In this class:

- A quick review of probability: random variables and expectation
- How to compute pi with a Monte Carlo method
- How to compute an integral with a Monte Carlo method
- The central limit theorem and what it says about Monte Carlo

September 14, 2016

Monte Carlo Methods

Random Variables

X is a random variable (R.V.)

Discrete RV

coin toss, dice roll, Monty Hall problem
Continuous RV
uniform, normal

Expectation

the "expectation" is akin to the "average"

$$
E[X]=\sum_{v=\text { values of } X} v \cdot \operatorname{Prob}[X=v]
$$

$E[$ dice $]=1 \cdot 1 / 6+2 \cdot 1 / 6+3 \cdot 1 / 6+\ldots$

$$
E[X]=\int_{\mathcal{D}} x p(x) d x
$$

Expectation

Linear $\mathrm{E}[\mathrm{aX}+\mathrm{bY}]=\mathrm{E}[\mathrm{aX}]+\mathrm{E}[\mathrm{bY}]$
if a and b are non-random constants

Non-multiplicative $E[X Y] \neq E[X] E[Y]$
(unless X and Y are independent)

Expectation Example

$X \sim \operatorname{Uniform}[0,1], Y \sim \operatorname{Uniform}[0,1]$

$$
Z=X Y
$$

$$
E[Z]=E[X Y]=\int_{0}^{1} \int_{0}^{1} x y d x d y
$$

$$
E[Z]=1 / 4
$$

Preview of Central Limit Theorem

The CLT is why Monte Carlo works!
$X_{1}, X_{2}, X_{3}, \ldots$ are iid copies
independent, identically distributed
think independent dice rolls

$$
\begin{aligned}
& X_{1} \sim X \text { dice roll } 1 \\
& X_{2} \sim X \text { dice roll } 2
\end{aligned}
$$

Preview of Central Limit Theorem

The CLT is why Monte Carlo works!

$$
X_{1}, X_{2}, X_{3}, \ldots \text { are iid copies }
$$

The CLT gives a relationship between

$$
\frac{1}{N} \sum_{i=1}^{N} X_{i} \quad \leftrightarrow \quad E[X]
$$

Average of N samples of X. The formal expectation! What we compute with MC!

