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1 overview

Suppose we want to solve a linear system

Ax = b

where A is 1, 000, 000, 000 by 1, 000, 000, 000. �is seems, at �rst blush, impossibly hard.
Yet, with only a few easy-to-learn primitives, it’s feasible!

OUTLINE
1. �e �rst thing we have to �gure out is how to represent the matrix A on the

computer. �is involves an idea called sparse matrices and fast operators.
2. Once know how to represent A, we can immediately check a condition to see if

we’ve solved Ax = b. �is involves an idea called the residual
3. �e idea with iterativemethods is that we start with some type of guess, and then

improve. So rather than “guess and check and guess again” – which could take a
very long time – an iterative method is “guess and check and improve!”– so that
we always get to a solution a�er a while. We’ll describe a simple way to improve
the solution.

2 sparse matrices
�is section is about how we can represent
enormous real-world problems on a com-
puter in a way that makes sense!

Take a look at the following matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.8 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.7 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.2 0 0.7 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.4 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0.2 0 0.1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0.1 1 0.2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0.8
0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0
0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0.5 0 0 0 0
0 0.8 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.7 0 0 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0.3 0 0.08 0
0.3 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0
0 0.5 0.3 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.8 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9
0 0 0.8 0 0 0 0 0 0 0.3 0 0.7 0 0 0 0 0 0.3 0 0 0.9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.2 0 0 0 0 0
0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0 0 0 0 0 0 0 0 0
0.8 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It’s a 25 × 25 matrix, that’s 625 entries. �ink about multiplying that matrix by a vector by
hand. It’d be horrible. Except you’d quickly realize thatmost of the entries are zero.1 We 1 Actually, only 58 entries are non-zeros, so

this is way more than half zero. For this
reason, we o�en count the non-zeros of
sparse matrices.

don’t need to do any work to multiply an entry when there is a zero there. So, for instance,
in the �rst row, only the 3rd, 4th, 17th entries are not zero.

So instead of worrying about all of those zeros, we could just look at computing:

y1 = 0.8x3 + 0.8x4 + 0.09x17
y2 = 0.7x8 + 0.9x11

⋮
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�is is the idea behind sparse matrices. A sparse matrix is de�ned as a matrix with
enough zeros so that it’s faster to keep track of where only the non-zeros live in the matrix
and then, if we are doing a matrix vector product, only multiply those entries. Here’s the
list of non-zeros in that matrix:

(16, 1, 0.3)
(25, 1, 0.8)
(5, 2, 0.2)
(6, 2, 0.4)
(14, 2, 0.8)
(17, 2, 0.5)
(1, 3, 0.8)
(10, 3, 0.8)

(12, 3, 0.8)
(17, 3, 0.3)
(19, 3, 0.8)
(1, 4, 0.8)
(5, 4, 0.7)
(18, 4, 0.8)
(6, 5, 0.5)
(17, 5, 0.8)

(21, 5, 0.7)
(13, 6, 0.9)
(2, 7, 0.7)
(3, 7, 0.5)
(25, 7, 0.4)
(8, 8, 0.6)
(18, 8, 0.02)
(5, 9, 0.04)

(7, 9, 1)
(14, 10, 0.2)
(19, 10, 0.3)
(22, 10, 0.7)
(23, 10, 1)
(2, 11, 0.9)
(15, 11, 0.6)
(19, 12, 0.7)

(7, 13, 0.2)
(23, 13, 0.3)
(13, 14, 0.2)
(16, 14, 0.9)
(7, 15, 0.1)
(12, 15, 0.9)
(21, 16, 0.5)
(24, 16, 0.08)

(1, 17, 0.09)
(8, 17, 0.1)
(9, 17, 0.6)
(8, 18, 1)
(14, 18, 0.7)
(19, 18, 0.3)
(8, 19, 0.2)
(20, 19, 0.3)

(20, 20, 0.2)
(11, 21, 0.5)
(13, 21, 0.5)
(14, 21, 0.5)
(19, 21, 0.9)
(15, 22, 0.3)
(3, 24, 0.07)
(15, 24, 0.08)

(9, 25, 0.8)
(18, 25, 0.9)

�is is a list of triples that store:

( i : the row index, j : the column index, a i j : the value in that row and column).

