
Matrix
Methods

and
Programs

compiled on Thursday 14th November , 2024

ii

matrix methods
& programs

David F. Gleich

iv

© Copyright by David Francis Gleich, 2023.
All Rights Reserved. No reproduction without permission.

preface

This document is a work-in-progress set of notes associated with CS515
at Purdue University. I hope to turn it into a book at some point. There
are typos. There are mistakes. Please let me know if you find them. It’s
associated with the lectures at CS515 at Purdue and I am extremely grateful
to all the questions students have asked over the years that have led me to
develop this material.

As awarning, there are portions of thematerial I have based onnotes by
others. I believe I have documented these in my original notes and I hope
that these citations and references made the transition to this integrated
document. (I will be going through and checking!) These will likely be
revised before I would seek publication of the book, but if you see material
that you feel merits a citation to your own work, please do let me know!

The typography style and sectioning style is based on a combination
of Nick Trefethen (Numerical Linear Algebra and Pseudospectra with
Embree) and Edward Tufte.

The idea for writing is to illustrate the relevance of the analogies

computers mathematics
& ↔ &

programs matrices
& ↔ &

codes algebra
& ↔ &

systems analysis

or put differently, we use

matrices mathematics algebra analysis
to

describe study improve understand
the behavior of

computers programs codes systems
on interesting problems

I’m not happy with the title yet, but it’s the best I have so far.
Another part of this book is that I wish to use better terminology

besides what I affectionately call “dead white guy names.” The terminology
of the field is riddled with methods named after people

Gaussian elimination Jacobi’s method Richardson’s method
Vandermonde matrix Krylov subspace.

Mostly, these people are dead. And white men. (Of course there are
exceptions.) Yet Gaussian elimination was known to the Chinese millenia
before Gauss. So the names tend to stick to the person who managed to

vi

1 FromWikipedia “Stigler’s law of
eponymy, proposed by University of
Chicago statistics professor Stephen
Stigler in his 1980 publication
Stigler’s law of eponymy, states that
no scientific discovery is named
after its original discoverer.” And of
course, Stigler also wasn’t the first
one to mention this idea.

popularize the ideas rather than the ones who necessarily discovered them.
This has been widely observed.1 I like the following phrasing:

Methods and ideas tend to be named after the
last people to discover them.

The real issue is that these terms contribute to a culture of jargon,
dogma, and arcana that isn’t helpful to learn, understand, and compare
ideas. Towards that end, another goal with this book is to attempt to give
helpful names to some of thesemethods. For example, the Krylov subspace
is really a subspace of matrix powers. Why isn’t the term “matrix powers
subspace” better? If length is an issue, “power subspace” is even shorter. It’s
also closely related to a monomial basis of polynomials, so mononomial
basis would be another possible choice. These are all discussed throughout
the text and we have appendix A that lists better phrases to consider using
along with the current term.

vii

CONTENTS

part i matrix problems & structure
1 What is a matrix? 3

2 Notation 11

3 Structure in Matrices 17

4 A Matrix Model of Viral Spread 29

5 Candyland &Working with Sparse Matrices 35

6 Matrix & Vector Norms 43

part ii simple iterative algorithms
7 Simple Iterative Methods 53

8 Steepest Descent & Gradient Descent 61

9 Simultaneous & Sequential Variable Updates (aka
Jacobi & Gauss-Seidel) 67

10 Eigenvalues & the Power Method 75

part iii finitely terminating algorithms
11 Elimination methods for linear systems 81

12 Symmetric Positive Definite Systems & Variable Elim-
ination 89

13 General Variable Elimination 91

14 Pivoting & Variable Elimination 93

viii

15 Elimination methods for least squares 95

16 Least squares via QR factorization & orthogonaliza-
tion 97

part iv analysis
17 Time & memory requirements 105

18 Sensitivity & Conditioning 109

19 Conditioning of Least Squares & the Pseudoinverse 115

20 Backwards stability 119

21 Backwards Stability of LU Decomposition 121

part v subspace methods
22 The Matrix Powers Subspace, aka the Krylov Sub-

space 133

23 Orthogonal Bases for The Matrix Powers Subspace,
aka The Arnoldi and Lanczos Processes 139

24 Conjugate Gradient 143

25 Orthogonal Polynomials & Matrix Computations 149

26 Efficient GMRES 157

part vi advanced problems
27 Multiple Right Hand Sides 163

28 Preconditioning 167

part vii eigenvalue algorithms
29 Eigenvalue Theory 175

30 Eigenvalue Algorithms 177

CONTENTS ix

31 Algorithms for the SVD 187

part viii application derivations
32 Derivation of the Hilbert matrix 193

33 Chess Ranking 195

34 PageRank 197

A Better Names in Matrix Computations 207

x CONTENTS

MATRIX PROBLEMS &
STRUCTURE I

2 i ⋅ matrix problems & structure

Learning objectives
1. Realize the difference between a

table of data and a matrix.
2. Translate simple problems into

matrix equations (such as least
squares).

3. Review our notation for matri-
ces, vectors, scalars, etc.

1 Matrix (mathematics). https:
//en.wikipedia.org/wiki/Matrix_

(mathematics), accessed on 1 Au-
gust 2024.

WHAT IS A MATRIX? 1
Ask any American someone on the street of about the same age as I

am “What is a matrix” and they are likely to look just a bit confused. They
are probably thinking you meant to ask “What is The Matrix”, in reference
to the 1999-ish movie staring Keanu Reeves.

Now, ask someone in a engineering or science school “What is amatrix”
and you’ll probably get some of these answers:

1. A matrix is a 2-dimensional array, or table, of numbers.
2. A matrix is a linear transformation.
3. A matrix is a coordinate representation of a linear transformation

between vector spaces.
4. A matrix is an element ofRm ,n orCm ,n (or some other field such as

F2, which arises frequently in cryptography).
5. It’s a table of numbers where linear algebraic manipulations make

sense.
6. I know it when I see it.
7. A matrix stores vectors.
8. Something used to simplify mathematical calculations.
These are all fantastic answers. The first one is right out of Wikipedia1

In mathematics, a matrix (pl.: matrices) is a rectangular array
or table of numbers, symbols, or expressions, with elements or
entries arranged in rows and columns [. . .]

Moreover, it is a key fact in a linear algebra class that a linear transforma-
tion, or more precisely, a linear transformation between finite dimensional
vector spaces, can be represented as a m by n matrix. The space of these
matrices is often written as Rm ,n or Cm ,n when the elements come from
the real (R) or complex (C) number systems but it can be any field or even
– with some changes – elements from a ring. There is actually a second
part of the Wikipedia definition:

[. . .] with elements or entries arranged in rows and columns,
which is used to represent a mathematical object or property of
such an object.

This is a key for this book. Not just any table of numbers gives rise to
a matrix. The numbers must have some relationship to a mathematical
representation. Wikipedia, however, does not quite capture the nature of
the mathematical representation.

The definition of a matrix we will use in this book is:

3

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_(mathematics)

2 Please think about this, but I claim
this version handles cases 2, 3, 5, 6,
8.

A matrix is a table of numbers where linear
algebraic manipulations make sense.

This definition implies or subsumes many of the others answers.2
The ones that are even more general are:
· A matrix is a 2-dimensional array, or table, or numbers.
· A matrix is an element ofRm ,n orCm ,n (or some other field such as
F2, which arises frequently in cryptography).

What these miss is the essence of themathematics or computations under-
lying matrices. Let’s see an example to make this point clear.

1.1 a starting example

Is the following a matrix?
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 9 6 0 4 5 3
4 9 4 1 9 9 7
4 9 4 6 0 1 0
4 9 6 1 7 6 1
4 9 4 8 7 9 8
4 9 6 2 3 9 9
4 9 4 6 0 1 3
4 9 6 9 4 3 2
4 9 4 9 0 2 5
4 9 4 6 0 0 5
4 9 4 6 0 0 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It’s an element of R11,7. So under a strict syntactic view and assuming
the most general definition of a matrix, we could answer yes. However,
this particular set of numbers arises from a table of telephone numbers,
expanded by digit into columns. This information has no linear algebraic
structure: the sum of two phone numbers is not another phone number.
Also, it does not represent a linear transformation. We would not expect
solving linear systems of equations with this “matrix” to yield interesting
answers. Thus, for the purposes of this book, this data is not a matrix.

On the other hand, we might argue that there is low-rank structure
in this matrix. Note that the first two columns are multiplies of each
other. In this case, this structure arises because of the shared prefixes of
telephone numbers, and thus, it is non algebraic or non mathematical in
origin. Simply put, it is a curiosity of how how we choose to represent this
information – the phone numbers – as a matrix. We would expect and
hope true structure to be invariant or agnostic to such decisions.

4 i ⋅ matrix problems & structure

3 These data are
x y

1.02 4.3
1.01 5.34
1.23 3.34
1.24 8.24
1.4 5.89
1.41 5.59
1.59 7.51
1.65 5.15
1.64 9.75
1.77 5.3
2.01 7.96
2.0 14.95
2.15 11.56
2.12 11.32
2.19 11.25
2.31 15.68
2.49 18.04
2.56 15.01
2.7 15.76
2.71 15.96
2.91 18.94
2.97 18.65
3.07 16.43
3.1 19.86
3.19 19.86
3.29 12.81
3.36 22.12
3.54 22.98
3.66 21.55
3.74 20.4
3.74 15.75
3.81 17.53
3.87 17.41
3.94 21.36
4.12 20.99
4.23 24.01
4.27 22.06
4.38 21.31
4.44 21.73
4.49 27.52
4.57 26.02
4.83 28.66
4.84 25.89
4.93 29.72
5.02 30.43
5.15 29.53
5.26 31.55
5.39 32.33
5.5 31.92
5.41 27.72

1.2 another example

Let’s try and answer this question a different perspective and see a
few places where matrices arise. This will also help introduce us to our
notation in class.

Suppose we have some data and we’d like to fit a linear model to it.

1 2 3 4 5

10

20

30

x →

↑ y

The data3 for our problem are pairs: (y1 , x1), ..., (yN , xN). We can
assemble them into a matrix in a few ways

X =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1 x1
y2 x2⋮
yN xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
or X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1
x2 y2⋮
xN yN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
or X = [x1 x2 . . . xN

y1 y2 . . . yN
] or . . .

Are these matrices? Let’s keep going before answering this!
Our goal is to find coefficients (c1 , c2) such that y = c2x + c1 is a good

fit to the data. There are a few ways that we could measure fit. We will be
expendient and insist that for each data point, we want:

(y i − (c2x i + c1))2
to be as small as possible for all datapoints.4 This gives us a way tomeasure
how good c1 , c2 are. Our goal is now to minimize the function:

f (c1 , c2) = N∑
i=1
(y i − (c2x i + c1))2 .

Let us use notation to eliminate the indices.
Let x, y, and c be the vectors:

x =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2⋮
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
y =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2⋮
yN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
c = [c1c2]

1 ⋅ what is a matrix? 5

4 This is a general instances of a
squared loss approximation. If we
want two values such that a ≈ b
then with squared loss, we want
(a − b)2 . These loss functions are
often illustrated link this plot:

0
0

then
f (c) = ∥y − xc2 − ec1∥2 .

Here, the vector e is just a vector of all ones, and ∥ ⋅ ∥ is the 2-norm, or
Euclidean norm, of a vector:

∥z∥ =
¿ÁÁÀ n∑

i=1
∣z i ∣2 .

Now, let A be the matrix:

A = [e x] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1
1 x2⋮
1 xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1.1)

Then we can write our function f as:

f (c) = ∥y − Ac∥2 .
This type of problem is an instance of what is called a least squares

problem. The data to the problem are encoded into a matrix A and the
goal is to produce coefficients c that constitute a linear relationship.

example 1.1 Hint that there is a matrix. Note that we can reparame-
terize the line as:

y = d2(x − 1) + d1
in which case we have

c2 = d2 , c1 = d1 − d2
or

c = [1 −1
0 1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=T

d

which where T is definitely a matrix! In this case, we’d have:

∥y − ATd∥
if we wanted to parameterize in terms of T . ◆

Suppose instead we had the data5 in the following picture

6 i ⋅ matrix problems & structure

5 Here, the data are.
x y

1.02 8.7
1.01 8.89
1.23 8.88
1.24 9.87
1.4 9.62
1.41 9.57
1.59 10.13
1.65 9.71
1.64 10.62
1.77 9.81
2.01 10.39
2.0 11.79
2.15 11.09
2.12 11.05
2.19 11.01
2.31 11.84
2.49 12.17
2.56 11.49
2.7 11.46
2.71 11.49
2.91 11.76
2.97 11.59
3.07 10.94
3.1 11.56
3.19 11.36
3.29 9.7
3.36 11.37
3.54 11.02
3.66 10.35
3.74 9.85
3.74 8.92
3.81 9.03
3.87 8.78
3.94 9.31
4.12 8.5
4.23 8.63
4.27 8.06
4.38 7.4
4.44 7.19
4.49 8.1
4.57 7.4
4.83 6.52
4.84 5.91
4.93 6.16
5.02 5.77
5.15 4.78
5.26 4.48
5.39 3.77
5.5 2.93
5.41 2.72

1 2 3 4 5

4

6

8

10

12

x →

↑ y

Then it’s clear from the picture that a linearmodel isn’t appropriate. We
can still solve the problem we just posed, but there may be other models
of our data that are appropriate. Such as a quadratic:

c3x2 + c2x + c1 .
By going through the same type of steps, we canwrite the resulting problem
in terms of the matrix:

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x21
1 x2 x22⋮
1 xN x2N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1.2)

The final problem is then to find c to minimize:

f (c) = ∥y − Ac∥2 .
Summary of least squares examples

In this case, we’ve translated two distinct problems into the same gen-
eral form:

find c to make ∥y − Ac∥2 as small as possible.

This idea underlies our book. There are a great many problems in science,
engineering, biology, and everywhere that can be turned into common
matrix problems.

1 ⋅ what is a matrix? 7

6 This is not necessarily the best
way to solve a least squares problem.
We’ll see better ways in the future!

7 This isn’t hard to work out, but is
a bit tedious if you haven’t seen it
before. Try a problem where A is
3 × 2 to get started and just work
element-wise.

1.3 common matrix problems

The three canonical and most common matrix problems are:
· Linear systems of equations: find x such that Ax = b
· Least squares problems: find x to minimize ∥Ax − b∥2
· Eigenvalue problems: find x, λ such that Ax = λx
These problems have deep relationships.

Solving least squares via a linear system.

We can turn the least squares problem

find x to minimize ∥Ax − b∥2
into a related linear system.6

The first thing we need to do is understand how to find the minimum
point of the least squares problem. There are a few ways to do this. One of
the easiest is to think back to calculus class and about how we can find the
extreme points of a simple quadratic function. Let s(x) = 1/2ax2+b∗x+c
be a simple quadratic. This function only has a single extreme point when
s(x) is a minimum. Then, via calculus, we can find the extreme points by
finding places where the derivative is zero. Here, s′(x) = ax + b = 0 gives
the minimum point x = −b/a.

For least squares, we have :

f (x) = ∥Ax − b∥2 = (Ax − b)T(Ax − b)
This idea that we can find the extreme points by looking for points

where the derivative is zero generalizes to multivariate functions such
as our f (x) for least squares. This is because f (x) for least squares is a
smooth, convex functions. That means that f (αx + (1 − α)y) ≤ α f (x) +(1 − α) f (y) when 0 ≤ α ≤ 1.
example 1.2 Showing that this property f (αx+ (1− α)y) ≤ α f (x)+(1 − α) f (y) is a good exercise in working with vectors. The key step is to
show:

α2xTATAx+2α(1−α)xTATAy+(1−α)2yTATAy ≤ αxTATAx+(1−α)yTATAy

This can be done via by showing that difference is less than 0.

LHS − RHS = α(α − 1)xTATAx + α(α − 1)yTATAy − 2α(α − 1)xTATAy
= α(α − 1)(x − y)TATA(x − y)
= α(α − 1)∥A(x − y)∥
≤ 0. ◆

The derivate or gradient of f (x) is7
f ′(x) = 2ATAx − 2ATb.

8 i ⋅ matrix problems & structure

This is zero when
ATAx = ATb.

The result is a linear system of equations that solve a least squares
problem.

From an eigenvector problem to a linear system

Suppose that we know that λ is an eigenvalue of x. In that case, we
may want to find the eigenvector. This can be done by solving the linear
systems of equations: (A− λI)x = 0.
This is a singular system of linear equations that we will revisit in the future.
So it isn’t the standard for a linear system of equations, but it is a valid
problem.

recap

So to get back to the starting question: what is a matrix?
For our purposes:

A matrix is a table of numbers where linear
algebraic manipulations make sense on the rows

or columns.
This extents the previous note to explain that the linear algebraic manipu-
lations should make sense on the rows or columns.

Solving a least-squares problem with phone numbers doesn’t make
any sense. But solving this where the data come from experiments makes
a good deal of sense. This is because in example 1.1, we show that there
was a transformation matrix T that translated between two different for-
mulations of the problem.

These problems have been stated and studied for centuries. The algo-
rithms are decades old. Why, then, is this still an interesting subject? The
reason that we study the subject of matrix computations, and indeed, the
reason that this subject continues to be interesting is that our goal is to
use the structure of the problem in order to solve the underlying problem
better. New applications bring new structures with them. These often fit
poorly with existing algorithms or methods or ideas – and then require us
to think about how to make them better.

In this case, better may mean any of these:

faster more accurately more reliably

We will see this soon!

1 ⋅ what is a matrix? 9

Maybe a block-diagonal
linear system? Maybe a
rank-1 least squares prob-
lem? Something with the
mean matrix? Something
with iterative refinement?

exercises

1. Consider a matrix of social security numbers The matrix is a few
thousand by 9. Each row is a distinct number and each column has
one of the social security numbers in the same order they appear on
the card. Explain why this is or isn’t a matrix, using the ideas from
class.

2. Consider a collection of 10000 greyscale images. Each image is 64
by 64 pixels, or 4096 distinct numbers. Suppose we create a matrix
where each column represents a 32 by 32 pixel corner of each image.
So the matrix is 1024 rows by 40000 columns. Explain why this is
or isn’t a matrix, using the ideas from class.

3. Consider a matrix of demographic information for many all under-
grad CS applicants at Purdue. Each student is a row. The columns
represent:

· 0/1 (had a highschool GPA >= 3.75)
· 0/1 (had a highschool GPA >= 3.25)
· 0/1 has more than three letters of recommendation
· number of times the word "excellent" "top-tier" "best" appears
in letters of recommendation

· Flesch-Kincaid Grade Level of personal statement
Explain why this is or isn’t a matrix, using the ideas from class.

4. Let A be the matrix from part 1. Consider the new matrix B = ATA.
Explain why this is or isn’t a matrix, using the ideas from class.

5. Let A be the matrix from part 2. Consider the new matrix B = ATA.
Explain why this is or isn’t a matrix, using the ideas from class.

6. Let A be the matrix from part 3. Consider the new matrix B = ATA.
Explain why this is or isn’t a matrix, using the ideas from class.

7. A key focus in this book is on structure within the problem. Let
A be the matrix from the linear or quadratic fits from (1.1) or (1.2).
Show that the matrix ATA has some type of structure in the entries.

8. As an example of how we can solve a problem better using structure,

10 i ⋅ matrix problems & structure

Learning objectives
1. Consider skipping this section

if you are familiar with notation
already.

2. Recognize how we write and
discuss matrices, vectors, and
their entries and some common
operations.

in class I’ll usually write ma-
trices with just upper-case letters. If
you are unsure if something is a ma-
trix or an element, raise your hand
and ask, or quietly ask a neighbor.

