
purdue university · cs 51500
matrix computations

H O M E WO R K
David F. Gleich

October 26, 2024

Homework 4
Please answer the following questions in complete sentences in a clearly prepared
manuscript and submit the solution by the due date on Gradescope (Due morning
of Nov 6.)

Remember that this is a graduate class. There may be elements of the problem
statements that require you to fill in appropriate assumptions. You are also
responsible for determining what evidence to include. An answer alone is rarely
sufficient, but neither is an overly verbose description required. Use your judge-
ment to focus your discussion on the most interesting pieces. The answer to
“should I include ‘something’ in my solution?” will almost always be: Yes, if you
think it helps support your answer.

Problem 0: Homework checklist
• Please identify anyone, whether or not they are in the class, with whom

you discussed your homework. This problem is worth 1 point, but on a
multiplicative scale.

• Make sure you have included your source-code and prepared your solution
according to the most recent Piazza note on homework submissions.

Problem 1: Flop counts
1. Let E be an elementary matrix of the form E = I − σuvT . Starting from

the vectors v, u, scalar σ, and matrix A. Show how many addition and
multiplication operations it takes to compute EA, assume that E is n× n
and A is n× c. You may lose points if your count is not O(nc).

2. Consider computing trace(AT B) where A and B are in compressed sparse
column format and have the same dimensions. Suppose we have access to a
fused multiply add operation. This is an operation that takes three inputs
α, γ, β and computes
θ ← α ∗ γ + β in a single operation. Explain how to use this operation
when computing the trace and compute how much such operations you need
along with any other floating point operations (additions, multiplications,
divisions, etc. )

Problem 2: Inner-products are backwards stable.
1. Find a proof that computing xT y is backwards stable. Explain this proof

in enough detail for a classmate to understand it without having read the
document. This could take up to a page to give enough detail.

2. Show that computing a matrix-vector product y = Ax is backwards stable.

Problem 3: Accurate summation
Consider a list of n numbers. For simplicity, assume that all numbers are positive
so you don’t have to write a lot of absolute values.

1. Show that the following algorithm is backwards stable.

1



function mysum(x::Vector{Float64})
s = zero(Float64)
for i=1:length(x)

s += x[i]
end
return s

end

Which requires showing that mysum(x) =
∑

x̂i where ∥x̂− x∥/∥x∥ ≤ Cnε
where ε is the unit-roundoff for Float64. (You may want to solve problem 2
first.)

2. Consider adding three positive numbers together a, b, c. Describe how to
compute s = a + b + c with the greatest accuracy.

3. Use the results of part 2 to describe a way to permute the input x to
mysum to attain the greatest accuracy. Find an input vector x where this
new ordering gives a measurable change in the floating point accuracy as
determined by the number of correct digits in the mantissa. (Hint, this
means you should know the true sum of your vector so that you can identify
it’s best floating point representation.)

4. Lookup the Kahan summation algorithm and implement it to sum a vector.
Compare the accuracy with what you found in part 3.

Problem 4: Quadratic equations
Read through the stack exchange post on solving quadratic equations. https://
math.stackexchange.com/questions/311382/solving-a-quadratic-equation-with-precision-when-using-floating-point-variables

This suggests a number of approaches to compute the roots of a quadratic equation
through closed form solutions.

An alternative approach is to use an iterative algorithm to estimate that root of
an equation. In this case, we can use a simple bisection approach, which works
quite nicely for finding the root.

Your task for this problem is to implement a bisection algorithm to return all the
solutions of ax2 + bx + c = 0 when c ̸= 0.

""" Return all the solutions to ax^2 + bx + c. It is acceptable to return
NaN instead of a root as well. """
function roots(a::Float32,b::Float32,c::Float32)
end

The input to this method is Float32 so you can compare to higher-accuracy
solutions with Float64 and to elucidate some of the issues that arise with slightly
lower-precision.

Compare the accuracy of this procedure to the methods suggested on the stack
exchange page and explain your results. Note that you may need to look for
extremal inputs. In this case, Float32 is handy because there are only 4 billion
inputs for each input value a, b, c. This is still too many to test all combinations.
But there are only two choices for the roots, which greatly reduces the space.

Problem 5: Condition numbers
Consider the following computations. Discuss if they are well-conditioned or
ill-conditioned. If the answer depends on the types of input, please provide some
rough guidance. (e.g. for subtraction, it’s ill-conditioned if the numbers are close
by)

2

https://math.stackexchange.com/questions/311382/solving-a-quadratic-equation-with-precision-when-using-floating-point-variables
https://math.stackexchange.com/questions/311382/solving-a-quadratic-equation-with-precision-when-using-floating-point-variables


1. The entropy of a probability distribution is H(p) = −
∑n

i=1 pi log pi where
0 < pi < 1. Compute the condition number of the entropy function.

2. A matrix vector product y = AT x.

3. Evaluating a neural network layer y = f(QT x) where the elements are
yi = f(wT

i x) and f the soft-plus function log(1+ex) and Q is an orthogonal
matrix

Problem 6: Experience with the SVD
Produce the analytic SVDs of the following matrices. (That is, no numerical
approximations, but feel free to let Julia give you a good guess!). It’s important
to think about these questions because I may give similar questions on a midterm
or final and you’ll be expected to remember these. It’s also handy to think about
how to construct these, even though we haven’t seen any algorithms yet. You
should be able to work them all out directly from the definition.

1.
[
0 −3
0 0

]
2.

[
−5 0
2 0

]

3.

1 −2
2 −4
0 0


4.

[
2 0
0 5

]

Problem 7: Backwards stability
1. Let f(x) =

√
x. Suppose you have an algorithm where myf(x) =

√
x + µ

where µ is the machine precision. Is myf(x) backwards stable?

2. Suppose that you have a fancy implementation of
√

x and you compute
mysqrt(0.1µ) = −1 · 10−16µ. Is this a backwards stable implementation?

Problem 8: Condition numbers
Show that

1
κ(A)

measures the relative distance from A to the space of singular matrices. That is

1
κ(A) = smallest ∥D∥

∥A∥
such that A + D is singular.

Everything here involves the matrix 2-norm.

3


	Homework 4
	Problem 0: Homework checklist
	Problem 1: Flop counts
	Problem 2: Inner-products are backwards stable.
	Problem 3: Accurate summation
	Problem 4: Quadratic equations
	Problem 5: Condition numbers
	Problem 6: Experience with the SVD
	Problem 7: Backwards stability
	Problem 8: Condition numbers