Let’s de�ne this concept!

DEFINITION 1 �e triplet representation of a matrix is an unordered list of the matrix elements
as a triplet of (i , j, a i j) for each non-zero entry of the matrix. Any element that isn’t in the
list of triplets is de�ned to be zero.

�e triplet form of a sparsematrixmakes it really easy to do operations likemultiplying
the matrix by a vector. Let’s think about how this storage simpli�es the algebra behind a
matrix-vector product! To do so, let’s work with the slightly smaller matrix-vector:

⎡⎢⎢⎢⎢⎢⎣

y1
y2
y3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5 0 −1
2 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

2
1
5

⎤⎥⎥⎥⎥⎥⎦
.

�e triplet form of this matrix is:

{(1, 1, 5), (3, 3, 1), (1, 3,−1), (2, 1, 2)}.

And we can do the matrix-vector product by �rst setting:

y1 = 0, y2 = 0, y3 = 0

and then for each triplet, we update the result of y using that triplet:

y1 = y1 + 5x1 = 0 + 10 = 10

y3 = y3 + 1x3 = 0 + 5 = 5
y1 = y1 + −1x3 = 10 − 5 = 5
y2 = y2 + 2x1 = 0 + 4 = 4

so
y = [ 5

4
5
] .

We did that with only 8 �ops! �at’s a lot less than the 18 f lops it would have taken if we
had been crazy enough to use the zeros.

In Julia, here is how we would do it,

"""

‘triplet_mult‘

==============

Multiply a matrix stored in triplet form by a vector.
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* ‘y = triplet_mult(n, triplets, x)‘ multiplies an n-by

length(x) matrix stored in triplet form by the vector

x.

Example

-------

¬¬¬¬

triplets = [1 1 5; 3 3 1; 1 3 -1; 2 1 2]; x = [2; 1; 5];

y = triplet_mult(3, triplets, x)

¬¬¬¬

"""

function triplet_mult(m, triplets, x)

nz = size(triplets,1)

y = zeros(m)

for i = 1:size(triplets,1)

i,j,val = triplets[i,:]

y[i] += val*x[j]

end

return y

end

In Matlab, here is how we would do it:

function y = triplet_mult(m, triplets, x)

% TRIPLET_MULT Multiply a matrix stored in triplet form via a vector

%

% y = triplet_mult(m, triplets, x) multiplies an m-by-length(x) matrix

% stored in triplet form by a vector x

%

% Example:

% triplets = [1 1 5; 3 3 1; 1 3 -1; 2 1 2]; x = [2; 1; 5];

% y = triplet_mult(3, triplets, x)

%

% See also SPARSE

nz = size(triplets,1);

y = zeros(m,1);

for ti=1:nz

i = triplets(ti,1); j = triplets(ti,2); val = triplets(ti,3);

y(i) = y(i) + val*x(j);

end

Triplet storage is an easy way to start working with sparse matrices. Here are some
questions to think about.

Question 2 What’s the triplet form of the matrix [ 0 1 0
−1.5 0 2
0 0 1

]?

Question 3 What do we call something that isn’t a sparse matrix?2 2 I’ll take that one! �e opposite of a sparse
matrix is a dense or fullmatrix.

Question 4 Why does the triplet_mult function take in m, the size of the matrix in rows too?

Question 5 Suppose I wanted to implement the Julia or Matlab sum function for a matrix
stored in triplet form. Is this doable? Is it easy?

Question 6 Why don’t we always store matrices in triplet form?

JUST WHAT KIND OF MATRICES HAVE SO MANY ZEROS? It’s a good question!
It turns out that most of the really large linear systems solved are mostly non-zero.