NOTATION 2
Let us begin by introducing basic notation for matrices and vectors.

2.1 matrices

We’ll use R to denote the set of real-numbers and C to denote the set
of complex numbers.

We write the space of all m × n real-valued matrices as Rm×n . Each

A ∈ Rm×n is
⎡⎢⎢⎢⎢⎢⎣
A1,1 ⋯ A1,n⋮ ⋮
Am ,1 ⋯ Am ,n

⎤⎥⎥⎥⎥⎥⎦
where A i , j ∈ R.

Sometimes, I’ll write: ⎡⎢⎢⎢⎢⎢⎣
a1,1 ⋯ a1,n⋮ ⋮
am ,1 ⋯ am ,n

⎤⎥⎥⎥⎥⎥⎦
instead. With only a few exceptions, matrices are written as bold, capital
letters, as in A, B,C. Occasionally, we’ll use a capital Greek letter, as in Λ
or Σ. Matrix elements are written as sub-scripted, unbold letters. When
clear from context,

A i , j is written A i j

instead, e.g. A11 instead of A1,1.
Another notation for A ∈ Rm×n is

A ∶ n × n.
Sometimes this is nicer to write on the board.

2.2 vectors

We write the set of length-n real-valued vectors as Rn . Each

x ∈ Rn is
⎡⎢⎢⎢⎢⎢⎣
x1⋮
xn

⎤⎥⎥⎥⎥⎥⎦
where x i ∈ R.

Vectors are denoted by lowercase, bold letters, as in x, y, z. As withmatrices,
elements are sub-scripted, unbold letters. Sometimes, we’ll write vector
elements as

x i or [x]i or x(i).
Usually, this choice is motivated by a particular application.

11

in class I’ll usually write vec-
tors with just lower-case letters and
will try to follow the convention
of underlining them. This is much
nicer than the little arrows vectors
are sometimes written with.

Throughout the class, vectors are column vectors.

2.3 scalars

Lower-case greek letters are scalars as in α, β, γ.

2.4 operations

transpose Let A ∶ m × n, then
B ∶ n ×m = AT has B i , j = A j , i .

Example A = [2 3
1 4
3 −1
] AT = [2 1 3

3 4 −1]
hermitian (Also called conjugate transpose) Let A ∈ Cm×n , then

B ∈ Cn×m = A∗ = AH has B i , j = A j , i .

Example A = [2 3
i 4
3 −i
] A∗ = [2 −i 3

3 4 i]
addition Let A ∶ m × n and B ∶ m × n, then

C ∶ m × n = A+ B Ô⇒ C i , j = A i , j + B i , j .

Example A = [2 3
1 4
3 −1
] , B = [1 −1

2 3
−1 1

] A+ B = [3 −23 2
2 0
].

scalar multiplication Let A ∶ m × n and α ∈ R, then
C ∶ m × n = αA+ B Ô⇒ C i , j = αA i , j .

Example A = [2 3
1 4
3 −1
] , 5A = [10 15

5 20
15 −5
]

matrix multiplication Let A ∶ m × n and B ∶ n × k, then
C ∶ m × k = AB Ô⇒ C i , j = n∑

r=1
A i ,rBr , j .

matrix-vector multiplication Let A ∶ m × n and x ∈ Rn , then

c ∈ Rm = Ax Ô⇒ c i = n∑
j=1

A i , jx j .

This operation is just a special case of matrix multiplication that
follows from treating x and c as n×1 andm×1matrices, respectively.

vector addition , scalar vector multiplication These are
just special cases of matrix addition and scalar matrix multiplication
where vectors are viewed as n × 1 matrices.

12 i ⋅ matrix problems & structure

2.5 common matrices & vectors

The n × n identity matrix is :

I =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0
0 1 ⋯ ⋮⋮ ⋯ ⋱ 0
0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
This matrix is rarely written with it’s explicit dimension as that can almost
always be inferred by context. That is to say, the dimension of the identity
matrix is whatever it needs to be such that the matrix equation makes
sense. For clarity, we might sometimes write:

In

to denote the n × n matrix explicitly. Thus,

I3 =
⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

The identity matrix has the property that AI = A for any matrix A. It’s
like multiplying by 1.

We denote the ith column of the identity matrix by ei :

ei =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0⋮
1 ith position
0⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For instance,
e2 = [0 1 0]T .

Using these vectors, we can write the ith column of any matrix as

Aei .

It is, perhaps, alarming that ei is frequently used without specifying
its dimension. However, just like the identity matrix above, it is almost
always possible to work out the dimension. If we believe it is helpful to
specify it, we’ll use e(n)i .

Finally, the vector e will be used to denote the vector of all ones:

e =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

2 ⋅ notation 13

Except sometimes it will be used as an error vector for a problem.
Some people use the matrix J to represent thematrix of all ones

J = [e e ⋯ e] .
This isn’t needed however, as we can easily write this as the rank-1 ma-
trix J = eeT , which – while a bit longer – reveals the elementary rank-1
structure.

2.6 matrix & vector partitioning

It is often useful to represent a matrix as a collection of vectors. In this
case, we write

A ∶ m × n = [a1 a2 ⋯ an]
where each a j ∈ Rm . This form corresponds to a partition into columns.

Alternatively, we may wish to partition a matrix into rows.

A ∶ m × n =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

rT1
rT2⋮
rTm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where each ri ∈ Rn .

Using the column partitioning:

Ax = [a1 a2 ⋯ an]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=∑

j
x ja j .

And with the row partitioning:

Ax =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

rT1
rT2⋮
rTm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

rT1 x
rT2 x⋮
rTmx

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Another useful partitioned representation of a matrix is into blocks:

A = [A1,1 A1,2
A2,1 A2,2

]
or

A =
⎡⎢⎢⎢⎢⎢⎣
A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

⎤⎥⎥⎥⎥⎥⎦
.

Here, the sizes “just have to work out.” Formally, all Ai ,⋅ must have the
same number of rows and all A⋅, j must have the same number of columns.
The sizes will usually be determined by something that results in a unique
representation. If not, the statement may be very flexible and forgiving on
the dimensions – alternatively, there could be an issue with the statement.

14 i ⋅ matrix problems & structure

exercises

1. Identify the following:

f , z1 , x1 , α, β,C ,C1 , Σ, B i , j , bi , j

2. What are the results of the computations
⎡⎢⎢⎢⎢⎢⎣
2 0 0
0 1/2 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 2 3
6 4 2−2 −2 −2

⎤⎥⎥⎥⎥⎥⎦
and
⎡⎢⎢⎢⎢⎢⎣
1 2 3
6 4 2−2 −2 −2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
2 0 0
0 1/2 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
?

Describe the difference in multiplying a diagonal matrix on the left
compared with the right and give a short proof of your result.

3. Let ei be the vector with all zeros and a 1 in the ith entry. Let A be
an m × n matrix. Give an expression for the rth row of A as a result
of a matrix vector product. Give an expression for the cth column
of A as a result of a matrix vector product.

4. The vector e = [1 . . . 1]T (i.e. the all ones vector). x = ‘ones(1000,1)‘
y = ‘1:1000‘, what is xTy = ?

5. x = [1.5 2 −3]T . (Assume e is 4 × 1.) exT =? xeT =?
6. x = [−5 4 2]T . (Assume ei is 3 × 1.) e2xT =? xeT1 =?

2 ⋅ notation 15

16 i ⋅ matrix problems & structure

Learning objectives.
1. How to understand structure in

matrices and where it comes from.
2. What a Hankel matrix is.
3. What a sparse matrix is.
Terms: Hankel, tridiagonal, trian-

gular, Hessenberg, sparse, bidiago-
nal, data-sparse, symmetric positive
definite density, nnz

1 There are better ways to solve
these problems involving the QR
decomposition. We will see that
soon.

2 Note that the original matrix
involves N + 1 pieces of information:
1, x1 , . . . , xN , but the resulting
matrix has only 5 distinct pieces of
information.

STRUCTURE IN MATRICES 3
One of the goals of matrix computations is to exploit structure inside

the problem. That is, there are algorithms that will work for essentially
any matrix that is a valid input for the problem. But you are unlikely to
have any matrix! You have a matrix that arises in your application. The
idea is that we should be able to take advantage of that structure in order
to write better algorithms!

3.1 a first example of structure

Consider those least squares problems we had. The matrix involved
with fitting a quadratic polynomial to the data was

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x21
1 x2 x22⋮
1 xN x2N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

One way to solve a least-squares problem (which we will derive eventually,
see a future lecture!) is to convert it into a set of linear equations called
the normal equations.

recap of the normal equations for least-squares 1

To find x such that ∥b − Ax∥22 is minimized, we can solve the normal
equations

ATAx = ATb.

Let’s look at the matrix ATA defined in the least squares problem with
above:

ATA =
⎡⎢⎢⎢⎢⎢⎣

N ∑i x i ∑i x2i∑i x i ∑i x2i ∑i x3i∑i x2i ∑i x3i ∑i x4i .

⎤⎥⎥⎥⎥⎥⎦
.

Again, this is a very specific type of matrix. Notice that the values are
constant in certain regions:2

ATA =
⎡⎢⎢⎢⎢⎢⎣
y1 y2 y3
y2 y3 y4
y3 y4 y5

⎤⎥⎥⎥⎥⎥⎦
.

So in order to solve these types of equations, we do not need a general
purpose means of solving a linear system of equations. What we need is
just an algorithm to solve these specific types of inputs.

17

3 Who was Hankel? Is he really
the first to look at these? Short
answer: I don’t know. Wikipedia
has a little bit of information,
https://en.wikipedia.org/

wiki/Hermann_Hankel, so does
the Encyclopedia of Mathematics,
https://www.encyclopediaofmath.

org/index.php/Hankel_matrix, but
neither gets at the question of who
was the first to specialize on these
types of matrices.

This type of input arises frequently, and so it has acquired a name. The
general form is called a Hankelmatrix.3 Recall that one of our goals is to
avoid naming things after people. Towards that end, we believe these are
better named left shift matrices. Moreover, this immediately suggests a
relationship with right shift matrices.

Definition 3.1
A matrix is a left shift matrix if A i , j = A i−1, j+1 whenever
i − 1, j + 1 is a valid index into the matrix.

The following are straightforward results of this definition.

Theorem 3.2
· A square left shift matrix is symmetric.
· Anm×n left shiftmatrix is defined bym+n−1 numbers.

Thus, as an example, we could work out how to solve linear equations
with left shiftmatrices and show how to use that to fit 1 dimensional curves.
This would hopefullymake it better for this single purpose.

3.2 sparse structure in matrices

The next type of structure we’ll discuss is sparse structure or simply put
sparsity. Simply put, a sparse matrix consists of mostly zeros. Conversely,
a dense matrix is a matrix that is not sparse.

Matrices withmostly zeros arise oftenwhenwe are studying real-world
systems. There are a large number of examples of this at the SuiteSparse
Matrix Collection (https://sparse.tamu.edu/) which has a database of
tens of thousands of examples of these real-world system and the matrices
that result. We recently wrote the following passage in a grant application
to explain the wide-scale presence of sparsity:

Parsimony is a hallmark of scientific theories. They should
be as simple as possible to explain the world. When these
theories are realized in computer simulations, the result is
often a sparse set of equations – a set where variables only
have minimal dependencies on each other. This occurs be-
cause many simulations directly model a small unit of space
and the simplest relationships have limited impact on their
surroundings.

We’ll see a few examples as we go along through our lectures. Let’s get
started with a simple one that comes up for a problem that has all the of
the actual interesting detail removed.

18 i ⋅ matrix problems & structure

https://en.wikipedia.org/wiki/Hermann_Hankel
https://en.wikipedia.org/wiki/Hermann_Hankel
https://www.encyclopediaofmath.org/index.php/Hankel_matrix
https://www.encyclopediaofmath.org/index.php/Hankel_matrix
https://sparse.tamu.edu/

4 More generally, this is an instance
of first-hitting time in Markov
chains, but we don’t need to get into
the formalities of that character-
ization and generalization of the
problem.

5 A system of equations closely re-
lated to this arose when were were
studying the ability of algorithms
tomake progress when there are
failures. In this case, p is the prob-
ability of progress on a given step
and q and r model two different
failure scenarios that take us back to
previous levels of progress.

Double check the small
equation here doesn’t
cause spacing issues.

example 3.3 Consider the following problem. Suppose you are sitting
on the number line at 0, and youmove left and right with equal probability
(1/2) at each step. What is the expected length of time until you first hit
the integer +6 or −4. 4

We can solve this by letting x{i} be the expected length of time before
you first hit either integer given that you start at state {i}. Note that i can
range from −4 to +6. Also note that x{−4} = x{+6} = 0. Let’s work out the
others. Suppose we were to start at state {−3}. Then we have at least one
move that results in two cases: we move to {−4} with probability 1/2 and
stop, or we move to {−2}with probability 1/2 and continue. Consequently:

x{−3} = 1 + 1
2 x{−4} + 1

2 x{−2} .

Likewise, we can apply the same analysis to get:

x{−2} = 1 + 1
2 x{−3} + 1

2 x{−1}

x{−1} = 1 + 1
2 x{−2} + 1

2 x{0}⋮
x{+5} = 1 + 1

2 x{+4} + 1
2 x{+6} .

This gives us an overall linear system of equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0− 1
2 1 − 1

2 0 0 0 0 0 0 0 0
0 − 1

2 1 − 1
2 0 0 0 0 0 0 0

0 0 − 1
2 1 − 1

2 0 0 0 0 0 0
0 0 0 − 1

2 1 − 1
2 0 0 0 0 0

0 0 0 0 − 1
2 1 − 1

2 0 0 0 0
0 0 0 0 0 − 1

2 1 − 1
2 0 0 0

0 0 0 0 0 0 − 1
2 1 − 1

2 0 0
0 0 0 0 0 0 0 − 1

2 1 − 1
2 0

0 0 0 0 0 0 0 0 − 1
2 1 − 1

2
0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x{−4}
x{−3}
x{−2}
x{−1}
x{0}
x{+1}
x{+2}
x{+3}
x{+4}
x{+5}
x{+6}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
1
1
1
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that most of the elements are zero. This is an example of a sparse
matrix. ◆
example 3.4 Consider the following revised setting.5 Suppose you
are sitting on the number line at 0, and you move right with probability
p and stay put with probability q. With probability r, you restart at 0 at
any value between 0 and your current position-1, with the restart chosen
uniformly at random. What is the expected time until you hit +10? We
also have p+ q+ r = 1. If p = 1/2, q = 1/4, r = 1/4, how long do we expect
to take to reach +10?

Again, this can be solved by a similar linear system. First, we have
x{0} = 1 + (1 − p)x{0} + px{+1}. The other equations all proceed in a
similar fashion.

3 ⋅ structure in matrices 19

6 This is the “little-o” notation.
What this means is that as m, n →
∞, then the number of non-zeros
in the matrix is any function that
grows asymptotically more slowly
than mn. As an example, if m = n,
then n1.5 is o(n2).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p −p 0 0 0 0 0 0 0 0 0
−r (1 − q) −p 0 0 0 0 0 0 0 0
−

1
2 r −

1
2 r (1 − q) −p 0 0 0 0 0 0 0

−
1
3 r −

1
3 r −

1
3 r (1 − q) −p 0 0 0 0 0 0

−
1
4 r −

1
4 r −

1
4 r −

1
4 r (1 − q) −p 0 0 0 0 0

−
1
5 r −

1
5 r −

1
5 r −

1
5 r −

1
5 r (1 − q) −p 0 0 0 0

−
1
6 r −

1
6 r −

1
6 r −

1
6 r −

1
6 r −

1
6 r (1 − q) −p 0 0 0

−
1
7 r −

1
7 r −

1
7 r −

1
7 r −

1
7 r −

1
7 r −

1
7 r (1 − q) −p 0 0

−
1
8 r −

1
8 r −

1
8 r −

1
8 r −

1
8 r −

1
8 r −

1
8 r −

1
8 r (1 − q) −p 0

−
1
9 r −

1
9 r −

1
9 r −

1
9 r −

1
9 r −

1
9 r −

1
9 r −

1
9 r −

1
9 r (1 − q) −p

0 0 0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x{0}
x{+1}
x{+2}
x{+3}
x{+4}
x{+5}
x{+6}
x{+7}
x{+8}
x{+9}
x{+10}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1
1
1
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that most of the elements are not zero. Is this system of equations
sparse? We will discuss that. ◆

The case in example 3.3 has all the hallmarks of sparsity. There are
at most 3 non-zero entries per row. Indeed, the problem is actually even
more special. Because the entries are structured in the three diagonals, the
matrix is called tridiagonal. This is another type of structure in matrices.

The case in example 3.4 has around half of the entries of the matrix
listed. Yet, there are still many entries that are zero. This matrix is an
example of a lower Hessenberg matrix – see section 3.5.

Definitions of sparsity

Is this matrix sparse? There are two competing ways to think about it.

Definition 3.5 (sparse, informal)
A matrix is sparse if there is enough structure in the zero
entries to use advantageously in an algorithm.

Definition 3.6 (sparse, alternative)
A class of matrices is sparse if it has o(mn) non-zero entries.6

Considering the matrix from example 3.4. This matrix is sparse by the
informal definition as it’s clear there are enough zeros to take advantage
of. It is not sparse by the formal definitions as the number of nonzero
entries is roughly 1

2n
2. This shows how sparsity is not necessarily clear cut

in terms of applications and theory.

Measuring sparsity

There is no single way measure the sparsity of a matrix. The key
components are:

· the number of non-zero entries called the number of nonzeros or
nnz

· the number of zero entries
· the total number of entries or mn for an m × n matrix .

20 i ⋅ matrix problems & structure

7 These terms always need to be
checked as terminology is highly
variable.

Note that any one of these can be inferred from the other two.
The density of an m × n matrix typically refers to the ratio:7

density = number of nonzeros
total possible entries

= nnz
mn

.

The average entries per row or per column of an m × n matrix are

average nonzeros per row = number of nonzeros
m

average nonzeros per column = number of nonzeros
n

.

As matrices get bigger, these density behaves differently than the av-
erage nonzeros per row and columns. Suppose we have an n × n class of
matrices with n log n non-zero entries. Then the average nonzeros per
row grows as log n →∞ but the density decays as log n/n → 0.

In most of the problems we study, an n × n matrix means we have
n variables which governs the size of the matrix. In these settings, the
average nonzeros per row or per column gives a better guide to the sparsity
of the problem. One additional reason to prefer this measure is that it
gives a rough guide to the amount of work needed to look at a single row
or column.

3.2.1 Grid and spatial structure

An extremely common source of sparsity arises because we solve equa-
tions on a grid of points that represents a surface or a plane. In this case,
variables are arranged on a grid and dependencies among the variables are
represented by the grid adjacencies.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

x32

x33

x34

x35

x36

x37

x38

x39

x40

x41

x42

x43

x44

x45

x46

x47

x48

x49

In this scenario the variable x1 may depend on or influence x2 , x8.
Likewise, the variable x32 may depend on or influence x25, x31, x33, x39.

3 ⋅ structure in matrices 21

More generally, the variable dependence follows the underlying ge-
ometry. This might be 3d. This might have non-grid structure. In the
most common cases, the dependencies only reflect nearby points which
produces sparsity.

Sparsity in data science

Sparse matrices arise frequently in data science, machine learning,
and AI applications. The reason is that most real-world databases are not
dense matrices. Image data are a notable exception and they are dense.

