wang, J., Idreos, S., Özsu, M.T., Aref, W.G.: The case
for distributed shared-memory databases with RDMA-enabled
memory disaggregation. Proceedings of the VLDB Endowment
(PVLDB) 16(1), 15–22 (2022)

82. Wang, R., Wang, J., Kadam, P., Özsu, M.T., Aref, W.G.: dLSM:
An LSM-based index for memory disaggregation. In: International
Conference on Data Engineering (ICDE), pp. 2835–2849 (2023)

83. Wang, T., Levandoski, J.J., Larson, P.: Easy lock-free indexing in
non-volatile memory. In: International Conference on Data Engi-
neering (ICDE), pp. 461–472 (2018)

84. Wu, Y., Guo, W., Chan, C., Tan, K.: Fast failure recovery for
main-memory DBMSs on multicores. In: Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pp.
267–281 (2017)

85. Xiao, M., Wang, H., Geng, L., Lee, R., Zhang, X.: Catfish: adap-
tive RDMA-enabled R-tree for low latency and high throughput.
In: International Conference on Distributed Computing Systems
(ICDCS), pp. 164–175 (2019)

86. Yan, B., Cheng, X., Jiang, B., Chen, S., Shang, C.,Wang, J., Huang,
K., Yang, X., Cao, W., Li, F.: Revisiting the design of LSM-tree
based OLTP storage engine with persistent memory. Proceedings
of the VLDB Endowment (PVLDB) 14(10), 1872–1885 (2021)

87. Yang, Y., Youill, M., Woicik, M.E., Liu, Y., Yu, X., Serafini, M.,
Aboulnaga, A., Stonebraker, M.: FlexPushdownDB: hybrid push-
down and caching in a cloud DBMS. Proceedings of the VLDB
Endowment (PVLDB) 14(11), 2101–2113 (2021)

88. Yu, Q., Guo, C., Zhuang, J., Thakkar, V., Wang, J., Cao, Z.: CaaS-
LSM: compaction-as-a-service for LSM-based key-value stores in
storage disaggregated infrastructure. In: SIGMOD (2024)

89. Zamanian, E., Shun, J., Binnig, C., Kraska, T.P.: Chiller:
contention-centric transaction execution and data partitioning for
modern networks. In: Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD), pp. 511–526 (2020)

90. Zamanian, E., Yu, X., Stonebraker, M., Kraska, T.: Rethinking
database high availability with RDMA networks. Proceedings of
the VLDB Endowment (PVLDB) 12(11), 1637–1650 (2019)

91. Zhang, H., Lim, H., Leis, V., Andersen, D. G., Kaminsky, M.,
Keeton, K. Pavlo, A.: SuRF: practical range query filtering with
fast succinct tries. In: Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD), pp. 323–336. ACM
(2018)

92. Zhang, Q., Bernstein, P.A., Berger, D.S., Chandramouli, B.: Redy:
remote dynamicmemory cache. Proceedings of the VLDBEndow-
ment (PVLDB) 15(4), 766–779 (2022)

93. Zhang Q, Cai, Y., Angel, S., Liu, V., Chen, A., Loo, B. T.: Rethink-
ing data management systems for disaggregated data centers. In:
Conference on Innovative Data Systems Research (CIDR) (2020)

94. Zhang, Q., Cai, Y., Chen, X., Angel, S., Chen, A., Liu, V., Loo,
B.T.: Understanding the effect of data center resource disaggrega-
tion on production DBMSs. Proceedings of the VLDBEndowment
(PVLDB) 13(9), 1568–1581 (2020)

95. Zhang, Q., Chen, X., Sankhe, S., Zheng, Z., Zhong, K., Angel,
S., Chen, A., Liu, V., Loo, BT.: Optimizing data-intensive sys-
tems in disaggregated data centers with TELEPORT. In: ACM
International Conference on Management of Data (SIGMOD), pp.
1345–1359 (2022)

96. Zhang, Y., Ruan, C., Li, C., Yang, J., Cao, W., Li, F., Wang, B.,
Fang, J., Wang, Y., Huo, J., Bi, C.: Towards cost-effective and
elastic cloud database deployment via memory disaggregation.
Proceedings of the VLDB Endowment (PVLDB) 14(10), 1900–
1912 (2021)

123



R. Wang et al.

97. Ziegler, T., Vani, S. T., Binnig, C., Fonseca, R., Kraska, T.: Design-
ing distributed tree-based index structures for fast RDMA-capable
networks. In: Proceedings of the ACM International Conference
on Management of Data (SIGMOD), pp. 741–758 (2019)

98. Zuo, P., Sun, J., Yang, L., Zhang, S., Hua, Y.:One-sided RDMA-
conscious extendible hashing for disaggregated memory. In:
USENIX Annual Technical Conference (ATC), pp. 15–29 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Optimizing LSM-based indexes for disaggregated memory
	Abstract
	1 Introduction
	2 Background
	2.1 Resource disaggregation
	2.2 Interconnection for disaggregated memory
	2.3 Log-structured merge (LSM) tree

	3 Overview of dLSM architecture
	4 Minimizing software overhead
	5 Near-data compaction
	5.1 Placing LSM-tree metadata
	5.2 Garbage collection
	5.3 Adaptive near-data compaction
	5.3.1 Collecting essential information for compaction
	5.3.2 Algorithm for adaptive compaction
	5.3.3 Execution time estimation for compaction


	6 Optimizing for byte-addressability
	6.1 Byte-addressable SSTable layout
	6.2 Optimization for limited cache space
	6.2.1 SSTable type decision during compaction
	6.2.2 Level priority in SSTables' type conversion


	7 Optimizing for mixed R/W workloads
	8 Persistence
	9 Multi-compute and multi-memory nodes
	10 Instantiating dLSM over RDMA
	10.1 dLSM Codebase
	10.2 RDMA manager
	10.2.1 Thread local queue pair for concurrent accesses
	10.2.2 Allocating RDMA memory region

	10.3 Asynchronous I/O for MemTable flushing
	10.4 Customized RPC for near-data compaction
	10.4.1 General-purpose RPC
	10.4.2 Customized RPC for near-data compaction


	11 Experiments
	11.1 Baselines
	11.2 Experimental setup
	11.3 Results
	11.3.1 Evaluating write performance
	11.3.2 Evaluating read performance
	11.3.3 Evaluating varied data sizes
	11.3.4 Evaluating mixed performance
	11.3.5 Evaluating range query performance
	11.3.6 Evaluating compaction
	11.3.7 Evaluating byte-addressable SSTable
	11.3.8 Evaluating local cache space optimization
	11.3.9 Evaluating persistency design
	11.3.10 Evaluating multi-node design


	12 Related work
	13 Conclusion
	Acknowledgements
	References