�is is because there is usually structure to the problem. �ink back to the matrix on the
homework that we used to reduce the size of an image by half. If we wanted to reduce an
4 × 4 image to a 2 × 2 image, then our matrix was 4by16, but again, most of the entires
were zero. Another place this frequently arises is in linear systems that involve graphs –
like the PageRank vector. I teach an entire class on just working with the sparse matrices
involved in these problems.
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AREN’T THERE EVEN BETTER WAYS OF STORING THESE MATRICES? I think someone has been reading ahead in
the textbook!Yes, there are. A few more sophisticated schemes are called compressed row-storage

and compressed column-storage. �ese store even less data by organizing the non-zeros
such that everything in one row or one column is together. �en we don’t have to store
one of the other indices. But they only help by a little.

RECAP
Here’s what you need to know from this section:

⋅ sparse matrices save storage and work by only storing the zeros
⋅ triplet form is a list of triplets, where each triplet stores a single entry of the matrix as it’s
(row, column, value)
⋅ it’s easy to multiply a matrix-by-a-vector – also called amatvec – for a matrix stored in
triplet form

2.1 FAST OPERATORS �is section is a little bit more advanced, you
can skip it on a �rst reading.Much of the theory of iterative methods for large linear systems doesn’t depend on

sparse matrices at all, but rather having an e�cientmatrix-vector product function. �ere
are many matrices where we can implement the matrix-vector product much more easily
than computing all the entries of the matrix, or even by using triplet form.. Let’s see an
example. Consider the matrix:

[
2 1 .. .1
1 2 .. .1
⋮ ⋮ ⋱ ⋮

1 1 .. . 2
]

�is matrix is not sparse. Every entry is non-zeros. But there is much structure here.3 In 3 I’ve o�en described the entire �eld of
matrix computations as the �eld of solving
problems better by exploiting their structure.
You may disagree with me if doing it this way
is better, but I hope you’ll agree it’s easier!

fact, the I’ve written is the matrix of all ones plus the diagonal matrix. Symbolically, we’d
write:

A = I + J
where J is the matrix of all ones. It’s easy to multiply the matrix J by a vector!4 We just 4 If you’ve seen this idea before, than J is ac-

tually a rank-1 matrix. It’s the outer-product
of the vector of all ones with itself. What I
explain in the main text is just that same idea
without the formal terms.

take the sum of all entries of the vector and put that as each row:

Jx =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sum of x
sum of x
⋮

sum of x

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Okay, a concrete example may be easier:5 5 �at one is 16 ones! �e numbers in the
vector came from an undisclosed third party;
I would have picked single digit ones![

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

] [
12
94
37
38

] = [
181
181
181
181

] .

So if we want to compute (I + J) times that annoying vector, we get:6 6 not simpli�ed: −1

[
181+12
181+94
181+37
181+38

] .

�ere are many matrix operations that look like this. �e fast Fourier transform is really
just a matrix-vector product like this one! (Except much more complicated.)

Question 7 Suppose that A = I + xyT where x and y are length n-vectors. �en describe how
you’d compute Az quickly!

DEFINITION 8 A matrix has a fast operator form if it’s possible to compute a matrix-vector
product in signi�cantly fewer than O(n2) operations.

Under this de�nition, any sparse matrix is a fast operator!

RECAP
Here’s what you need to know from this section:

⋅ there are matrices out there that are dense but where it is still fast to compute a matvec
⋅ all sparse matrices are fast operators
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3 checking for a solution with the residual
�is section is about how we can check to
see if we have a solution, or how far away we
are.

�e point of the previous two sections was to say that there are important types of
matrices where computing a matrix-vetor product is fast, even if the matrix is enormous!
So when we are solving a linear system, we always assume that we can multiply the matrix
by a vector. �is operation is incredibly important because we need the matrix-vector
product to check a potential answer!