For instance, the adjacency matrix of the graph is used to compute
the PageRank vector for the graph. For a graph with n nodes, this matrix
will have nonzero entries for each edge. Typical graphs include social
networks, where there are millions of nodes but each node only has a few
thousand edges induced by acquaintance relationships.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 1 1
0 0 1 1 0 0 0 1 0 0
0 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0
1 0 1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1 1 0
0 1 0 1 1 1 1 0 0 0
1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 3.1 – A small contact
network with the adjacency matrix
for the network.

Likewise, in user behavior datasets, the rows are often users and the
columns reflect behaviors. This could involve watching a movie. Since
most people have only seen a few movies, these data are sparse. A well
known instance of this matrix is the Netflixmatrix of user ratings.

3.3 symmetric positive definite matrices

When we solved the least squares problem via the normal equations,
the matrix ATA came up. It turns out that matrices with this form are
extremely important and so they are called symmetric positive semi-definite
matrices. More explicitly, a symmetric positive definite matrix is one that
can be written:

B = FTF

for some matrix F . Note that F need not be unique. Another way of
characterizing symmeric positive semi-definite matrices is:

xTAx ≥ 0 for all x.

22 i ⋅ matrix problems & structure

8 This function takes in a sparse
matrix data structure, and two
indices i and j of the element in
the matrix. Their code is also much
more general, explicit, and more
element.

9 In this case, we note that it’d likely
be better to parameterize the de-
fault return value instead of imple-
menting a new function for every
possible different “not-specified”
value.

Definition 3.7
A matrix A is symmetric positive definite if

xTAx > 0 for all x /= 0.

3.4 fast operators and data-sparse matrices

Consider the matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1− 1
2 1 − 1

2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 − 1

2 1 − 1
2 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 − 1
2 1 − 1

2 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 − 1

2 1 − 1
2 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 − 1
2 1 − 1

2 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 − 1

2 1 − 1
2 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 − 1
2 1 − 1

2 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 − 1

2 1 − 1
2 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 − 1
2 1 − 1

2
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This is the same matrix as in example 3.3 except where every 0 entry has
been replaced by 0.1. This matrix is not sparse. Yet, it’s hardly different
from the sparse matrix in that example.

From a programming perspective, the only difference between the two
is that all the “unspecified” elements have been replaced by a different value.
The Julia function to lookup an element in a sparse matrix implements
this algorithm:8

function getindex (A:: SparseMatrixCSC , i:: Integer , j:: Integer)
if (any entries in column j)

if (element in row i is in column j)
return value from row i and column j

else
return 0

end
else

return 0
end
end

This pseudocode could be trivially adapted to give usC instead by changing
the two lines return 0 to return 0.1.9

Why zero is special.

The reason that we call matrices with 0 sparse is because 0 is the
multiplicative null element. Multiplying anything by 0 produces 0. Conse-
quently, these elements drop out of any type of multiplication operations.
Recall that the three fundamental problems we consider

linear systems Ax = b least squares min ∥Ax − b∥ eigenvalues Ax = λx
3 ⋅ structure in matrices 23

all involve multiplying a matrix by a vector. Consequently, if the matrix
has zeros, these matrix elements simply play no role in the multiplication
operation. This is why the value of 0 is special and why sparse matrices
must have zeros.

Data sparse.

The matrix C is still structured. This is an instance of what is called
a data sparsematrix. It is a matrix whose entries can be inferred from a
small amount of data. But where the resulting matrix is not itself sparse.
This has implications for how an algorithm might use the matrix itself.
For instance, looking at all of the elements of an n × n data sparse matrix
might involve an operation for each element which would take n2 time.
However, there might be other operations that could be done faster.

Let

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9 0 0 0 0 0 0 0 0 0 0− 2
5 0.9 − 2

5 0 0 0 0 0 0 0 0
0 − 2

5 0.9 − 2
5 0 0 0 0 0 0 0

0 0 − 2
5 0.9 − 2

5 0 0 0 0 0 0
0 0 0 − 2

5 0.9 − 2
5 0 0 0 0 0

0 0 0 0 − 2
5 0.9 − 2

5 0 0 0 0
0 0 0 0 0 − 2

5 0.9 − 2
5 0 0 0

0 0 0 0 0 0 − 2
5 0.9 − 2

5 0 0
0 0 0 0 0 0 0 − 2

5 0.9 − 2
5 0

0 0 0 0 0 0 0 0 − 2
5 0.9 − 2

5
0 0 0 0 0 0 0 0 0 0 0.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then C = B + 0.1eeT . This gives us an expression for C as a rank-1
correction for B. And B is sparse. Consider computing Cx for a given
vector x. This can be done by computing Bx and then adding 0.1eTx
to each element of Bx which is far more efficient than looking at all n2

elements.
Sometimes data sparse matrices are called fast operators because they

allow us to write a matrix-vector program or function that is much faster
than looking at all of the elements of the matrix.

3.5 matrix structures with a pattern

Many types of matrix structure include an explicit pattern.
right shift A right shift matrix, also known as a Toeplitz matrix, is

one where A i , j = A i+1, j+1 whenever the latter index is valid. For

24 i ⋅ matrix problems & structure

example ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 α3 α4
β1 α1 α2 α3
β2 β1 α1 α2
β3 β2 β1 α1
β4 β3 β2 β1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice how each row shifts to the right. This gives rise to a c
circulant A circulant matrix is a right shift matrix where the elements

“wrap around” ⎡⎢⎢⎢⎢⎢⎣
α1 α2 α3 α4
α2 α3 α4 α1
α3 α4 α1 α2

⎤⎥⎥⎥⎥⎥⎦
.

left shift We already defined left shift matrices above and noted that
they are also called Hankel matrices. Formally, they have A i , j =
A i−1, j+1 whenever i − 1, j + 1 is a valid index into the matrix.

diagonal A diagonal matrix is one where only the main diagonal en-
tries are set to non-zero values. An example is the identity matrix.
where all the diagonal entries are 1.

tridiagonal A tridiagonal matrix is one where only three diagonals
are set. This typically means the main diagonal and the diagonal
above and below it. There are cases when this could mean another
set of diagonals.

triangular A triangularmatrix gives a triangular region of zeros. This
can be in the upper or lower triangular portion. The name flips and
tells where the entries are, not the zeros, so

upper triangular is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × ×
0 × × × × × ×
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × ×
0 × × × × × × ×
0 0 × × × × × ×
0 0 0 × × × × ×
0 0 0 0 × × × ×
0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × ×
0 × × × × × ×
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

lower triangular is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0× × 0 0 0 0 0× × × 0 0 0 0× × × × 0 0 0× × × × × 0 0× × × × × × 0× × × × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0 0× × 0 0 0 0 0 0× × × 0 0 0 0 0× × × × 0 0 0 0× × × × × 0 0 0× × × × × × 0 0× × × × × × × 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0× × 0 0 0 0 0× × × 0 0 0 0× × × × 0 0 0× × × × × 0 0× × × × × × 0× × × × × × ×× × × × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These are often square.

bulged triangular A bulged triangular matrix, which is also known
as a Hessenberg matrix, is a triangular matrix with one additional
diagonal adjacency to the other elements. These can be rectangular.
Like triangular matrices, the upper or lower descriptor tells where

3 ⋅ structure in matrices 25

10 There are a few variations on
these classes, so this may not be
quite right, so I want to double-
check.

the elements are

upper bulged triangular is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × ×× × × × × × ×
0 × × × × × ×
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × × ×× × × × × × × ×
0 × × × × × × ×
0 0 × × × × × ×
0 0 0 × × × × ×
0 0 0 0 × × × ×
0 0 0 0 0 × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × × ×× × × × × × ×
0 × × × × × ×
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

lower bulged triangular is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0× × × 0 0 0 0× × × × 0 0 0× × × × × 0 0× × × × × × 0× × × × × × ×× × × × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0 0× × × 0 0 0 0 0× × × × 0 0 0 0× × × × × 0 0 0× × × × × × 0 0× × × × × × × 0× × × × × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × 0 0 0 0 0× × × 0 0 0 0× × × × 0 0 0× × × × × 0 0× × × × × × 0× × × × × × ×× × × × × × ×× × × × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These are often almost square with one additional row or column.

Note that any of these matrix types can be sparse. They can also
be combined. An upper bidiagonal is one possible name for an upper-
triangular, tridiagonal matrix. It’s best to always be explicit with these
names though. An upper triangular, tridiagonal might also mean a matrix
with the three distinct diagonals in the upper-triangular region specified.

3.6 block structures

bipartite a bipartite matrix has the form

A = [0 B
BT 0]

for a square or rectangular matrix B.
block diagonal a block diagonal matrix consists of arbitrary matri-

ces in diagonal blocks as in

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

B1
B2 ⋱

Bk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

3.7 other classes .

There are many other classes and structures that are relevant.
An M-matrix is a square matrix where the inverse is non-negative. 10

Definition 3.8
Let A be a square matrix, then A is an M-matrix if A−1 is
elementwise non-negative.

26 i ⋅ matrix problems & structure

11 Formally, the result is let A be
orthogonal, then ∥Ax∥2 = ∥x∥2 .
This is easy to prove so give it a try,
but we will show it as well soon.

The class of M-matrices arises frequently when dealing with Markov
chains (although that is not why it is called an M-matrix). In fact, the
matrix in example 3.3 is an M-matrix!

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0− 1
2 1 − 1

2 0 0 0 0 0 0 0 0
0 − 1

2 1 − 1
2 0 0 0 0 0 0 0

0 0 − 1
2 1 − 1

2 0 0 0 0 0 0
0 0 0 − 1

2 1 − 1
2 0 0 0 0 0

0 0 0 0 − 1
2 1 − 1

2 0 0 0 0
0 0 0 0 0 − 1

2 1 − 1
2 0 0 0

0 0 0 0 0 0 − 1
2 1 − 1

2 0 0
0 0 0 0 0 0 0 − 1

2 1 − 1
2 0

0 0 0 0 0 0 0 0 − 1
2 1 − 1

2
0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.1
0.8 1.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.2
0.7 1.4 2.8 4.2 3.6 3.0 2.4 1.8 1.2 0.6 0.3
0.6 1.2 2.4 3.6 4.8 4.0 3.2 2.4 1.6 0.8 0.4
0.5 1.0 2.0 3.0 4.0 5.0 4.0 3.0 2.0 1.0 0.5
0.4 0.8 1.6 2.4 3.2 4.0 4.8 3.6 2.4 1.2 0.6
0.3 0.6 1.2 1.8 2.4 3.0 3.6 4.2 2.8 1.4 0.7
0.2 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 1.6 0.8
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.9
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These matrices frequently arise when dealing with stochastic processes
where the solution must be a probability, and hence, non-negative.

3.8 permutation matrices

A permutation matrix "shuffles" elements of a vector. Each column of
a permutation matrix is a vector ei and a permutation matrix must also
be orthogonal.

Examples A = [0 1 0
0 0 1
1 0 0
]. This matrix expresses the permutation 2 →

1, 3→ 2, 1→ 3. We can see this by: A
⎡⎢⎢⎢⎢⎢⎣
0.5−0.5
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
−0.5
1
0.5

⎤⎥⎥⎥⎥⎥⎦
.

3.9 orthogonal matrices

A matrix is orthogonal if ATA = I. A key insight about orthogonal
matrices is that they do not change the 2-norm length of a vector.11 In this

3 ⋅ structure in matrices 27

12 TODO, get a little tikz picture of
this... but maybe put it inline.

property, they generalize rotations. If I have a vector and simply rotate it
around the origin, it stays the same length.12

The identity matrix I is orthogonal. We’ll see more about orthogonal
matrices soon – it’s a very special structure!

exercises

1. Consider the matrix from example 3.4. Devise and/or implement
an algorithm to compute a matrix-vector product with this matrix
in work that scales with n, instead of n2, as the problems get bigger.

2. Consider a bipartite matrix A = [0 B
BT 0]. Let x = [y

z
] be an

eigenvector of Awith eigenvalue λ. Show that there is an eigenvector
w with eigenvalue −λ also involving a combination of y and z.

3. Show that the product of two diagonal matrices is also diagonal.
4. Show that the product of two upper triangular matrices is upper

triangular.
5. Show that multiplying on the left by a diagonal matrix scales the

rows.
6. Show that multiplying on the right by a diagonal matrix scales the

columns.
7. Show that the inverse of

[1 a
0 1]

is
[1 −a
0 1] .

and then, show that the inverse of

[I A
0 I]

is
[I −A
0 I] .

8. Elementary matricesHouseholder, who we will talk about in forth-
coming lectures, has a few things named after him. He discussed
the idea that any matrix:

I − σuvT
should be called an elementary matrix. Show when an elementary
matrix is invertible and give the inverse.

9. (a) Show that the product of two circulant matrices is circulant.
(b) Show that the product of two circulantmatrices commute with

each other. That is, if A and B are circulant matrices, then
AB = BA.

28 i ⋅ matrix problems & structure

These notes were written during the
Fall 2020 semester of the COVID-
19 pandemic. So called “armchair
epidemiologists” were everywhere
and the time called for everyone to
be able to understand spread and
policy and a host of complex issues.
These notes should not be used for
“armchair epidemiology” but rather
to understand how the tools from
this class might manifest in such a
scenario.
1 In standard mathematical epidemi-
ology literature, this would be a
susceptible, infected (SI) model.
This is highly simplistic!

2 If you see someone more often
that you want to increase this prob-
ability for some contacts, the model
we have would allow you do to
this! Seems like a good homework
problem to figure out where!

A MATRIX MODEL OF VIRAL SPREAD 4
We are going to consider a simple model of a viral spreading process

where each person1
· can be infected
· is infected.

We are also going to consider “time” where “time” represents some regular
period such as a day or week. We also assume that each person’s spreadable
contacts are the same over that time period; a contact is spreadable if you
see them long enough to possibly spread a virus to them. Put another way,
“time” is long enough so that we see the same group of people over that
period. So this isn’t the group of everyone you see, but everyone you see
long enough to possibly exchange viral material with!

The contacts among our people define a network or graph. Each node
is a person. The edges of the network represent the spreadable contacts.
Here’s an example.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 1 1
0 0 1 1 0 0 0 1 0 0
0 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0
1 0 1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1 1 0
0 1 0 1 1 1 1 0 0 0
1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 4.1 – A small contact
network with the adjacency matrix
for the network.

Note here that the non-zero entries in the adjacencymatrix correspond
to edges. So A(1, 10) and A(10, 1) are both one because person 1 and
person 10 are contacts. Now, at the moment, it’s premature to call A a
matrix. Right now, it’s just a table of data that collects information on
edges. But, we’ll soon see the termmatrix is appropriate.

Back to the virus and how it spreads. We further assume a contact will
cause an infection with probability 0 < ρ < 1.2
4.1 a problematic but useful starting model

The probability that a person i is infected at time t+1 is the probability
that i got the infection from a contact at time t. This corresponds with the

29

3 See https:
//www.khanacademy.org/math/

ap-statistics/probability-ap/

probability-multiplication-rule/

a/

probabilities-involving-at-least-one-success.

4 Play around with it and see. It is a
model, not a commandment! The
idea is to modify it and understand
what happens.

following probability scenario.

Each contact j in the neighbors of i infects i based on a simple random trial
that occurs with probability ρP(j is infected at time t). This is a simple
exercise in probability.3 What that reference explains is that it is easiest to
look at the probability that i is not infected. Which corresponds with all
of the “infection attempts” failing. We assume these are independent, so
the failure to be infected is just the probability

∏
j∈neighbors(i)

(1 − ρP(j is infected at time t)).
This makes sense. If any neighbor is infected with probability 1 and ρ = 1,
then you will be infected, so this quantity will be 0 (so there no chance
you are not infected.) The probability that i is infected is simply the
complement:

P(i is infected at time t + 1) = 1− ∏
j∈neighbors(i)

(1−ρP(j is infected at time t)).
We then evaluate this for all i.

This describes a very simple evolution in terms of the adjacency ma-
trix A that is easiest to explain in terms of code. Let x be the vector
P(i is infected at time t) for all i and y be the vector P(i is infected at time t + 1)
for all i. Then

1 function evolve (x:: Vector , p:: Real , A:: AbstractMatrix)
2 log_not_infected = log .(1 .− p.∗x)
3 y = 1 .− exp .(A∗ log_not_infected)
4 y = max .(y, x)
5 end

Here, we are using the product is the exponentiated sum of logs. Conse-
quently, we can simultaneously evaluate all of the probabilities by taking
the log and then summing using the adjacency matrix. This is because

[Ax]i = ∑
j∈neighbors(i)

x j .

The final max is useful if you have a boundary condition with a set of
definitely infected nodes, but this could also be omitted.4

30 i ⋅ matrix problems & structure

https://www.khanacademy.org/math/ap-statistics/probability-ap/probability-multiplication-rule/a/probabilities-involving-at-least-one-success
https://www.khanacademy.org/math/ap-statistics/probability-ap/probability-multiplication-rule/a/probabilities-involving-at-least-one-success
https://www.khanacademy.org/math/ap-statistics/probability-ap/probability-multiplication-rule/a/probabilities-involving-at-least-one-success
https://www.khanacademy.org/math/ap-statistics/probability-ap/probability-multiplication-rule/a/probabilities-involving-at-least-one-success
https://www.khanacademy.org/math/ap-statistics/probability-ap/probability-multiplication-rule/a/probabilities-involving-at-least-one-success
https://www.khanacademy.org/math/ap-statistics/probability-ap/probability-multiplication-rule/a/probabilities-involving-at-least-one-success

An interesting aside.

When I ran this, initially, I thought this would converge to all proba-
bilities of 1. This does not happen. Instead it converges to a steady state I
can’t quite explain. A steady state corresponds with

log(1 − P(i)) = ∑
j∈neighbors(i)

log(1 − ρP(j)).
It is totally unclear to me why and how this iteration ought to converge
and why this fixed point ought to exist. But it does—reliably so!

An approximation

But here is where linear algebra comes into play. Suppose we make the
reasonable approximation that ρP(j is infected at time t) is small. This
means the chance of getting this from an arbitrary interaction is small.
This is plausible at the start of an infection. Then that our expression looks
like (1 − a) ⋅ (1 − b) ⋅ (1 − c)⋯.
If a, b, c are fairly small, then products ab are even smaller, so we could
use the approximation:

(1 − a) ⋅ (1 − b) ⋅ (1 − c) ≈ 1 − a − b − c.
Applied to our expression, this gives: Then note that

∏
j∈neighbors(i)

(1−ρP(j is infected at time t)) ≈ 1−ρ ∑
j∈neighbors(i)

P(j is infected at time t)
This suggests an even simpler iteration.

1 function evolve_approx (x:: Vector , p:: Real , A:: AbstractMatrix)
2 y = p.∗(A∗x)
3 end

This is just a repeated matrix vector product! If x(t) is the set of probabili-
ties from this approximation at the tth step, then

x(t+1) = ρAx(t) = (ρA)t+1x(0)
where x(0) is the start of everything.

4.2 fixing the problem

But there is a problem in the above formulation. This was hinted at
in the interesting aside. If you get the infection with probability ρ, then
over enough time, everyone would become infected. The probabilities in
either model above, though, do not go to 1. This is because we forgot a
piece: you infect yourself based on the probability in the prior iteration.

