Moment based estimation of stochastic Kronecker graph parameters

David F. Gleich, Purdue University

Art B. Owen, Stanford University

These codes are research prototypes and may not work for you. No promises. But do email if you run into problems.

Download

Prereqs

Instructions

Will be prepared upon request.

Overview

The package is organized by directory

matlab
All of the main matlab codes
data
precomputed data for the experiments
experiments
implementations of the experiments in the paper
initial
initial versions of many of the codes
skcoin
a python version of a coin-flipping random graph Kronecker graph generator
snap
snap code to compute the log-likelihood of a kronecker graph
web
this information and all the figures

Figures

|Experiment|Description|Figure| |:------------------|:------------------------------------|:------------------| |experiments/fitting/objective_fits.m | compute data for table on objective functions | | |experiments/fitting/objectives_table.m | output table | Tab. 2 | |experiments/fitting/kronecker_fits.m | compute data for table on kronecker parameters | | |experiments/fitting/kronecker_fits_table.m | output table | Tab. 3 | |experiments/fitting/kronecker_partial_fits.m | compute data for table on fitted kronecker parameters without certain features | | |experiments/fitting/partial_fits_table.m | output table | Tab. 4 | |experiments/identifiability/kron_identify_conflip.m | compute data on variance of kronecker fits to kronecker model | | |experiments/identifiability/parameter_variance.m | output variance figures on a,b,c | Fig. 2 | |experiments/identifiability/feature_variance.m | output variance figures | Fig. 3 | |experiments/identifiability/feature_misfit.m | output misfit figures | Fig. 4 |