Suppose that we are solving
Ax = b

and I give you a �le containing what I claim is the solution vector x. Let’s call my vector y
because you aren’t sure that I’m not trying to mislead you. It’s easy to check that I’m telling
the truth because we can compute:

b − Ay
If this vector is nearly zero, then I’m likely telling the truth. If it’s uncomfortably far from
zero, then I suspect many of you would begin to question my con�dence in teaching this
material.7 �is idea is called computing the residual. 7 Some might even call me a liar!

DEFINITION 9 Given a potential solution to a linear system Ax = b, the residual of a linear
system at x is the vector:

r = b − Ax.
�e norm ∥r∥, or relative norm ∥r∥/∥b∥ of the residual is a common way to check if we have
satisfactorily solved our linear system.

Let’s see an example:

⎡⎢⎢⎢⎢⎢⎣

0 1 0
−1.5 0 2
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2.5
−3.5
−1

⎤⎥⎥⎥⎥⎥⎦

⋅ the residual at x = [ 1
1
1
] is r = [ 1.5

−4
−2

]
⋅ the residual at x = [ 1

−1
1
] is r = [ 3.5

−4
−2

]
⋅ the residual at x = [ 1

0
−1

] is r = [ 2.5
0
0
]8 8 this seems so close, but so far!

⋅ the residual at x = [ 1
1
−1

] is r = [ 1.5
0
0
]

⋅ the residual at x = [ 1
2.5
−1

] is r = [ 0
0
0
]

Hey! We’ve solved our linear system. �e solution is [ 1
2.5
−1

], which we checked via the
residual. In order to do that, all we needed to do was have a matrix vector product. We
didn’t need to know anything else about the matrix.

�is idea is the general idea behind iterative methods to solve large linear systems.
We’ll look at a sequence of solution vectors:

x(0) , x(1) , x(2) , . . . , x(k) , x(k+1) , . . .

and their residual vectors

r(0) , r(1) , r(2) , . . . , r(k) , r(k+1) , . . .

where we hope (or we’ll really prove) that at some point we get a small residual vector r
such that we can stop and declare that we’ve solved our system.

RECAP
Here’s what you need to know from this section:

⋅ the residual helps check the solution of a linear system
⋅ we only need a matrix-vector product to compute the residual
⋅ an iterative method looks for solutions by looking for a small residual
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4 the simplest iterative method

We will only see a few iterative methods in this class. Again, there could be an entire
course on iterative methods.9 But the idea we’ll look at �rst is really easy to understand 9 I took one when I was a graduate student!
(and it’s on your homework).

If we want to solve Ax = b, suppose we start looking for solutions with x(0) = 0. In
this case, our initial residual is r(0) = b.

�e idea with the simplest iterative method is that, when we have a current guess

x(0) and r(0)

we simply move x closer to r. Why would this make any sense at all?
One thing you might remember from your educational past is the idea of a geometric

series. If we have the sum:10 10 �is series only converges if ∣b∣ < 1, this
will cause a problem for our matrix case too!

1 + b + b2 + b3 + b4 + . . . = 1
1 − b

We can take the same idea and apply it to a matrix:

I + B + B2 + B3 + . . . = (I − B)−1 .

Let B = I − A, then, ideally:

x = A−1b = (I − B)−1b = Ib + Bb + B2b + . . .

Let x(0) = 0, then r(0) = b and x(1) = x(0) + r(0) = b is the �rst term of the geometric
series approximation of x. We can continuewith this same idea. If x(1) = b, the r(1) = b−Ab
and

x(2) = b + b − Ab = b + (I − A)b = b + Bb
which is the second term of the geometric series. We can continue this inductively. Let
x(k) be the kth term of the geometric series approximation. �en, we’ll show that x(k+1)
is the next term.11 11 �is derivation shi�s the number of terms

by one so we actually start at x(0) = b.
x(k) =

k
∑
t=0

Btb

r(k) = b − Ax(k)

x(k+1) = x(k) + r(k) = x(k) + b − Ax(k) = (I − A)x(k) + b

= Bx(k) + b =
k+1
∑
t=1

Btb + b =
k+1
∑
t=0

Btb.