4 ⋅ a matrix model of viral spread 31

5 This is not a complicated argu-
ment, but it isn’t the focus on this
class.

The adjustment is simple

P(i is infected at time t + 1)
= (1 − ∏

j∈neighbors(i)
(1 − ρP(j is infected at time t)))

´¹¹¸¹¹¹¶
infected via neighbors

(1 − P(i is infected at time t))
´¹¹¹¸¹¹¶
actually infected in the previous step.

and

1 function evolve_with_self (x:: Vector , p:: Real , A:: AbstractMatrix)
2 log_not_infected = log .(1 .− p.∗x)
3 y = (1 .− exp .(A∗ log_not_infected).∗(1 .− x))
4 y = max .(y, x)
5 end

In this new model, the probabilities always go to one.5

The approximation again

Let’s use that same idea and approximation to understand what will
happen when the probabilities are small. Applying this to the adjusted
formulation

P(i is infected at time t + 1) ≈ ρ ∑
j∈neighbors(i)

P(j is infected at time t)+P(i is infected at time t).
1 function evolve_with_self_approx (x:: Vector , p:: Real , A:: AbstractMatrix)
2 y = rho ∗(A∗x) + x
3 end

This is also just repeated matrix vector products, but with the matrix
ρA + I instead of ρA. As in, if again x(t) is the set of probabilities from
this approximation at the tth step, then

x(t+1) = (ρA+ I)x(t) = (ρA+ I)t+1x(0)
where x(0) is the start of everything.

4.3 the eigenanalysis

As we will see in this class, the eigenvectors of Adetermine the behavior
of both powers of ρA and (ρA+I) as the powers get large. This information
then suggests how epidemics spread on networks and a variety of other
related behaviors.

4.4 a slightly different model

These models are not commandments. They encode slightly different
and related ideas. Here’s another way to understand this. What we are do-
ing in the first (incorrect) model is evaluating the probability that node i is

32 i ⋅ matrix problems & structure

6 Later in class, we’ll see that ρ
has to be smaller than the largest
magnitude eigenvalue of A.

The idea to relate eigenvectors or
Katz scores and epidemics arose,
most recently, from a Tweet Dan
Larrenmore at UC Boulder sent
about how these determine sam-
pling probabilities in one of their
COVID testing papers Larremore
et al. [2020]. In other scenarios,
these also are called replicator dy-
namics from Rumi Ghosh Ghosh
et al. [2014], which better model
viral phenomenon. There is more
history on understanding matrix dif-
fusions with A as non-conservative
diffusions that create mass, but
I’ve forgotten where all I’ve read
about this and how much (if any)
I liked explaining in alternative
ways. Some earlier references I’m
aware of that would have inspired
these thoughts are Saberi’s work
on (computer) viral spreading and
eigenvalues Berger et al. [2005].

infected by neighbors at time t. Let n(t)i = P(i is infected via neighbors at time t).
Then we have

n(t+1)i = 1 − ∏
j∈neighbors(i)

(1 − ρn(t)j) ≈ ρ ∑
j∈neighbors(i)

n(t)j .

As a matrix-vector iteration, the approximation is

n(t+1) = ρAn(t) = (ρA)t+1n(0) .
But what is n(0), the starting condition? This has to do with what is often
called a boundary condition. If we are in a scenario like the US, where the
virus is everywhere then we can reasonably set n(0) to be a small constant
to model the scenario where everyone has some small chance of being
infected. Alternatively, if we are in a contact tracing scenario or a test and
trace scenario like Purdue is trying to do, we would remove the contacts
from the network that we know are infected and look at the probability that.
Here, we simply take any nodes we know are infected, remove them from
the network, but evaluate the probability that they infect their neighbors.
For simplicity, suppose there is one node z infected. Then we set n(0)j = ρ if
j is a neighbor of z and 0 otherwise. The matrix A for this second scenario
does not include z.

Now, this models transmission, but we know to know infection proba-
bilities. These are just given by

P(i is infected by time t) = 1 −∏(1 − n(t)i) ≈ t∑
ℓ=0

n(t)i .

Let x(t) be the probability that i is infected by time t above for all nodes.
Then we have

x(t) ≈ t∑
ℓ=0

n(t) ≈ t∑
ℓ=0
(ρA)ℓn(0) .

This last expression is known as a Neumann series, and admits a closed
form solution when ρ is sufficiently small.6 If ρ is small enough then

∞∑
ℓ=0
(ρA)ℓn(0) = (I − ρA)−1x(0) .

Put another way, your chance of ever being infected via neighbors from a
starting set of probabilities is given by the the solution of a linear system
of equations whose right hand side is the initial set of probabilities:

(I − ρA)x(∞) = n(0) .
This is something known as Katz centrality Katz [1953] that was derived to
understand social structure. but again shows how simple matrix systems
arise in a problem that is relevant to the times!

4 ⋅ a matrix model of viral spread 33

34 i ⋅ matrix problems & structure

Learning objectives
Learn how to perform basic

operations with sparse matrices
using the Candyland matrix as an
example.

1 The data files to recreate T are
available on the the course website.

2 TODO – Double check this one
isn’t transposed.

CANDYLAND & WORKING WITH SPARSE
MATRICES 5
5.1 intro to candyland

As we mentioned, there are many real-world problems that involve
sparsematrices. In a few lectures, we’ll see how discretizations of Laplacian
operator on 2d grids will give us sparse matrices. For this class, we are
going to continue working with random processes.

The game of Candyland is played on 133 squares. At each turn, a player
draws a card from a deck of cards. This determines where they move to
for the next turn. There is no interaction with other players (other than
sharing the same deck). For our study here, we are going to model the
game where we simply draw a random card from the total set at each time,
so there is no memory at all in the game. This means that the resulting
system is a Markov chain, or a memoryless stochastic process. While there
is a great deal of formality we can get into with all of these things, the key
thing to remember is that what happens at each step can just be described
by a matrix that tells you the probability of what happens next.

5.1.1 The Candyland Model

So we are going to create the matrix for Candyland that gives the
probabilities of moving between the 133 squares, along with two special
squares; one for the start (state 140) and one for the destination (134) .
There are also a set of 5 special cases that involve exceptions to the rules
(135,136,137,138,139).

In this case, the game of Candyland can be modeled with a 140 × 140
matrix T .1 If we show the matrix with a small ● for each nonzero entry,
then it looks like2

35

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

●● ●●● ●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●● ●●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●● ● ● ●● ●● ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This is clearly sparse as most of the matrix is empty. This is because it’s
impossible to get between most pairs of squares in Candyland in a single
move.

Let T = [t1 t2 . . . t140] be the column-wise partition. Where t j
describes the probability of ending up at each of the 140 states given that
we are in state j. Put another way, T(i , j) is the probability of moving to
state i given that you are in state j. Consequently, after one step of the
game, the probability that the player is in any state can be read off from
t140. This is because the player starts in state 140.

Now, what’s the probability of being in any state after two-steps? We
can use the matrix to work out this probability:

Probability that player is in state i after two steps
=∑

k
Probability that player is in state k after one step and moves from k to i.

=∑
k
T(i , k)t140(k)

If we do this for all i, then we find that

p2 = Tt140
is the probability of the player being in any state after two steps. This is
just a matrix-vector operation!

Now to figure out where the player is after any number of steps, we
proceed iteratively:

Probability that player is in state i after three steps
=∑

k
Probability that player is in state k after two steps and moves from k to i.

=∑
k
T(i , k)p2(k).

36 i ⋅ matrix problems & structure

3 This is the 134 entry in the vector
T4t140 .

4 In Julia, the code is
1 function candylandlength (T, maxlen)
2 n = size(T ,1)
3 (p = zeros (n))[140] = 1
4 ex = 0.0
5 for l=1: len
6 p = T∗p
7 ex += length ∗p [134]
8 end
9 return ex
10 end

Again, by grouping everything together, we get:

p3 = Tp2 = T2t140 .

By induction now, we get that the probability the player is in any state
after k steps:

pk = T k−1t140 .

The key point: in order to compute this probability, we only need to compute
matrix-vector products with a sparse matrix.

5.1.2 Computing expected length of a Candyland game

The Candyland game ends when then the player is in state 134 in this
particular model. Let X be the random variable that is the length of the
Candyland game. Then we want to compute the expected value of X.
Recall that the expected value of a discrete random variable is:

E[X] =∑i where i is any possible value of x i ⋅ (probability that X = i).
The probability that the game ends in 5 steps is3

[T4t140]134 .
Hence, the expected length of the Candyland game is:

E[X] = ∞∑
i=1

i ⋅ [T i−1t140]134 .
In practice, we can’t run this until infinity, even though the game could,

in theory, last a very long time. We can compute this via the following
algorithm. 4

Create a starting vector p = e140 because we start in state 140.
EX ← 0
For length = 1 to maximum game length considered

p← Tp
EX ← EX + length ⋅ p134

return EX

The key algorithm step is to compute the matrix-vector product Tp.

5.2 sparse matrix storage : storing only the
valid transitions for candyland and
performing a matrix-vector product

The idea with sparse matrix storage is that we only store the nonzero
entries of the matrix. Anything that is not stored is assumed to be zero.
This is illustrated in the following figure.

5 ⋅ candyland & working with sparse matrices 37

5 We can also sort by row. That
discussion is next.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Indexed storage
3
5
14

3
2
4

5
6
4

5
4
7

2
3
10

1
3
13

2
4
12

4
6
20

4
3
9

1
2
16

I

J

V

The arrays I, J, and V store the row index, column index, and nonzero
value associated with each nonzero entry in thematrix. There are 30 values
in the arrays, whereas storing all the entries in the matrix would need 36
values. Although this isn’t a particularly large difference, is is less data.

For the matrix T in the Candyland problem, there are 6816 entries in
the arrays I, J, V whereas there would be 19600 entries in the matrix T
had we stored all the zeros.

We can use this data structure to implement a matrix-vector product.
Recall that

y = Axmeans that y i = ∑
j=1,. . . ,n

A i , jx j for all i .

If A i , j = 0 then it plays no role in the final summation and we can write
the equivalent expression:

y = Axmeans that y i = ∑
j where A i , j /=0

A i , jx j for all i .

This means that an algorithm simply has to implement this accumulation
over all nonzero entries in the matrix. This is exactly what is stored in the
arrays I, J, V.

The algorithm in Julia is:

1 function indexed_sparse_matrix_vector_product (x,I,J,V,m,n)
2 y = zeros (m)
3 for nzi =1: length (I)
4 i,j,v = I[nzi], J[nzi], V[nzi]
5 y[i] += v∗x[j]
6 end
7 return y
8 end

This algorithm can be translated to many other languages too.

5.3 eliminating redundant data storage :
compressed sparse row and column
formats

The idea with compressed sparse column storage is that some of the
information in the full indexed information is redundant if we sort all the
data by column.5

38 i ⋅ matrix problems & structure

6 This algorithm is especially par-
ticular to using 0 based or 1-based
indexing.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sorted index
2

1
16

2

3
4

3

1
13

3

2
10

3

4
9

4

2
12

4

5
7

5

3
14

6

4
20

6

5
4

J

I

V

Compressed sparse column
1 1 3 6 8 9 11

16
1

4
3

13
1

10
2

9
4

12
2

7
5

14
3

20
4

4
5 ∅rowval

colptr

nzval

This figure shows that when the data are sorted by increasing column
index. Then there are multiple values with the same column in adjacent
entries of the J array. We can compress these into a list of pointers. This
means that we create a new array called colptr that stores the starting
index for all the entries in I, V arrays associated with a given column.

Entries of column j are stored in
rowval[colptr[j]]...rowval[colptr[j + 1] − 1]
nzval[colptr[j]]...nzval[colptr[j + 1] − 1] .

This means if colptr[j] = colptr[j + 1] then there are no entries in the
column. (See the example in column 1.) This

This structure enables efficient iteration over the elements of thematrix
for matrix-vector products, just like indexed storage, with only minimal
changes to the loop. In Julia, the algorithm is:6

1 function indexed_sparse_matrix_vector_product (x,colptr ,rowval ,nzval ,m,n)
2 y = zeros (m)
3 for j=1:n
4 for nzi= colptr [j]: colptr [j+1] −1
5 i,v = rowval [nzi], nzval [nzi]
6 y[i] += v∗x[j]
7 end
8 end
9 return y
10 end

Both Julia and Matlab use compressed sparse
column formats for their preferred sparse matrix

format.

advantages of compressed sparse column compared with
indexed storage .

· less data / memory storage
· allows random access to column data
· allows per-column operations to be more efficient

5 ⋅ candyland & working with sparse matrices 39

7 If the number of elements that will
change are known ahead of time,
then an alternative is to simply in-
sert them into the matrix structure
with a “0” placeholder value. It is
okay to have zero entries in the data
structures, and it is okay to alter the
values associated with each nonzero
element.

5.4 compressed sparse row

The compressed sparse row format adopts compression of the rows. If
we sort row indices from an indexed format, then we can compress them
into pointers just as in the compressed sparse column format.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sorted row index
1

2
16

1

3
13

2

3
10

2

4
12

3

2
4

3

5
14

4

3
9

4

6
20

5

4
7

5

6
4

I

J

V

Compressed sparse row
1 3 5 7 9 11 11

16
2

13
3

10
3

12
4

4
2

14
5

9
3

20
6

7
4

4
6 ∅colval

rowptr

nzval

Entries of row i are stored in
colval[rowptr[i]]...colval[rowptr[j + 1] − 1]
nzval[rowptr[j]]...nzval[rowptr[j + 1] − 1] .

If we were to implement the matrix-vector routine for compressed
sparse row matrices, however, there is an interesting optimization possible
because all of the updates to the output vector y happen in the same index.

1 function indexed_sparse_matrix_vector_product (x,rowptr ,colval ,nzval ,m,n)
2 y = zeros (m)
3 for i=1:m
4 yi = 0.0
5 for nzi= rowptr [j]: rowptr [j+1] −1
6 j,v = colval [nzi], nzval [nzi]
7 yi += v∗x[j]
8 end
9 y[i] = yi
10 end
11 return y
12 end

An important advantage of this CSR structure is that is is possible to
parallelize the sparse matrix vector routine over the rows of the matrix.

5.5 disadvantages of compressed storage
formats

A major disadvantage of compressed sparse column and compressed
sparse row formats is that they cannot be easily altered once created.7
Adding a new nonzero element inside the matrix requires rebuilding the
entire array. (Unless it is at the last column!) For this reason, a common

40 i ⋅ matrix problems & structure

8 Note that storing a matrix in CSR
can be accomplished by storing the
transpose in CSC. Likewise, storing
a matrix in CSC can be done by
storing the transpose in CSR.

9 In Julia, these are Dict types.
In Python, these are also called
dictionaries. In C++ the type
is unordered_map. The ma-
trix type in Julia would be:
Dict{Tuple{Int,Int},Float64()}
for Float64 values in the matrix.
This idea is implemented in the
package SparseMatrixDicts.jl
10 In Julia, the type would be
Vector{Dict{Int,Float64}}[].

paradigm is to use indexed format while creating the information for your
matrix and then only convert to compressed sparse formats when it is time
to analyze the matrix and it will be fixed for a reasonably long period of
time.

Another disadvantage is that we often want to have random access
to both rows and columns of a matrix. Compressed sparse column gives
efficient random access to columns; compressed sparse row gives efficient
random access to rows. But finding all the information for a given row
in a compressed sparse column structure involves searching over all the
elements. If both random row and random column access are needed, the
easiest solution is simply to store the matrix both in CSC and CSR formats.
This doubles the storage space.8

5.6 alterative formats

Most programming languages have a standard hash table or dictionary
implementation.9 These allow arbitrary key-value pairs to be inserted
and give fast access and fast update times. This can be used as a sparse
matrix data structure by using the key as an index tuple and the value as
the non-zero value. This allows fast insertion and deletion of elements. It
does not allow fast random access to rows and columns.

For fast insertion and fast random access to rows and columns, then
we can use an array of hash tables.10

5.7 operations with csc matrices

computing the trace
extracting a row
extracting a column
multicolumn multiplication
sparse-matrix by sparse-matrix multiplication This is one

of the most intricate procedures. We devote an entire future section
to it.

5 ⋅ candyland & working with sparse matrices 41

42 i ⋅ matrix problems & structure

Learning objectives
1. Examples of vector norms.
2. Examples of matrix norms.
3. The submultiplicative property

of a matrix norm.
4. The property that all norms are

equivalent

1 This definition includes absolute
values. Yet, x2i ≥ 0 for all real
values. We leave the absolute values
because this then generalizes to
complex values where we need a
complex magnitude.

2 It is a useful exercise to convince
yourself that as p → ∞, then the
value of the norm will simply be the
largest element by magnitude.

MATRIX & VECTOR NORMS 6
Norms are used to measure the size of vectors and matrices. They are

generalizations of the scalar function ∣x∣, which determines the size or
magnitude of a scalar value. For instance, if x is close to y, then we have∣x − y∣ is close to zero.

So far, we have used the 2-norm of a vector. Let’s work with them
formally.

6.1 vector norms

Definition 6.1
The Euclidean norm or 2-norm of a vector1 is

∥x∥ =
¿ÁÁÀ n∑

i=1
∣x i ∣2 =√xTx

This can be generalized a p-norm.

Definition 6.2
The p-norm of a vector is

∥x∥p = (n∑
i=1
∣x i ∣p)1/p .

This isn’t created to generalize for generalizations sake. One of the
common uses of norms is to argue that a sequence of vectors

xk → y

which can be handled by showing

∥xk − y∥ → 0.

Depending on the value of p, this can be easy or difficult. For instance,
when p = 1, then this is simply a sum of absolute values:

∥x∥1 = n∑
i=1
∣x i ∣

and p =∞ can be defined via a limit:2

∥x∥∞ = nmax
i=1
∣x i ∣.

43

Note that I think this is
1/C1 vs. C1 the way it’s
defined.

Now, we are going to define an extremely general notion of norm in
order to state a few important results.

Definition 6.3
A vector norm on x ∈ Rn is any function f (x) → R that
satisfies:

1. f (x) ≥ 0 (non-negative)
2. f (x) = 0 if and only if x = 0 (zero-sensitive)
3. f (αx) = ∣α∣ f (x) for any scalar α (linear scale or 1-homogeneous),
4. f (x + y) ≤ f (x) + f (y) (triangle inequality).

Any p-norm with p ≥ 1 satisfies these definitions. When p < 1, then
we violate the triangle inequality.

There are some crazy norms too. For instance, the following function
satisfies these three criteria:

f (x) = sum of largest two entries in x by magnitude.

All norms are equivalent

Given that the idea of a norm can be very general. We wish to immedi-
ately show that for any result about convergence to zero, it does not matter
which norm is used.

The following theorem guarantees that if xk → y
for any norm, then it will happen for all norms.

Informally, this theorem is known as the all norms are equivalent
theorem.

Theorem 6.4 (All norms are equivalent)
Formally, let f (x) and д(x) be any pair of vector norms on
Rn , then there exist positive constants L ≤ U such that

L f (x) ≤ д(x) ≤ U f (x).
Note that these constants can depend on the dimension n.

proof First, note that the theorem is immediately true if x = 0 for any
values of L and U . So in the remainder, we can can study the case where
x /= 0 and hence, f (x) > 0 and д(x) > 0. To show the upper bound, this is
equivalent to

f (x)
д(x) ≤ U ⇔ 1

д(x) f (x)
1

д(x) д(x) ≤ U
We can now rewrite this as f (y) ≤ U where д(y) = 1 by using the linear
scale property because 1

д(x) f (x) = f (x/д(x)) is always computed with a
vector where the д-norm is 1. Hence we set

U = maximize
y

f (y)
subject to д(y) = 1.

44 i ⋅ matrix problems & structure

Now, U is finite because it is the value of f for some point in a closed set.

For instance, ∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞ is an instance with C1 = 1,C2 = n.
QuizWhat are C1 and C2 such that C1∥x∥1 ≤ ∥x∥∞ ≤ C2∥x∥1?
Consequently, suppose, for a vector norm f (x), you show that f (xk −

y)→ 0. Then we know that C2 f (x) ≥ д(x) and also that C2 f (xk −y)→ 0.
Since д(x) ≥ 0, then we must have д(xk − y)→ 0 as well.

6.2 matrix norms

Vector normsmeasure the size or magnitude of a vector. Matrix norms
do the same for a matrix. There are two important types of matrix norms:
element-wise (or Frobenius norms) and operator norms. Just like vector
norms, there is a general condition for all matrix norms.

Definition 6.5
A matrix norm on X ∈ Rm×n is any function f (X)→ R that
satisfies:

1. f (X) ≥ 0 (non-negative)
2. f (X) = 0 if and only if X = 0 (zero-sensitive)
3. f (αX) = ∣α∣ f (X) for any scalar α (1-homogeneous)
4. f (X + Y) ≤ f (X) + f (Y) (triangle inequality).

6.2.1 Element-wise norms

Note that if vec X is any way of turning X into a vector by organizing
themn elements of X into a single array, then f (vec(X)) is a matrix norm
for any vector norm f (x). These are called element-wise norms. The most
common of which is the Frobenius norm.

Definition 6.6
The Frobenius norm of a matrix is

∥X∥F =√∑
i j
∣X i j ∣2 = ∥ vec(X)∥2 =√trace(ATA).

Here, we used trace(A) = ∑min(m ,n)
i=1 A i , i , which is the sum of diagonal

entries.

6.2.2 Operator-induced norms

Let f (x) be any vector norm, then we can define a matrix norm via:

f (X) = maximize
x/=0

f (Ax)/ f (x) .

Proof that f (X) is a matrix norm

6 ⋅ matrix & vector norms 45

This section can be skipped on a
first reading.
3 TODO Insert reference when
assembled into bigger document.

1. f (X) ≥ 0 because f is a vector norm. 2. If f (X) = 0, then
f (Ax)/ f (x) = 0 for all vectors x /= 0. Since f (ei) > 0, then we must have
f (Aei) = 0 for all ei , so the matrix is entirely empty. Also, if A = 0, then
Ax = 0 for any x, and so f (A) = 0. 3. f (αX) = maximize

x/=0
f (αAx)/ f (x) =∣α∣ f (X). 4. Note that f ((X +Y)x) ≤ f (Xx)+ f (Yx) be the vector-norm

triangle inequality. Hence,

f (X + Y) = maximize
x/=0

f ((X + Y)x)/ f (x) ≤ maximize
x/=0

f (Xx)/ f (x) + f (Yx)/ f (x)
≤ maximize

x/=0
f (Xx)/ f (x) + maximize

x/=0
f (Yx)/ f (x)

≤ f (X) + f (Y)
The operator induced norms are harder to reason about.
Let f (x) = ∥x∥1, then

∥A∥1 = nmax
j=1

m∑
i=1
∣A i j ∣

which is the maximum column 1-norm. If, instead, f (x) = ∥x∥∞, then
∥A∥∞ = mmax

i=1

n∑
j=1
∣A i j ∣

which is the maximum row 1-norm.
Here’s my picture to remember these.

∥A∥1 = ∥A∥1 /=

looks okay looks wrong

∥A∥∞ /= ∥A∥∞ =

looks wrong looks okay

6.2.3 Additional matrix norms

There is a wide additional class of norms defined in terms of the
singular values of a matrix. See other sections on the singular values and
their definitions.3

An m × n real-valued or complex-valued matrix has min(m, n) non-
negative real singular values. Let σ1 , . . . , σmin(m ,n) be the singular values
of a m × n matrix with m ≥ n.

Definition 6.7 (The Nuclear Norm, the Trace Norm)
Let σ1 , . . . , σmin(m ,n) be the singular values of anm×nmatrix
A. Then the nuclear norm also called the trace norm is the

46 i ⋅ matrix problems & structure

matrix norm based on the function

f (A) =∑
i
σi commonly denoted ∥A∥∗ .

Definition 6.8 (The Schatten Norms)
Let σ1 , . . . , σmin(m ,n) be the singular values of anm×nmatrix
A. Let s be the vector of singular values, ordered arbitrarily.
Then the Shatten p-norm is the matrix norm based on the
function

f (A) = ∥s∥p .
Definition 6.9 (The Ky-Fan Norms)
Let σ1 , . . . , σmin(m ,n) be the singular values of an m × n ma-
trix Awhere σ1 ≥ σ2 ≥ . . . ≥ σmin(m ,n) by convention (that is,
the elements are ordered in decreasing order in most conven-
tions). Then the Ky-Fan p-norm is the matrix norm based on
the function

f (A) = p∑
i=1

σi .

Note that both Shatten and Ky-Fan norms are vector norms applied
to the vector of singular values s. For Shatten norms, it is a p-norm. For
Ky-Fan norms, it is the sum of the largest p elements. Indeed, any vector
norm applied to the singular values of a matrix is a valid matrix norm.

6.3 orthogonal invariance

An important property of a norm is that it is orthogonally invariant.
This property is a realization of two ideas:

- norms measure lengths - orthogonal matrices generalize rotations
When we rotate a vector, we simple change its orientation, but not its

length. Consequently, we have the definition:

Definition 6.10 (orthogonally invariant)
Let Q be a square orthogonal matrix. Then a vector norm
f (x) is orthogonally invariant when

f (Qx) = f (x) or written as ∥Qx∥ = ∥x∥ .
Let A be anm×nmatrix. LetU be a squarem×m orthogonal
matrix and let V be a square n × n orthogonal matrix. Then
a matrix norm f (A) is orthogonally invariant when

f (UAV) = f (A) or written as ∥UAV∥ = ∥A∥ .
6 ⋅ matrix & vector norms 47

6.4 the submultiplicative property

Note that operator-induced matrix norms satisfy the property that:

f (Ax) ≤ f (A) f (x)
which is handy for studying iterative algorithms! This property has the
special name: sub-multiplicative.

Definition 6.11
A matrix-norm f (A) is sub-multiplicative if:

f (AB) ≤ f (A) f (B).
As you’ll see on the homework, not all norms are sub-multiplicative.

But we can always scale a norm to be sub-multiplicative.

exercises

1. Let x ∈ Cn . Decompose x into the real and imaginary parts: x = y+iz
where y ∈ Rn and z ∈ Rn . Show that ∥x∥2 = ∥ [yz] ∥2.

2. Let P be a permutation matrix. So Px reorders the elements of x.
Find a vector-norm function on length 2 vectors where ∥x∥ /= ∥Px∥.

3. (This requires knowledge of the SVD.) Show that the Schatten and
Ky-Fan norms are orthogonally invariant.

4. Consider the following function:

f (A) = max
i , j
∣A i , j ∣.

(a) Show that f is a matrix norm. (Very easy!)
(b) Show that f does not satisfy the sub-multiplicative property.
(c) Show that there exists σ > 0 such that:

д(A) = σ f (A)
is a sub-multiplicative matrix-norm.

5. Let ∥A∥ be a matrix norm and let k /= 0 be a real-valued vector.
Consider the function:

f (x) = ∥xkT∥ .
(a) Show that f is a vector norm.
(b) Show that if ∥A∥ is a sub-multiplicative matrix norm, then the

vector norm f is consistent with the matrix norm. That is:

f (Ax) ≤ ∥A∥ f (x).

48 i ⋅ matrix problems & structure

This chapter will be numbered after
CS515 in 2023.

THE FIELD OF VALUES 6
6.5 important classes of matrices

Definition 6.12 (Normal matrices)
A matrix is normal if ATA = AAT (or conjugate transpose)
or equivalently, if A has an orthonormal set of eigenvectors.

example 6.13 A circulant matrix is a non-symmetric, but normal
matrix, such as

A =
⎡⎢⎢⎢⎢⎢⎣
1 2 3
3 1 2
2 3 1

⎤⎥⎥⎥⎥⎥⎦
where AAT = ATA =

⎡⎢⎢⎢⎢⎢⎣
14 11 11
11 14 11
11 11 14

⎤⎥⎥⎥⎥⎥⎦ ◆
Definition 6.14 (Diagonalizable)
A matrix is diagonalizable if all of the eigenvalues are non-
degenerate.

example 6.15 The followingmatrix isnon-normal andnon-symmetric
but diagonalizable.

A =
⎡⎢⎢⎢⎢⎢⎣
3 0 3
0 2 0
1 0 1

⎤⎥⎥⎥⎥⎥⎦
Then the eigenpairs of A are

0, [1 0 1]T 2, [0 1 0]T 4, [9/10 0 1/10]
where we leave the eigenvectors unnormalized for simplicity. ◆
example 6.16 The following matrix is both non-normal and non-
diagonalizable

A = [1 1
0 1]

in fact, any triangular matrix with a constant diagonal is non-normal and
non-diagonalizable. ◆

We have the following set of implications

Symmetric or Hermitian ⇒ Normal ⇒ Diagonalizable

49

4 Add real citation

exercises

1. Let A be a symmetric matrix and letD−1 be a diagonal matrix. Show
that any matrix D−1A is diagonalizable.

2. This example is from Trefthen and Embree’s book on non-normal
matrices.4 Let

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 ⋯
1/2 0 2 0 ⋯
0 1/2 0 2⋱ ⋱⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Then A is diagonalizable.

50 i ⋅ matrix problems & structure

SIMPLE ITERATIVE
ALGORITHMS II

The fundamental idea behind simple iterative algorithms is that the
algorithm behaves as a matrix raised to a power.

Theorem 6.17 (Fundamental Theorem of Simple Iterative Methods)
Let M be a matrix with ρ(M) < 1, them the sequence of
matrices

Mk → 0 as k →∞.

Does Steepest Descent obey this? Not quite.

x(k+1) = x(k) − α(k)g(k)
= x(k) − α(k)(Ax(k) − b)
= (I − α(k)A)x(k) + α(k)b

(6.1)

So for any solution and any α(k), we have Ax = b implies that

x(k+1)−x = (I−α(k)A)x(k)+α(k)b = (I−α(k)A)x(k)+α(k)(Ax)−x = (I−α(k)A)(x(k)−x)

52 ii ⋅ simple iterative algorithms

Learning objectives
1. A recap of what it means to

solve a linear system.
2. Why we only talk about solving

full rank systems.
3. The Neumann series algorithm

for solving some linear systems.
4. How to evaluate an approxi-

mate solution.
Note that this section could also

come after discussing vector and
matrix norms, as we will use those
in our discussion of approximate
solutions.
We assume that you might already

be familiar with the Euclidean
vector norm: ∥x∥ =

√
∑i x2i from

past experiences.

1 This section should be a review.

SIMPLE ITERATIVE METHODS 7
We are going to look at a number of algorithms for solving linear

systems of equations and least squares problems. These are all going to
be "simple" algorithms in that we are going to derive them by using a few
simple ideas that result from studying the equations that define a linear
system.

The algorithms we are going to study right now are all of the flavor:

start→ improve→ improve→ ⋯
or as I like to think of them

guess→ check→ correct→ check→ correct→ ⋯.
That is to say, these are going to be “iterative” algorithms. We will

construct a sequence of vectors that hopefully converges to the solution of
the linear system of equations of least squares problem.

7.1 review of linear systems of equations

Let’s start with some basic properties of linear systems of equations.1
A linear system

Ax = b
represents a set of equations

A1,1x1 + A1,2x2 + . . . + A1,nxn = b1
A2,1x1 + A2,2x2 + . . . + A2,nxn = b2⋮

Am ,1x1 + Am ,2x2 + . . . + Am ,nxn = bm .
This is a relationship described by m equations and n unknowns. These
come from an enormous diversity of scenarios as detailed in previous
lectures and notes.

If there are fewer equations than unknowns (m < n), then the system is
called underdetermined and it may have 0, 1, or an infinite set of solutions.
If m = n, the system is called square and the system can have 0, 1, or an
infinite set of solutions. And ifm > n, the system is called over determined
and it can have 0, 1, or an infinite set of solutions.

The above expressions are all 0, 1, or an infinite number. As a small
consideration, why can’t we have two solutions but not an infinite number?

53

This is a property of a linear set of equations that is part of what makes
them special and easy to solve. Suppose we have two solutions x and y

Ax = b Ay = b x /= y.
Then any combination of those solutions is also a solution, such as

A(γx + (1 − γ)y) = γAx + (1 − γ)Ay) = γb + (1 − γ)b = b
and we have this relationship for all γ. This is an infinite set of solutions.

How can we have zero solutions to an underdetermined system? This
is because the above characterization did not prescribe anything about the
dependencies among solutions. For instance, here are two equations

−x + y − z = 2
−x + y − z = 3.

Note that these are the same equation with a different value. There is no
solution. As a matrix A, this scenario is a 2 × 3 matrix with rank 1.

Here is a fun case to consider. Let A = yyT . When does Ax = b have a
solution? When does it have no solution? Describe a procedure to find
the solution.

For this reason, typically people have chosen to discuss equations in
terms of full rank matrices. An m × n matrix is full rank if the rank is
min(m, n). In this case, underdetermined problems (m < n) always have
an infinite number of solutions. Overdetermined problems (m > n) have
either 1 or 0 solutions. Square systems have only one unique solution.

Unfortunately, all this flexibility in terms of the number of solutions
makes it hard to discuss algorithms. Consequently,

When we consider solving linear systems, we always focus on the square,
full-rank case.

There are a large number of known ways to characterize when a square
system of linear equations is full rank.

· rank(A) is n (or m since m = n)
· A is invertible
· the columns of A are linearly independent
· the rows of A are linearly independent
· the determinant of A is one
· the eigenvalues of A are all non-zero
· the singular values of A are all non-zero.
When A is square and full rank, then there exists a matrix Y such that

AY = I and YA = I. This matrix Y is called the inverse and is usually
written A−1.

Given a linear system Ax = b, then we can multiply both sides by Y
and get YAx = Yb where (YA) = I, so we get x = Yb or x = A−1b. There
are many, many interpretations of this statement.

54 ii ⋅ simple iterative algorithms

7.2 a first method

This isn’t the order I’m hoping to do these in eventually, but because
of the homework, I want to go over this method.

Most people learn the following result somewhere in the educational
background for this class. Let x be a scalar, then

1 + x + x2 + x3 + . . . = ∞∑
k=0

xk = 1
1 − x

when ∣x∣ < 1. That is, if xk → 0, then the infinite sequences converges to
the value 1/(1 − x), which we are going to write as (1 − x)−1.

It turns out that this same result holds for matrices as well, with a few
additional conditions.

Theorem 7.1 (The Neumann Series)
If that Ak → 0, then

∞∑
k=0

Ak = (I − A)−1
proof Our proof proceeds just by showing that a partial infinite sum
becomes a better approximation to the inverse. Let Sℓ = ∑ℓ

k=0 A
k and

consider

Sℓ(I − A) = ℓ∑
k=0

Ak = (I − A) + (A− A2) + (A2 − A3) + . . . = I − Aℓ+1 .

Consequently,

lim
ℓ→∞

Sℓ(I − A) = lim
ℓ→∞

I − Aℓ+1 = I
and we have finished the proof as this is an explicit form for the inverse.

7.3 overview

Over the next few classes, we are going to see a bunch of different
perspectives on this same algorithm.

7.4 checking a possible solution

One great aspect about solving linear equations is that "guestimates"
are easy to check.

Let Ax = b be the system we are trying to solve and let y be a potential

7 ⋅ simple iterative methods 55

2 Not all matrix norms are sub-
multiplicative, see the discussion of
Matrix and Vector Norms.

The proof follows from e = A−1r
and using ∥A−1r∥ ≤ ∥A∥−1∥r∥ for a
sub-multiplicative norm.

solution. Then the following quantities all deal with how good y is:

error = y − x
error = ∥y − x∥

relative error = ∥y − x∥/∥x∥
residual = b − Ay
residual = Ay − b
residual = ∥Ay − b∥

relative residual = ∥Ay − b∥/∥b∥
Note that there are terms that may refer to multiple quantities. These are
often used interchangably where the definition is clear from context.

The error measures are the most useful quantities, however, they are
not easily computable as they require knowing the solution x. However,
we can bound the error in terms of the residual.

Theorem 7.2
Let y be any vector and x be the solution of Ax = b, then the
error e = y − x and residual r = Ay − b are related as follows:

Ae = r.
proof By definition:

Ae = Ay − Ax = Ay − b
because Ax = b.

This results in the following bound.

Corollary 7.3
Using the notation fromTheorem7.2, let ∥ ⋅ ∥ be a sub-multiplicative
norm.2 Then ∥e∥ ≤ ∥A−1∥∥r∥ .

What this means is that if we want the error to be small, then we want
the residual to be small. And the residual is easy to compute!

7.5 our first method revisited

On reflection, there is a better way to introduce the algorithm involving
the Neumann series of a matrix. This has to do with how we might check
the solution of a linear system of equation.

Given some initial guess at a solution x0, then we are going to compute
the residual: r0 = b − Ax0. If we are close to a solution, this will be small.

56 ii ⋅ simple iterative algorithms

So let’s just correct by the amount we need:

x1 = x0 + r0 .
Now, if we just repeatedly do this, then

xk+1 = xk + rk = xk + b − Axk = (I − A)xk + b.
Quiz. Let x0 = b. Show that xk will converge to the solution x as

k →∞. State conditions if necessary for this to converge.
Solution. By definition, x1 = (I − A)b + b and x2 = (I − A)2b +(I − A)b + b. By induction, we have: xk = ∑k

ℓ=0(I − A)ℓb and as k →∞,
then xk → (I − H)−1b where H = I − A. But using that definition gives(I −H)−1 = A−1. Hence this algorithm will converge if ρ(I − A) < 1 and
it just corresponds to using the Neumann series itself.

7.5.1 An example with our simple random walk between −4 and 6.
Recall our linear system that modeled how long it took a random walk

to exit through −4 and +6. This was the linear system of equations⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0− 1
2 1 − 1

2 0 0 0 0 0 0 0 0
0 − 1

2 1 − 1
2 0 0 0 0 0 0 0

0 0 − 1
2 1 − 1

2 0 0 0 0 0 0
0 0 0 − 1

2 1 − 1
2 0 0 0 0 0

0 0 0 0 − 1
2 1 − 1

2 0 0 0 0
0 0 0 0 0 − 1

2 1 − 1
2 0 0 0

0 0 0 0 0 0 − 1
2 1 − 1

2 0 0
0 0 0 0 0 0 0 − 1

2 1 − 1
2 0

0 0 0 0 0 0 0 0 − 1
2 1 − 1

2
0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x{−4}
x{−3}
x{−2}
x{−1}
x{0}
x{+1}
x{+2}
x{+3}
x{+4}
x{+5}
x{+6}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
1
1
1
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When we apply this method here starting from x(1) = 0 (the all zeros
vector), we get a sequence of iterates x(k) along with residuals r(k). After
a few hundred iterations, these have largely converged.