JULIA SUPPORT
It turns out that Julia has built in routines to work with sparse matrices in something

like triplet form. So we can just add, subtract, multiply with a matrix and Julia will known
what to do if it’s a sparse matrix. But we need to tell Julia our matrix is sparse and be a
little careful in how we construct it. �e sparse command tells Julia to create a new sparse
matrix from a set of triplets.

julia> triplets = [1 1 5; 3 3 1; 1 3 -1; 2 1 2]

4x3 Array{Int64,2}:

1 1 5

3 3 1

1 3 -1

2 1 2

julia> B = sparse(triplets[:,1], triplets[:,2], triplets[:,3])

3x3 sparse matrix with 4 Int64 entries:

[1, 1] = 5

[2, 1] = 2

[1, 3] = -1
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[3, 3] = 1

julia> B*[1;1;1]

3-element Array{Int64,1}:

4

2

1

Internally, Julia is running something like our triplet_mult function in order to compute
this answer.

MATLAB SUPPORT
It turns out that Matlab has built in routines to work with sparse matrices in something

like triplet form.12 So we can just add, subtract, multiply with a matrix and Matlab will 12 Hey, this looks familiar! Julia’s sparse
matrix support was inspired by Matlab’s.known what to do if it’s a sparse matrix. But we need to tell Matlab our matrix is sparse

and be a little careful in how we construct it. �e sparse command tells Matlab to create a
new sparse matrix from a set of triplets.

>> triplets = [1 1 5; 3 3 1; 1 3 -1; 2 1 2]

triplets =

1 1 5

3 3 1

1 3 -1

2 1 2

>> B = sparse(triplets(:,1),triplets(:,2), triplets(:,3))

B =

(1,1) 5

(2,1) 2

(1,3) -1

(3,3) 1

>> B*[1;1;1]

ans =

4

2

1

Internally, Matlab is running something like our triplet_mult function in order to com-
pute this answer.

4.1 THE RICHARDSON ITERATION
Mathematically, the Richardson iteration is the following sequence:13 13 �e code online, see the expanded notes

x(0) = b

r(0) = b − Ax(0) = b − Ab
x(1) = x(0) + ωr(0)

⋮
x(k+1) = x(k) + ωr(k)

r(k+1) = x(k) + ωr(k)

When we implement an iterative method, we need to know:
⋅ the matrix A – but we just need a fast matrix vector product
⋅ the vector b – also called the right-hand side
⋅ a stopping tolerance tol that says when we get close enough to a solution
⋅ a maximum number of iterations maxiter that tells us when to stop if we are taking too
long

And for the Richardson iterative method, we also need to know the parameter ω
x = b;

normb = norm(b);

for iter=1:maxiter

r = b - A*x;

if norm(r)/norm(b) < tol; break; end

x = x + omega*r;

end
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the following notes are not �nished

4.2 THE JACOBI ITERATION
Both the Jacobi and Gauss-Seidel iterations (discussed next) work on a matrix where

we know what the elements are. So this means we can’t use them when we just have a fast
operator.

n = size(b,1);

x = b;

d = diag(D); % extract the diagonal

N = -(A-diag(d)); % remove the diagonal and negate

for iter=1:maxiter

y = id.*(b + N*x);

r = b - A*x;

x = y;

if norm(r) < tol; break; end

end

4.3 THE GAUSS-SEIDEL ITERATION
Most people don’t explain the Gauss-Seidel iteration this way, but I like to think of the

Gauss-Seidel iteration as programming bug. In the Jacobi iteration,

4.4 PRECONDITIONING AND ACCELERATION
If your iterative method is too slow, then preconditioning is the common term for a

way to accelerate it.

5 improving an initial guess.
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