Value of iterate vector x(k) when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 500

0.0 0.0
0.0 1.0 1.5 2.0 2.4 2.8 3.1 3.4 3.6 3.9 5.9 7.1 7.9 8.3 8.6 8.8 8.8 8.9 8.9 9.0 9.0 9.0 9.0
0.0 1.0 2.0 2.8 3.5 4.1 4.8 5.3 5.8 6.3 10.0 12.0 14.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
0.0 1.0 2.0 3.0 3.9 4.8 5.5 6.3 7.0 7.7 13.0 16.0 18.0 19.0 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
0.0 1.0 2.0 3.0 4.0 4.9 5.9 6.7 7.6 8.4 15.0 18.0 21.0 22.0 23.0 23.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
0.0 1.0 2.0 3.0 4.0 5.0 5.9 6.9 7.7 8.6 15.0 19.0 21.0 23.0 24.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
0.0 1.0 2.0 3.0 4.0 4.9 5.9 6.7 7.6 8.4 15.0 18.0 21.0 22.0 23.0 23.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
0.0 1.0 2.0 3.0 3.9 4.8 5.5 6.3 7.0 7.7 13.0 16.0 18.0 19.0 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
0.0 1.0 2.0 2.8 3.5 4.1 4.8 5.3 5.8 6.3 10.0 12.0 14.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
0.0 1.0 1.5 2.0 2.4 2.8 3.1 3.4 3.6 3.9 5.9 7.1 7.9 8.3 8.6 8.8 8.8 8.9 8.9 9.0 9.0 9.0 9.0
0.0 0.0

7 ⋅ simple iterative methods 57

0 1 2 3 4 5
x

0.0

2.5

5.0

7.5

10.0

y

FIGURE 7.1 – We get a least squares
problem to find a quadratic fit to
this data c3x2 + c2x + c1 . This gives
a 3 × 3 linear system via the normal
equations.

Value of residual vector r(k) when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 500

0 0
1e0 5e−1 5e−1 4e−1 4e−1 3e−1 3e−1 3e−1 3e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 4e−3 3e−3 2e−5 1e−7 8e−105e−12

1e0 1e0 8e−1 8e−1 6e−1 6e−1 5e−1 5e−1 5e−1 5e−1 3e−1 2e−1 1e−1 7e−2 4e−2 2e−2 1e−2 9e−3 5e−3 4e−5 2e−7 2e−9 1e−11

1e0 1e0 1e0 9e−1 9e−1 8e−1 8e−1 7e−1 7e−1 6e−1 4e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 5e−5 3e−7 2e−9 1e−11

1e0 1e0 1e0 1e0 9e−1 9e−1 9e−1 9e−1 8e−1 8e−1 5e−1 3e−1 2e−1 1e−1 6e−2 4e−2 2e−2 1e−2 9e−3 6e−5 4e−7 2e−9 2e−11

1e0 1e0 1e0 1e0 1e0 9e−1 9e−1 9e−1 9e−1 8e−1 5e−1 3e−1 2e−1 1e−1 6e−2 4e−2 2e−2 1e−2 9e−3 6e−5 4e−7 2e−9 2e−11

1e0 1e0 1e0 1e0 9e−1 9e−1 9e−1 9e−1 8e−1 8e−1 5e−1 3e−1 2e−1 1e−1 6e−2 4e−2 2e−2 1e−2 9e−3 6e−5 4e−7 2e−9 2e−11

1e0 1e0 1e0 9e−1 9e−1 8e−1 8e−1 7e−1 7e−1 6e−1 4e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 5e−5 3e−7 2e−9 1e−11

1e0 1e0 8e−1 8e−1 6e−1 6e−1 5e−1 5e−1 5e−1 5e−1 3e−1 2e−1 1e−1 7e−2 4e−2 2e−2 1e−2 9e−3 5e−3 4e−5 2e−7 2e−9 1e−11

1e0 5e−1 5e−1 4e−1 4e−1 3e−1 3e−1 3e−1 3e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 4e−3 3e−3 2e−5 1e−7 8e−105e−12

0 0

7.5.2 An example with our least-squares problem

Recall the quadratic fitting problem from the introduction lecture
"What is a matrix” (lecture 1) This is reproduced at right.

Consider the normal equations method of solving the least squares
problem for the quadratic fit:

⎡⎢⎢⎢⎢⎢⎣
50.0 162.63 616.468
162.63 616.468 2574.99
616.468 2574.99 11432.9

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
c1
c2
c3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

450.45
1329.6726
4549.258906

⎤⎥⎥⎥⎥⎥⎦
When we apply this method here starting from c(1) = 0 (the all zeros

vector), we get a sequence of iterates c(k) along with residuals r(k). After
less than one hundred iterations, this has produced ‘NaN‘ on the computer
– a hallmark that the algorithm cannot converge on the problem.

Value of solution vector c(k) = [c1 c2 c3] when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80

0 4e2 −3e6 4e10 −4e14 5e18 −6e22 8e26 −9e30 1e35 7e75 5e116 3e157 2e198 1e239 8e279 NaN
0 1e3 −1e7 2e11 −2e15 2e19 −3e23 3e27 −4e31 5e35 3e76 2e117 1e158 8e198 5e239 3e280 NaN
0 4e3 −6e7 7e11 −8e15 1e20 −1e24 1e28 −2e32 2e36 1e77 8e117 5e158 4e199 2e240 2e281 NaN

The residuals show the same behavior and quickly grow to∞.

Value of residual vector r(k) when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80

5e2 −3e6 4e10 −4e14 5e18 −6e22 8e26 −9e30 1e35 −1e39 −9e79 −6e120−4e161−2e202−1e243−1e284NaN
1e3 −1e7 2e11 −2e15 2e19 −3e23 3e27 −4e31 5e35 −6e39 −4e80 −2e121−1e162−1e203−6e243−4e284NaN
5e3 −6e7 7e11 −8e15 1e20 −1e24 1e28 −2e32 2e36 −2e40 −2e81 −1e122−7e162−4e203−3e244−2e285NaN

In this case, we can compute ρ(I − A) = 12047.41494842964, so the
spectral radius is much larger than 1 and we would not expect the method
to work.

What if this algorithmdoesn’t work? ================================

58 ii ⋅ simple iterative algorithms

Suppose that ρ(I −A) > 1. Are we out of luck with using this method?
Not entirely! Consider that we can transform the linear system into an
equivalent system of equations:

Ax = b ⇔ αAx = αb
Then the iteration is:

xk+1 = (I − αA)xk + αb = k∑
ℓ=0
(I − αA)ℓ(αb)→ (αA)−1αb.

This method is called the Richardson method for solving a linear system
of equations. It is credited to Lewis Fry Richardson. Among other things,
Richardson decided to spend his time in the trenches during World War I
dreaming up better uses for the people fighting the war. His solution was
to have them forecast the weather and he came up with this method.

When will this method converge?
Based on our analysis of the Neumann series, this will converge if

ρ(I − αA) < 1. Let λ be an eigenvalue of A. This means we need that∣1 − αλ∣ < 1 for all eigenvalues of A.
This means we can always make this algorithm work for a symmetric

positive definite matrix A because all of the eigenvalues are positive.

7.6 another derivation of the same
algorithm

7.6.1 Notes 1

Let’s see yet another way to get at the same algorithm. This will involve
some analysis of convex function.

Recall that a scalar quadratic function can be written:

f (x) = ax2 + bx + c.
These look like bowls or lines (when a = 0).

Consider the problem

minimize
x

ax2 + bx + c
The solution is undefined is a < 0 (or just∞). Otherwise, x = −b/(2a) is
the point that achieves the minimum. This can be found by looking for a
point where the derivative is 0:

f ′(x) = 2ax + b = 0⇒ x = −b/(2a).
A multivariate quadratic looks very similar.

7 ⋅ simple iterative methods 59

There is a stronger result to prove
here too.

7.6.2 Notes 2

Gradient Descent for Ax = b.
It turns out that for any positive definite matrix A, that we can view it

as the solution of an optimization problem

minimize
x

1
2x

TAx − xTb.
This is because if A is positive semi-definite, then this problem is

convex with a unique global minimizer. A convex function is just one
that always lies below any line connecting two points. Formally, this is
f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y). A global minimizer is any
point x∗ where f (x∗) ≤ f (x) for any other point x. Note that if f (x) is
convex and if we have two global minimizers, then any point on the line
connecting them must be a minimizer by the property of convexity.

Theorem 7.4
Let f (x) = 1

2x
TAx − xTx. Then f (x) is convex if A is sym-

metric positive definite.

proof From the definition

f (αx + (1 − α)y) = (αx + (1 − α)y)TA(αx + (1 − α)y) − (αx + (1 − α)y)Tb
= α(αxTAx − xTb + (1 − α)((1 − α)yTAy − yTy) + 2α(1 − α)xTAy = ...

60 ii ⋅ simple iterative algorithms

Learning objectives
1. Appreciate how linear systems

are closely related to minimizing
quadratic functions
2. Witness a computation of the

gradient for a multivariate function
in matrix algebra
3. See a characterization of a

quadratic minimizer as the solution
of a linear system
4. Generalize the algorithm to

the steepest descent algorithm for
solving a linear system

There is a stronger result to prove
here too.

STEEPEST DESCENT & GRADIENT DESCENT 8
8.1 linear systems and quadratic function

minimization

We are studying quadratic function minimization because this turns
out to a good way to understand how to solve Ax = b for symmetric
positive definite matrices A. A full understanding of this will involve some
analysis of convex functions. This is all straightforward for this case (if
not simple), but it is an instance of a far more general theory. Some of the
notes will make references to more general results that could be proved
but are not relevant for the linear system case.

8.1.1 Motivation from the scalar case

——————————-
Recall that a scalar quadratic function can be written:

f (x) = ax2 + bx + c.
These look like bowls or lines (when a = 0).

Consider the problem

minimize
x

ax2 + bx + c
The solution is undefined is a < 0 (or just∞). Otherwise, x = −b/(2a) is
the point that achieves the minimum. This can be found by looking for a
point where the derivative is 0:

f ′(x) = 2ax + b = 0⇒ x = −b/(2a).
A multivariate quadratic looks very similar.

8.1.2 The multivariate quadratic for Ax = b
For Ax = b, it turns out that for any positive definite matrix A, that we

can view it as the solution of an optimization problem

minimize
x

1
2x

TAx − xTb.
This is because if A is positive semi-definite, then this problem is

convex with a unique global minimizer. A convex function is just one
that always lies below any line connecting two points. Formally, this is
f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y). A global minimizer is any
point x∗ where f (x∗) ≤ f (x) for any other point x. Note that if f (x) is

61

convex and if we have two global minimizers, then any point on the line
connecting them must be a minimizer by the property of convexity.

Theorem 8.1
Let f (x) = 1

2x
TAx − xTb. Then f (x) is convex if A is sym-

metric positive definite.

proof From the definition

f (αx + (1 − α)y) = (αx + (1 − α)y)TA(αx + (1 − α)y) − (αx + (1 − α)y)Tb
= α(αxTAx − xTb + (1 − α)((1 − α)yTAy − yTy) + 2α(1 − α)xTAy
= α2xTAx + (1 − α)2yTAy + 2α(1 − α)yTAx − αxTb − (1 − α)yTb

Our goal is to show that this is ≤ αxTAx+(1−α)yTAy−αxTb−(1−α)yTb,
and so the idea is to show that

α2xTAx + (1 − α)2yTAy + 2α(1 − α)yTAx − αxTAx − (1 − α)yTAy ≤ 0.
Note that we can simplify this to

(α(α − 1))(xTAx + yTAy − 2xTAy)
wherewe have (α(α−1)) ≤ 0 and (xTAx+yTAy−2xTAy) = (x−y)TA(x−
y) ≥ 0. Hence, the entire expression is ≤ 0, and we are done!

8.1.3 The gradient

Last time we proved that f (x) = 1
2x

TAx − xTb was a convex function.
Let’s show that the gradient of f (x) is really the vector Ax − b.

example 8.2 Consider the function f (x) = 1
2 [xy]T [3 −1

−1 4]−[xy]T [7
−6] =

3/2x2 + 2y2 − xy − 7x + 6y. Then the gradient is the vector

[∂ f /∂x
∂ f /∂y] = [3x−y−74y−x+6] = [3 −1

−1 4] [xy] − [7
−6] . ◆

More generally,

f (x1 , . . . , xn) = 1/2∑
i j
A i jx ix j −∑

i
x ib i

We like thining of this in terms of the following table:

A11x21 A12x1x2 ⋯ A1nx1xn
A21x2x1 A22x22 ⋯ ⋮⋮ ⋱ ⋱ ⋮
An1xnx1⋯ ⋯ Annx2n

Now we have terms involving x i in the ith row and ith column.

∂ f /∂x i = 1/2∑
j/=i

A i jx i + A i ix i + 1/2∑
j/=i

A jix i − b i = ith row of ATx − b i
62 ii ⋅ simple iterative algorithms

1 For functions that aren’t defined
everywhere, this would be restricted
to whereever the function is de-
fined.

2 This theorem generalizes to any
function with a positive definite
Hessian, but that’s for an optimiza-
tion class.

3 For the moment, we’ll let g =
g(x) = Ax − b for a fixed x.

The minimizer

The minimizer of a function is any point that is the lowest in some
neighborhood. Formally, a point x∗ is a local minimizer if f (x∗) ≤ f (x)
for all x where ∥x − x∗∥ ≤ ε for some positive value of ε. This just means
that this is the lowest point in a neighborhood around the current point.
The global minimizer x∗ of a function is a point which is lower than
everywhere else: f (x∗) ≤ f (x) for all x.1

Convex functions are awesome because any local
minimizer is a global minimizer!

This is easy to prove for continuous functions like the f (x) that solves
linear systems. Consider a point x and y where x is a local minizer and
y is a global minimizer. Then along the line αx + (1 − α)y we must have
that the function is bounded below by α f (x) + (1 − α) f (y). Because x
isn’t a global min, we know that f (y) < f (x). Hence, that wemust reduce
the value of the function for all positive α compared with f (x). This
means that f (x) couldn’t have been a local minimizer. Hence, any local
minimizer is a global minimizer of a continuous convex function.

Characterizing the minimizer

Any point where the gradient is zero is a global
minimizer for a continuous convex function.

This is true generally, but it’s super easy to show for our function for
linear systems.

Theorem 8.3
2 Let f (x) = 1

2x
TAx − xTb where A is symmetric, positive

definite. Then the vector of partial derivatives is g(x) = Ax−b.
Let y be a point where Ax − b = 0. Then f (x) ≥ f (y).

proof Let x = y + αz . Then:
f (x) = 1

2 (y+αz)TA(y+αz)−(y+αz)Tb = 1
2y

TAy+ 1
2α

2zTAz+αzTAy−yTb−αzTb.
Now, recall that Ay = b because the gradient is zero. Then we have:

f (x) = 1
2y

TAy + 1
2α

2zTAz + αzTb − yTb − αzTb = f (y) + 1
2α

2zTAz ≥ f (y).

Finding the minimizer

If the gradient is not zero, then we can always
reduce the function by moving a sufficiently small

distance along the negative gradient.
In general, this is just an application of Taylor’s theorem for multivari-

ate function, but we can again proof this easily for us, and get a cool result
along the way!

8 ⋅ steepest descent & gradient descent 63

Suppose g(x) = Ax − b /= 0.3 Then consider

f (x − αg) = 1
2x

TAx + 1
2α

2gTAg − αgTAx − xTb + αgTb
= f (x) + 1

2α
2gTAg − αgTAx + αgTb

= f (x) − α(gTg − α
2 g

TAg).
So if this result is going to be true, we need (gTg− α

2 g
TAg) ≥ 0 for α small

enough. This corresponds with the condition that gTAg/gTg ≤ 2/α. Let
ρ = maximize xTAx

xTx

subject to x /= 0 then ρ ≥ gTAg
gTg

for any vector g.

This gives us an upper bound on the left hand side. Thus, we need ρ ≤ 2/α
or α ≤ 2/ρ and we have descent,

f (x − αg) = f (x) − α (α/2gTAg − αgTg)´¹¹¹¸¹¹¹¶
≥0

≤ f (x).
Note this is exactly the same bound we got out of the Richardson

method too!

8.2 the steepest descent algorithm for
solving linear systems

We now need to turn these insights into an algorithm for solving a
linear system of equations. The idea in steepest descent is that we use the
insight from the last section: we are trying to minimize f (x) and we can
make f (x) smaller by taking a step along the gradient д(x).
8.2.1 From Richardson to Steepest Descent

Steepest descent on f (x) = 1
2x

TAx − xTb is just a generalization of
Richardson’s iteration:

Richardson x(k+1) = x(k) + α (b − Ax(k))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
residual

Steepest Descent x(k+1) = x(k) − α g(x)´¸¶
gradient

= x(k) − α(Ax − b).
This means that if 0 < α < 2/ρ then the steepest descent method will

converge.

8.2.2 Picking a better value of α

The idea with the steepest descent method is that we can pick α at
each step and use f (x) to inform this choice. This method arose from a
completely different place from Richardson’s method for solving Ax = b
(which was based on the Neumann series).

64 ii ⋅ simple iterative algorithms

Finish this section...

Definition 8.4 (Steepest Descent Algorithm)
Let Ax = b be a symmetric, positive definite linear system of
equations.

8.2.3 A coordinate-wise strategy.

8.3 exercises

1. (I’m not sure if this is true, and it could be difficult.). Let Ax = b be a
diagonally dominant M matrix, but where A is not symmetric. This
means that A−1 ≥ 0. Suppose also that b ≥ 0. Develop an algorithm
akin to steepest descent for this problem. Ideas include looking at
functions like f (x) = eTAx − eTb

8 ⋅ steepest descent & gradient descent 65

66 ii ⋅ simple iterative algorithms

Learning objectives
1. Viewing a linear system as a set

of equations where we can solve for
any variable given any equation it
participates in.
2. Realize that Gauss-Seidel is just

a “bug” in Jacobi

1 There must always exist such a k
otherwise the system is singular!

SIMULTANEOUS & SEQUENTIAL VARIABLE
UPDATES (AKA JACOBI & GAUSS-SEIDEL) 9

Now let’s see another set of methods that can apply to solving Ax = b.
These, again, follow from different perspectives on what these equa-

tions mean. Consider that a system of linear equations represents a simul-
taneous solution of n individual equations

Ax = b ⇔
⎛⎜⎜⎜⎜⎝
aT1 x = b1
aT2 x = b2⋯
aTn x = bn

⎞⎟⎟⎟⎟⎠
where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aT1
aT2⋯
aTn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is the matrix with a vector for each row. We can use each of these equations
to solve for any particular variable given the others. For example, given a
possible solution x, then

aT1 x = b1⇔∑
j
A1 jx j = b1

and if A1k /= 0, then we must have

xk = 1
A1k
(b1 −∑

j/=k
A1 jx j)

at a solution.1
Then one strategy to improve an inaccurate solution to Ax = b is to

pick out a set of entries that can all be updated simultaneously and to do
so.

9.1 a simple two variable example

Let’s see an example. Suppose that

A = [1 2−2 1] , b = [21]
and we have a current guess x = [1

1/2]. Then for row 1, we have our choice

of index k to update, 1 or 2. For the sake of example, let’s use row 1 to
update x2 and then we’ll use row 2 to update x1. The update looks like:

xnew1 = 1−2(1 − xold2)
xnew2 = 1

2
(2 − xold1)

67

2 There are some really interesting
and useful extensions that relax this
assumption.

3 Technically, and looking ahead
just a few paragraphs, the matrix M
is a permutation matrix, we will use
this insight in a moment!

x i

row j

FIGURE 9.1 – A general setup for
the equations described by rows
of a system. We need A j , i ≠ 0 to
update x i based on equation j. We
also cannot use equation j to update
any other variables, nor can we use
other equations to update x i . The
map matrix M encodes the set of
updates.

For the guess x = [1
1/2]

xnew = [−1/41/2] .
If we repeatedly use this formula, then we converge to the solution x = [01]
after a few iterations.

9.2 the general example and the jacobi
iteration

If we think about running this on a general system, then we’ll need to
figure out which equation we use to update which variable. This is tricky,
however, because the update to x2 based on row 1 used an entry A12 that
was non-zero. In general, this means that we cannot update x2 from any of
the other rows from 2 to n. In an ideal world (like the example above), we’d
like to update x1 , . . . , xn all at once.2 That means that we need a distinct
row i for each j such that A i j /= 0. We can encode this map in a matrix M.
Let M be an n × n matrix where:

M(i , j) = ⎧⎪⎪⎨⎪⎪⎩
1 row j is used to update x i
0 otherwise.

Then note that we must have exactly 1 entry in each row and column of
M.3 We can use any matrix M where

M i , j /= 0 if and only if A i , j /= 0.
In general these are not-so-easy to find. We’ll return to this point in a
moment. Let M i = j for convinience of notation. The iteration is thus:

xnew1 = 1
AM1 ,1

(bM1 −∑
j/=1

AM1 , jx j)
⋮

xnewi = 1
AM i , i

(bM i −∑
j/=i

AM i , jx j)
⋮

xnewn = 1
AMn ,n

(bMn −∑
j/=n

AM i , jx j)
We can state this using a set of matrices with some slight additional

notation. Let DM be the diagonal matrix where [DM]i , i = AM i , i . The
idea with DM is that we can write

xnew = D−1M some vector

68 ii ⋅ simple iterative algorithms

4 Here ⊙ is the element-wise, or
Hadamard, products.

where entries of that vector correspond to bM i −∑ j/=i AM i , jx j). Conse-
quently, let bM be the vector [bM]i = bM i . Also, let NM be the matrix with
entries:

[NM]i , j = ⎧⎪⎪⎨⎪⎪⎩
0 i = j
AM i , j i /= j.

xnew = D−1M (bM − NMxold .

This iteration is called the Jacobimethod for
solving a linear system of equations, although I
think the name simultaneous variable updates or
simultaneous variable relaxation communicates

the idea better.

9.3 implementations of jacobi

1 """
2 jacobi_iteration_map_ !(y,A,x,M) sets y to be the next Jacobi
3 iteration from x with map M
4 """
5 function jacobi_iteration (y,A,x,M=1: length (x)))
6 for i=1: length (x)
7 y[i] −= (b[M[i] − A[M[i] ,:] ’∗x − A[M[i],i]∗x[i]) / A[M[i],i]
8 end
9 end

9.4 a 3x3 example with a permutation instead
of the map

Most derivations of the Jacobi iteration assume that D is formed from
the non-zero diagonal of the linear system of equations, but there is no
such restriction in the derivation of themethod. This is simply a notational
convenience. All we need is a permutation matrix P such that P ⊙ A is
non-singular to build the matrix M for the above iteration to work.4

Consider the following linear system
⎡⎢⎢⎢⎢⎢⎣
1 0 −3
0 −3 1−3 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1
1
1

⎤⎥⎥⎥⎥⎥⎦
. (9.1)

Then if we run the Jacobi update with

M1 = 3 M2 = 2 M3 = 1 and x(0) = [1 1 1]T
We have

xnew1 = 1
A3,1 = −3(1 − (A3,2 = 0) ⋅ x2 − (A3,3 = 1) ⋅ x3) = 0

xnew2 = 1(A2,2 = −3)(1 − (A2,1 = 0) ⋅ x1 − (A2,3 = 1) ⋅ x3) = 0
9 ⋅ simultaneous & sequential variable updates (aka jacobi & gauss-seidel) 69

xnew3 = 1(A1,3 = −3)(1 − (A1,1 = 1) ⋅ x1 − (A1,2 = 0) ⋅ x2) = 0.
If we write this as a matrix update, we have:

x(k+1) =
⎡⎢⎢⎢⎢⎢⎣
−3 −3 −3

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣
−3 −3 −3

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
x(k) .

To avoid the details with M, let us simply permute the three rows of
A so that row 3 comes first, then row 2, then row 1. Note that we simply
reordered the rows, not the variables.⎡⎢⎢⎢⎢⎢⎣

−3 0 1
0 −3 1
1 0 −3

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1
1
1

⎤⎥⎥⎥⎥⎥⎦
.

In this case, we can simply split the matrix into it’s two pieces:

D = diagonal =
⎡⎢⎢⎢⎢⎢⎣
−3 −3 −3

⎤⎥⎥⎥⎥⎥⎦
N =
⎡⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
With this setup, we can easily write the iteration

x(k+1) = D−1b − Nx(k) .

9.5 jacobi with a permutation matrix

Let us derive the same update as above, using the permutation to show
how it generalizes the previous algorithm. That’s because the matrix M
really is a permutation! A permutation matrix is just a way to reorder the
rows or columns of a matrix. It reorders the rows if we multiply on the left.

For a permutation matrix P, we have Pi , j = 1 if y = Px has y i = x j .
That is, Pi , j if i in the output was j in the input. So we can write:

bM = Pb where Pi , j = ⎧⎪⎪⎨⎪⎪⎩
1 j = M i

0 otherwise.

We can also apply the same permutation to A as in

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

aT1
aT2⋮
aTn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
then PA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aTM1

aTM2⋮
aTMn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This corresponds with solving a linear system

PAx = Px
or really, just re-ordering the equations we were given. Now note that

DM = diagonal elements of PAin a diagonal matrix.

70 ii ⋅ simple iterative algorithms

Then also,
NM = PA− DM .

This is why most textbooks do not describe the setup with using an
equation to solve for an unknown, it’s entirely equivalent to the following
setup that is much closer to a typical description of Jacobi

1. Pick a permutation matrix P such that PA has non-zero diagonal
elements. 2. Let D be the diagonal elements of PA. 3. Let N be the matrix
PA− D

Then the Jacobi method implements the iteration:

x(k+1) = D−1(Pb − Nx(k)).
This makes it much simplier to do the analysis below when we are

interested in issues of convergence: permute the matrix, then look at the
diagonal entries and t

example 9.1 Show that the linear system (9.1) will not converge using
Jacobi with the standard permutation P = I. ◆
example 9.2 Note that the 3x3 least squares problem for our quadratic
fitting example will not converge with Jacobi for any iteration. ◆
Interesting tangent

Of course, this begs the question, why do we need a single permutation
matrix P? Why can’t we get away with using a sequence of iterations where
we just ensure that each element is updated every so-often. I’m almost
sure this has been studied, but don’t know the reference off the top of my
head. Or even a random pair at each step.

9.6 the convergence of the jacobi method

It’s easy to determine the convergence of the Jacobi matrix with our
knowledge of the spectral-radius of a matrix. Let’s look at the error in the
kth-step of the method:

x(k+1) − x = D−1M (b − NMx(k)) − x.
But note that we designed this so that x is a fixed point of the update, so
x = D−1M (b − NMx) as well. This means that

x(k+1) − x = D−1M (b − NMx(k) − b + NMx) = −D−1M NM(x(k) − x).
Consequently,

x(k+1) = (−D−1M NM)k+1(x(0) − x).
This converges, for all starting points x(0) if and only if ρ(−D−1M NM) < 1.

9 ⋅ simultaneous & sequential variable updates (aka jacobi & gauss-seidel) 71

Test

9.7 a mistake in an implementation of the
jacobi method

If we are solving large linear systems of equations, then we may have
vectors with billions of entries! This means that storing another vector
xnew may be expensive itself. In this case, I hope you can agree that it may
occur to someone to try and save memory as follows:

just update the solution to x with only a single set of memory!

For instance, consider the following implementation of the Jacobi
iteration

1 """
2 jacobi_iteration !(y,A,x,M) updates x "like" Jacobi , but in −place , with map M
3 """
4 function jacobi_iteration !(A,b,x,M=1: length (x))
5 for i=1: length (x)
6 x[i] −= (b[M[i]] − A[M[i] ,:] ’∗x − A[M[i],i]∗x[i]) / A[M[i],i]
7 end
8 end

This is wrong if the objective is to implement the Jacobi iteration.
However, it turns out that this idea gives rise to a method called the Gauss-
Seidel method.

x1 = 1
AM1 ,1

(bM1 − ∑
j/=M1

AM1 , jx j)
⋯

xnewi = 1
AM i ,1

(bM i − ∑
j/=M i

AM i , jx j)
⋯

9.8 analyzing gauss-seidel

9.9 the gauss-seidel and steepest descent
method

Note, you can show that Gauss-Seidel converges on any symmetric
positive definite matrix using the matrix M = I.

We can derive the Gauss-Seidel method as a mistake in Jacobi. Let’s
now consider what happens on a symmetric matrix Awith unit diagonals.
We have:

xnew1 = (b1 −∑
j>1

A1, jxoldj)
⋯

xnewi = (b i −∑
j<i

xnewj −∑
j>i

A1, jxoldj)
72 ii ⋅ simple iterative algorithms

Recall the iteration for coordinate descent:

x(k+1) = x(k) + γkei where γk = −[Ax − b]i/A i , i

Written in terms of our problem

xnewi = x i −∑
j=1

A i jxold + b i = b i −∑
j/=i

A i , jxoldj .

This shows that if we update the ith variable, then we are doing a closely
related update to Gauss-Seidel. To see that they are the same, remember
how we arrived at Gauss-Seidel, we simply did the Jacobi update but forgot
to allocate new memory. This means that, in the program, we have:

xnewi = (b i −∑
j<i

xcurj −∑
j>i

A1, jxcurj)
And nowwe can see that, expressed this way, Gauss-Seidel update is exactly
the same as steepest descent.

9 ⋅ simultaneous & sequential variable updates (aka jacobi & gauss-seidel) 73

74 ii ⋅ simple iterative algorithms

Learning objectives
1. See a variety of ways to think

about eigenvalues
2. Look at the power method

EIGENVALUES & THE POWER METHOD 10
**Note, these notes are still being edited. There are a huge diversity of

perspectives and geometric interpretations of eigenvalues and eigenvectors,
so it’s challenging to know how to show them. I’m working on some
pictures to help. **

There are a variety of ways to derive and define the eigenvalues of a
matrix A. The most general definition of an eigenvalue of a matrix is a
value λ such that det(A−λI) = 0. This definition, however, obscuresmuch
of the utility of eigenvalues of symmetric matrices (which are extremely
common).

10.1 critical directions

** Still working on this section. Skip it now! **
The eigenvalues and eigenvectors of a symmetric, positive definite

matrix A are critical directions in the quadratic function

f (x) = 1
2
xTAx

that are invariant to transformations.
For a symmetric matrix A, then the eigenvalues of A are the stationary

points of the following optimization problem:

maximize
x

xTAx

subject to ∥x∥2 = 1 (10.1)

10.2 stationary points

To go ahead and define something in terms of another definition:
stationary points are those points where the Lagrangian of the problem
has zero derivative. And what is the Lagrangian? It’s a function that
balances tradeoffs between the objective function xTAx and the constraint∥x∥2 = 1 L(x, λ) = xTAx − λ ⋅ (xTx − 1).
The gradient of this function is just

∂L/∂x = 2Ax − 2λx
∂L/∂λ = xTx − 1.

75

1 —TODO – work out this deriva-
tion more. Can we show that
γk →∞ is a natural step?

So at a stationary point, by definition, we have

Ax = λx xTx = 1.
Conclusion: any stationary point of (10.1) is a pair:

(x, λ) where Ax = λx
which implies that (A− λI)x = 0 and also that det(A− λI) = 0.

Note that this analysis gives the same result forminimizing the problem
instead of maxing

10.3 the power method to find eigenvalues

Given that we have an optimization problem, one strategy to produce
an algorithm is to seek a maximizer of xTAx where ∥x∥ = 1. Because
the goal is a maximizer, we would do gradient ascent instead of gradient
descent. However, this time we have a constraint that makes the problem
more complicated. A simplistic strategy to handle this constraint is just to
take a gradient step:

y = x(k) + 2γkAx(k)
and to project it back onto the feasible set:

x(k+1) = argminz∥z − y∥ where ∥z∥ = 1.
A quick analysis similar to (10.1) shows that z = γy for some γ such that∥z∥ = 1. That is to say, we just take y and normalize it.

This gives us the iteration:

x(k+1) = x(k) + 2γkAx(k)∥x(k) + 2γkAx(k)∥ .
Again, we are interested in maximizing x(k+1)

T
Ax(k+1). This suggests

taking γk large. In the limit as γk →∞ 1 then we find that

x(k+1) = (Ax)/∥x∥ .
This is the power method!

Definition 10.1 (the power method)
Let x(0) be any vector. Then the powermethod is the iteration

x(k+1) = (Ax(k))/∥x(k)∥ .
There are no eigenvalues in the power method. Instead, there are

only eigenvectors. To get the eigenvalue, we need to look at the Rayleigh
quotient

λ(k) = x(k)TAx(k) .
This quantity can often be computed with minimal overhead because we
need to compute the vector Ax(k) to get the next iterate of the power
method.

76 ii ⋅ simple iterative algorithms

10.4 convergence of the power method

First, we need to show that the power method is really a simple algo-
rithm. That is, we need to show that x(k) = Mkx(0) for some matrix. This
type of simple statement will not quite be possible, we just need one slight
correction to handle a sticky situation with the norm.

Theorem 10.2
Let x(k) be the kth iterate of the power method starting from
x(0). Then x(k) = Akx(0)/∥Akx(0)∥.

proof This holds for x(1) given that this is the explicit iteration. To
show that it holds for all future iterations, we proceed inductively. Assume
that it is true for the kth iteration: x(k) = Akx(0)/∥Akx(0)∥. This also
means that x(k) = ρkAkx(0) for some scalar ρk . Thus,

x(k+1) = ρkAk+1x(k)/∥ρkAk+1x(k)∥ .
And now ρk cancels out of the equation and we are done.

This shows that we do have a simple algorithm and also that the long
term behavior will be governed by matrix powers.

10.5 termination

A good way to terminate the iteration is to check if we satisfy the
eigenvalue residual

Ax(k) − λ(k)x(k) ≈ 0
exercises

1. Let A = [0 B
B 0]. Consider starting the powermethod from x = [c0].

Describe the iterations of the power method x(k) in terms of the
matrix B and c.

10 ⋅ eigenvalues & the power method 77

78 ii ⋅ simple iterative algorithms

FINITELY TERMINATING
ALGORITHMS III

80 iii ⋅ finitely terminating algorithms

Learning objectives
1.

1 Of course, the curious will wonder
what is special about the first row.
As is common, there is nothing
special about the first row and this
could be done for any row. We’ll
return to this idea later.

2 Careful readers will note that we
need α /= 0 for this idea to work.

ELIMINATION METHODS FOR LINEAR SYSTEMS 11
Thus far, we’ve seenmethods that solve Ax = b via a sequence of vector

changes. These methods have worked by updating x(k) to x(k+1). At no
point did they consider changing the system Ax = b into another system
By = d, where y is somehow easier to find than x and we can compute x
from y in a simple fashion.

The next class of methods we will look at will do exactly this! From
Ax = b, we will produce a sequence of systems that get progressively
smaller by eliminating variables. The methods go by a variety of names:
elimination, Gaussian elimination, LU decomposition, Cholesky factoriza-
tion, and even more names including the Schur complement. However,
the key idea is almost always the same.

11.1 variable elimination

Consider the case where we are solving a system Ax = b then we can
write this out and highlight the first row as follows:1

A = [α cT

d R] b = [β
f
] .

Let the solution correspond to the elements

x = [γ
y
]

so that
αγ + cTy = β.

Then the idea behind all of the elmination methods is that, if we are given
y by some type of oracle, we can compute γ from y

γ(y) = 1
α
(β − cTy) .

This is neat, it says that if you had all by one solution of your system, it’s
easy to find missing element. 2

Wearen’t quite done, however, because this hasn’t simplified or changed
or system at all. To do that, note that the remaining equations give the
expression

γd + Ry = f .

81

This expression involves γ and y. But we have γ as a function of y and so
let’s just substitute that in. The result is an expression purely in terms of y

γ(y)d + Ry = 1
α
(β − cTy)d + Ry = f .

By re-arranging the equations, we arrive at the following linear system:

(R − 1
α
dcT)y = f − β

α
d.

example 11.1 Suppose we have:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 −4 −1−1 −5 −5 −2
4 5 2 0−2 −2 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

4
4−5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
then

(R − 1
α
dcT)y =

⎡⎢⎢⎢⎢⎢⎣
−4.5 −3 −1.5
3 −6 −2−1 3 1

⎤⎥⎥⎥⎥⎥⎦
y =
⎡⎢⎢⎢⎢⎢⎣
2
3−2
⎤⎥⎥⎥⎥⎥⎦

where y =
⎡⎢⎢⎢⎢⎢⎣
−1−14/3
11

⎤⎥⎥⎥⎥⎥⎦
and γ = 7/3 so x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

7/3−1−14/3
11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
◆

If Awas n × n, then this method takes the system

(A, b) to (R − 1
α
dcT , f − β

α
d)

where this new system is (n − 1) × (n − 1). Hence, we arrive at an easier
or smaller system to solve! To solve it, we can apply the same idea again
until we get down to a 1 × 1 system. This algorithm is easy to implement
on a computer that supports recursion.

1 function elimination_solve (A:: Matrix , b:: Vector)
2 m,n = size(A)
3 @assert (m==n, "the system is not square ")
4 @assert (n== length (b), " vector b has the wrong length ")
5 if n==1
6 return [b[1]/A[1]]
7 else
8 R = A[2: end ,2: end]
9 c = A[1 ,2: end]
10 d = A[2: end ,1]
11 alpha = A[1 ,1]
12 y = elimination_solve (R−d∗c ’/ alpha ,
13 b[2: end]−b[1]/ alpha ∗d)
14 gamma = (b[1] − c ’∗y)/ alpha
15 return pushfirst !(y, gamma)
16 end
17 end

82 iii ⋅ finitely terminating algorithms

This idea is called variable elimination. We elminate the variable γ
from the system of equation Ax = b by solving for its expression and them
substituting that solution into the rest of the equations.

11.2 variable elimination as a matrix product

The really interesting part about variable elimination is that we can
express it as a matrix expression! The following expression seems like
magic. Essentially, by examining the above equation long enough, we
can deduce an expression like the following. It allows us to express the
elimination operation as a matrix itself. Let

A = [α cT

d R] then [1 0−d/α I]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=L1

[α cT

d R]´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=A

[1 −cT/α
0 I]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=U 1

= [α 0
0 R − 1

αdc
T] .

Note that L1 is a non-singular matrix of the form:

L1 = I − ve1 where v1 = 0.
This means that L−11 = I + ve1, which can be verified because L1L−11 = I.
Likewise,U 1 = I−e1uT where u1 = 0. It’s inverse is I+e1uT as well. Using
these matrices, we can transform:

Ax = b→ L1AU 1U−1x = L1b.

If we expand this block-wise, then we get:

[α 0
0 R − 1

αdc
T] [γ + 1

α c
Ty

y
] = [1 0−d/α I] [βf] ,

which is exactly our reduced system.
Consequently, we can express our entire sequence of reductions as

follows:

Ln−1Ln−2⋯L1AU 1U 2⋯U n−1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1
0 α2
0 0 ⋱
0 0 0 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= D

or
A = L−11 L−12 ⋯L−1n−1DU−1n−1U n−2⋯U−11 .

It turns out that these elimination matrix L−1i and U−1i have some
rather special properties that allow us to realize this form in an exceedingly
simple way. For all i we have L−1i = (I + vei) with v1 = v2 = . . . = v i = 0
and so

L−1i L−2j = (I+v ieTi)(I+v jeTj) = I+v ieTi +v jeTj +v ieTi v jeTj = I+v ieTi +v jeTj when i < j.

This enables us to quickly compute these as follows:

11 ⋅ elimination methods for linear systems 83

3 We will see this in the very next
paragraph!

4 This is identical to how in Jacobi
and Gauss-Seidel, if we wished to
update the value for a variable x i ,
we needed to use an equation that
used the variable x i .

1 function myreduce_all (A:: Matrix)
2 A = copy(A) # save a copy
3 n = size(A ,1)
4 L = Matrix (1.0I,n,n)
5 U = Matrix (1.0I,n,n)
6 d = zeros (n)
7 for i=1:n −1
8 alpha = A[i,i]
9 d[i] = alpha
10 U[i,i+1: end] = A[i,i+1: end]/ alpha
11 L[i+1: end ,i] = A[i+1: end ,i]/ alpha
12 A[i+1: end ,i+1: end] −=
13 A[i+1: end ,i]∗A[i,i+1: end]’/ alpha
14 end
15 d[n] = A[n,n]
16 return L,U,d
17 end
18 L,U,d = myreduce_all (A)
19 L∗ Diagonal (d)∗U − A

This is what is most commonly called the LU decomposition of a
matrix.

Definition 11.2 (LU Decomposition)
Let A be a non-singular matrix, then if we do not encounter
a zero pivot,3 we can write

A = LDU

where L and U have ones on the diagonal and L is lower-
triangular and U is upper-triangular. Often, this will be sim-
plified so that A = LU where D is incorporated into U .

11.3 pivoting

Suppose we start with the system

[0 1
1 1] [xy] = [56] .

This has the solution x = 1, y = 5.
Then if we try the variable elimination approach, our first step is

0x + y = 5
x = 5 − y

0
break!

This scenario involves division by zero because x really is not really a
component of that system!

The solution is easy, if we wish to eliminate x from this equation, we
need to use an equation that includes x.4 In this case, we can simply swap

84 iii ⋅ finitely terminating algorithms

rows
[1 1
0 1] [yx] = [65] .

After which we have
x + y = 6→ x = 6 − y

y = 5
which we can quickly solve.

Computers need more structure in order to realize these same things.
Pivoting is the idea they use to reorder the equations.

Definition 11.3 (Pivoting)
Pivoting reorders the equations (rows) of A in a linear system
so that we can compute an LU-decomposition for any non-
singular system.

We can always use pivoting to find a variable to eliminate.

Theorem 11.4
If A is non-singular, then at each step of an LU factorization,
there must be a variable and equation pair that we can elimi-
nate.

proof Assume by way of contradiction that we cannot find an equation
(row) to eliminate a variable (column) in the kth step of an LU factorization.
After k − 1 steps of an LU factorization we have

Lk−1Lk−2⋯L1AU 1U 2⋯U k−1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2 ⋱

dk−1
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By our assumption, we are in the scenario where there is no equation (row)
of R to eliminate the kth variable. The kth variable is involved in the first
column of R. This means that the first column of R is entirely zero. This
implies that R is singular because it has a column that is entirely zero.

Now, A is non-singular, as are the products

Lk−1Lk−2⋯L1 and U 1U 2⋯U k−1 .

Consequently, the left-hand side is non-singular, which means the right
hand side must be as well. However, our assumption implied that R was
singular, which is how we arise at the contradiction.

This gives rise to the following algorithm for solving a system of linear
equations.

11 ⋅ elimination methods for linear systems 85

Add failure case example
with singular matrix

1 function solve_with_simple_pivoting !(A:: Matrix , b:: Vector)
2 m,n = size(A)
3 @assert (m==n, "the system is not square ")
4 @assert (n== length (b), " vector b has the wrong length ")
5 if n==1
6 return [b[1]/A[1]]
7 else
8 # let ’s make sure we have an equation
9 # that we can eliminate !
10 α = A[1 ,1]
11 newrow = 1
12 if α == 0
13 for j=2:n # search the current column
14 if A[j ,1] != 0
15 newrow = j
16 break
17 end
18 end
19 if newrow == 1
20 error ("the system is singular ")
21 end
22 end
23 # swap rows 1, and newrow
24 if newrow != 1
25 tmp = A[1 ,:]
26 A[1 ,:] .= A[newrow ,:]
27 A[newrow ,:] .= tmp
28 b[1] , b[newrow] = b[newrow], b[1]
29 end
30 D = A[2: end ,2: end]
31 c = A[1 ,2: end]
32 d = A[2: end ,1]
33 α = A[1 ,1]
34 y = solve_with_simple_pivoting !(D−d∗c ’/α, b[2: end]−b[1]/α∗d)
35 γ = (b[1] − c ’∗y)/α
36 return pushfirst !(y,γ)
37 end
38 end

11.4 partial pivoting

exercises

1. Suppose we wish to solve

Mx = b
and further suppose that you already know some of the values of x.
Let us permute and partition M to be a block system:

Mx = [A B
C D] [x1x2] = [b1b2]

where x1 is what you know.

86 iii ⋅ finitely terminating algorithms

(a) Show how to solve for x2 given x1. Under what conditions is
this possible?

(b) Now, suppose that you have a very kind, but very confused dog
that happened to eat your flashmemory stick holding the piece
of x1 that you knew. However, you had saved your computed
x2 on your Purdue account, and so you have a backup. (This
means you can assume that computing x2 from x1 is possible
for this problem if you determined it wasn’t always possible
above.) Can you get x1 back?

(c) Combine these two parts to derive a single linear system to
compute x1 without computing x2. The system you’ll derive
is called the Schur complement

2. Consider computing the LU decomposition on the matrix

A = I + ce1nT + endT .

Write down a closed form solution for the matrix L andU such that
A = LDU .

3. Regarding triangular solves.
(a) Implement backsolve and forward solve as functions in Julia.

Show and document your code.
(b) Construct a random upper-triangular linear system via:

1 A = triu(randn (n,n));
2 b = randn (n);

Compare the performance of your backsolve to Julia’s back-
slash method to solve a linear system.

(c) Use your backsolve and forward solve code, along with Julia’s
lu factorization in order to implement your own linear solver.
Present a paragraph or two (and a figure or two) comparing
it’s speed and accuracy to using the \ solver.

11 ⋅ elimination methods for linear systems 87

88 iii ⋅ finitely terminating algorithms

1 T

SYMMETRIC POSITIVE DEFINITE SYSTEMS &
VARIABLE ELIMINATION 12
12.1 symmetric & symmetric positive definite

systems

Note that if A is symmetric, then d = c and hence R− 1
αdc

T = R− 1
α cc

T

is symmetric as well.
In fact, if A is symmetric positive definite, then zTAz > 0 for any z.

We can show that D − 1
α cc

T is also symmetric positive definite too! To do
so, we will show that gTRg − 1

α (cTg)2 > 0 for any g. We consider using a
specially chosen vector z applied to the equation for A

zTAz = [ρ
g
]T [α cT

c R] [ρg] = αρ2 + 2ρcTg + gTDg.

At the moment, ρ is still arbitrary. We can choose it to be anything. How-
ever, our goal is to pick ρ such that we learn about gTRg − 1

α (cTg)2. To
do so, let ρ = −(cTg)/α. Then
αρ2+2ρcTg+gTDg = (cTg)2/α−2(cTg)2/α+gTDg = gTDg−(cTg)2/α > 0
as required.

This means that if we eliminate a variable on a symmetric positive
definite system. The remaining system is still symmetric positive definite.

An important consequence of this result is that it means that minimiz-
ing a quadratic function is preserved under variable elimination.

Suppose we are able to run the LU decomposition of a matrix with no
pivoting. In other words, suppose that α = A[i,i] is non-zero at each step.
In this case, we produce:

A = LDU .

Now, because A is symmetric, we have

A = AT = (LDU)T = U TDLT .

This strongly hints that L = U T . This result is indeed correct, as can
be verified by looking at the each step of the algorithm on a symmetric
A and noting that we preserve symmetry at each step as shown above.
However, in general, we cannot assume that any symmetric matrix can
be decomposed like this without pivoting. 1here is a more general LDLT

factorization that can be computed in such cases. A simple counter
example is: A = [0 1

1 1].
89

12.2 the cholesky decomposition

The Cholesky decomposition is the LU decomposition, without piv-
oting, applied to symmetric positive definite matrix. For a symmetric
positive definite matrix, we can show that pivoting is not required. This
is actually a corollary of one of the definitions of what it means to be a
positive definite matrix.

Consequently, for a symmetric positive definite matrix we always have

A = LDLT .

Moreover, because A is positive definite, we have D i , i > 0. This happens
because after each step of the reduction, the reduced matrix is also positive
definite. The diagonal entries of a positive definite matrix are always
positive, and these determine the entries of the diagonal D. As shown
above, after each elimination step, the matrix remains positive definite as
well.

Because D is strictly positive, we can take the square root of each entry
and compute

A = LD1/2(D1/2L)T = FFT or FTF .

This gives the Cholesky routine

""" Compute the Cholesky factorization A = FF ’ and return F """
function (A:: Matrix)

A = copy(A) # save a copy
n = size(A ,1)
F = Matrix (1.0I,n,n)
d = zeros (n)
for i=1:n −1

alpha = A[i,i]
d[i] = sqrt(alpha)
F[i+1: end ,i] = A[i+1: end ,i]/ alpha
A[i+1: end ,i+1: end] −= A[i+1: end ,i]∗A[i,i+1: end]’/ alpha

end
d[n] = sqrt(A[n,n])
return F∗ Diagonal (d), d

end
PD = A’∗A
F,d = myreduce_all_cholesky (PD)
F∗F’ − A

Compare with the previous LU code to see the subtle differences.
What happens if your matrix is not symmetric positive definite? Then

at some point in the decomposition, you will have α < 0. This is actually
one of the fastest ways to test if a matrix is symmetric positive definite as
it avoid all eigenvalue computations.

90 iii ⋅ finitely terminating algorithms

GENERAL VARIABLE ELIMINATION 13
This is a more general discussion on the ideas in the previous sections.

When we are elminating

91

92 iii ⋅ finitely terminating algorithms

Fix it!

PIVOTING & VARIABLE ELIMINATION 14
Partial pivoting, where we select the equation to use to eliminate based

on the largest entry in the row, is by far the most common choice. The
key downside to partial pivoting, however, is that it does not allow us to
compute the rank of the matrix from the decomposition. That is, we might
hope that if PA = LDU , then we could determine the rank A from the
non-zeros of D. The following examples shows why this does not work.

example 14.1 Add an example where partial pivoting fails early or
late. ◆

There are two other common types of pivoting

Definition 14.2 (Rook pivoting)
This is wrong In variable elimination with rook pivoting, at
each step, we choose either the equation with the largest mag-
nitude entry for the next variable, or we choose the variable
in the next equation with the largest magnitude entry.

Definition 14.3 (Complete pivoting)
In variable elimination with complete pivoting, at each step,
we choose the equation and variable pair with the largestmag-
nitude entry over all those that haven’t yet been eliminated.

14.1 rook pivoting as a rank revealing
decomposition

The goal of this section is to show that rook pivoting results in a rank
revealing factorization of a matrix.

14.2 complete pivoting and a matrix
decomposition

For complete pivoting, we can view this as a matrix decomposition

1 function _find_pivot (A, eqsleft , varsleft)
2 bestpivot = (first (eqsleft), first (varsleft))
3 bestval = abs(A[bestpivot [1] , bestpivot [2]])
4 for j in varsleft

93

This section was inspired by a
discussion with Nick Trefethen,
with yet another viewpoint on
variable elimination

5 for i in eqsleft
6 if abs(A[i,j]) > bestval
7 bestval = abs(A[i,j])
8 bestpivot = (i,j)
9 end
10 end
11 end
12 return bestpivot , bestval
13 end
14 function complete_elimination (A)
15 eqsleft = Set (1: size(A ,1))
16 varsleft = Set (1: size(A ,2))
17 eqorder = Int []
18 varorder = Int []
19 while length (eqsleft) > 0 && length (varsleft) > 0
20 pivot , val = _find_pivot (A, eqsleft , varsleft)
21 # TODO , finish this ...
22 push !(eqorder , pivot [1])
23 push !(varorder , pivot [2]) # save
24 end
25 end

Be

94 iii ⋅ finitely terminating algorithms

ELIMINATION METHODS FOR LEAST SQUARES 15
15.1 the simple elimination solve

We can also use variable elimination for least squares problems. Con-
sider

minimize ∥Ax − b∥ .
Partition A = [a C] and x = [γy] . Then

minimize ∥γa + Cy − b∥ .
We proceed as follows, suppose we know y. Let d = Cy − b. Then this is
just the one varible least squares problem

minimize ∥γa − d∥ .
If we explain what this is, then we are looking for the best scaling of the
vector a to get us as close to possible to d.

> **TODO** Add figure that explains this
A little bit of thinking yields the following insight: the scaling of a is

closest to d when the difference γa − d is orthogonal to a. If this weren’t
the case, then we could decrease the distance by moving a little bit in any
direction. Hence, the solution γ must satisfy the relationship:

aT(γa − d) = 0 or γ = 1
aTa

aTd.

Now, we proceed as follows and substitute γ(y) into our original least
squares problem

minimize ∥γ(y)a + Cy − b∥ → minimize ∥ 1
aT aa

T(Cy − b)a + Cy − b∥ .
We can simplify this expression to

minimize ∥(I − 1
aT aa

Ta)(Cy − b)∥ .
This new problem has one fewer variable. If we recurse on this idea, we
have the following algorithm.

function least_squares_eliminate (A,b)
a = A[: ,1]
na = norm(a)
q = a/na
if size(A ,2) == 1

return [a’∗b]/ na
end

95

Add failure case with
singular matrix

y = least_squares_eliminate (A[: ,2: end]−q∗q’∗A[: ,2: end], b − q∗q’∗b)
γ = q’∗(b − A[: ,2: end]∗y)/ na
return pushfirst !(y,γ)

end

15.2 a matrix version

> **TODO** See if we can get something better here...
The matrix structure in this problem is already slightly apparent. Let

T = (I − 1
aT aa

TaT). Then we have

least-squares(A, b)→ least-squares(TAS , Tb).
Here S is a matrix that selects the last n − 1 columns of a matrix.

Now, it turns out there is an issue here. The matrix T is a special type
of matrix called a projection. A projection matrix is any matrix where
T2 = T . It represents a projection onto a subspace, so T2 = T because the
projection of a projection is the same projection. For this matrix T it’s just
a few lines of algebra to verify that T2 = T .

> **TODO** Add these lines
This is a small issue, though, because Ta = 0 and so TA = [0 TC].

Thus, we lose all the information associated with a after the first trans-
formation. However, suppose we just memorize this and store a – after
normalization – at each iteration into a matrix Q.

To be entirely precise, let A = [a1 ⋯ an]. Let T1 , . . . Tn be the
matrix I − qiq

T
i formed in the least squares elimination algorithm at the

ith call. Then we have:

qi = 1∥T i−1⋯T1ai∥ T i−1⋯T1ai .

In a bit of remarkable luck, the matrix Q turns out to be orthogonal.
In fact, it’s the result of the Gram-Schmidt process we discuss in the next
lecture.

96 iii ⋅ finitely terminating algorithms

Learning objectives
1. Target pieces of a matrix for

an operation with pieces of the
identity matrix. 2. Recognize the
QR factorization.

1 I am looking into ways of re-
deriving these ideas where the
upper-triangular structure is one
of a few possible natural choices
depending on the ideas involved,
but so far I haven’t hit on anything
easy.

This review is meant to remind you
of stuff you hopefully learned in
previous linear algebra classes.

2 A projector matrix projects vectors
to a subspace S. Because the output
from a projector is a new vector in a
subspace S, it must be the case that
projecting to S again will leave the
result unchanged. Hence, P2 = P
for any projector matrix!

LEAST SQUARES VIA QR FACTORIZATION &
ORTHOGONALIZATION 16

There is another approach to solving the least squares problems

minimize ∥b − Ax∥
besides the variable elimination procedure we saw in previous classes. I
don’t yet have a natural derivation of this particular idea, but I believe it
originates around the following set of ideas.

· The geometry of the least squares problems involves working with
the span of A’s columns, or the range of A. In particular, we want to
find a point in the range that is as close as possible to b.

· Since this involves working with the range of A, it is “natural” to
seek an orthogonal basis for it.

And this is what the QR factorization of a matrix encodes: an orthogo-
nal basis for the columns of A.

More formally, the QR factorization of a tall m × n matrix A (with
m ≥ n) is a pair of matrices Q and R such that:

· A = QR
· Q is square m ×m and orthogonal
· R will also be upper-triangular and m × n, but let’s see where that
comes from!

The upper-triangular structure appears to arise from early work by
Schmidt on orthogonalizing a set of vectors. This is often called the "Gram-
Schmidt process" and functions by successive orthogonalization.1

16.1 review of gram-schmidt

That is, if we are given a set of three vectors x, y, z then the Gram-
Schmidt process builds an orthonormal basis for their span, which is
equivalent to building an orthogonal matrix Q such that

[x y z] = QC

for some non-singular, square matrix C. The Gram-Schmidt process
begins with the first vector x and sets the first column of Q to be x/∥x∥.
Then we project-out any component of x on the other vectors. The matrix
P(x) = I − xxT

xTx is a projector2 to the space orthogonal to the vector x.
That is, xTP(x)y = xTy − xTx

xTxx
Ty = 0. Hence, we compute y1 = P(x)y,

z1 = P(x)z. The next vector q2 = y1/∥y1∥. and we project z2 via P(y1).
97

This gives us three vectors:

Q = [x/∥x∥ y1/∥y1∥ z2/∥z2∥]
where y1 = P(x)y and z2 = P(y1)P(x)z. We can write this as a matrix
equation as follows:

A = [x y z] = [x/∥x∥ y1/∥y1∥ z2/∥z2∥]
⎡⎢⎢⎢⎢⎢⎣
∥x∥ C1,2 C1,3
0 ∥y1∥ C2,3
0 0 ∥z2∥

⎤⎥⎥⎥⎥⎥⎦
where C i , j arises from the projection operations. Consider C1,2, which we
get from y1 = P(x)y = y − xT y

xTxx, we can write this to get C i , j for each.
Notice the similarity between this procedure and the successive elimi-

nation procedure we had in the previous class. I think this can be turned
into a fairly natural derivation, but it requires a little more work.

The point of these derivations is that the Gram-Schmidt process pro-
duces an orthogonal basis for the columns of A via successive orthogonal-
ization, which can be written:

A = QR

for an m × n matrix Q and a square upper-triangular matrix n × n matrix
R. This is often called a “thin” QR factorization because the matrix Q isn’t
square but is tall instead.

16.2 generalizing to qr

The idea with the full QR factorization is that we can extend a "thin"
QR factorization to a square matrix Q because there are n orthogonal
vectors in an n-dimensional space. Given any set of m orthogonal vector
(say via Gram-Schmidt), then there exist another m − n vectors that are
mutually orthgonal as well. Of course, because these are orthogonal, we
don’t need to use them to write the matrix A, so the “tail” of R becomes
zero.

16.3 using qr to solve least squares

Now, let’s show that we can use any QR factorization to compute a
solution to the least squares problem. Note that ∥x∥ = ∥Qx∥ = ∥QTx∥ for
any square orthogonal matrix Q.

Hence, let A = QR be any full QR factorization with a square matrix
Q, then

∥b − Ax∥ = ∥QTb − QTAx∥ = ∥b̂ − Rx∥ = ∥ [b̂1
b̂2
] − [R1

0] x∥ .

98 iii ⋅ finitely terminating algorithms

3 The solution here is not unique.
Note that we can negate these
values as well as they are also a
solution. See more discussion
in https://netlib.org/lapack/

lawnspdf/lawn148.pdf Some discus-
sion of how this impacts numerical
software is discussed in XXX

Here, we used R = [R1
0] where R1 is the first set of n rows of R. Because

R is upper-triangular, the other elements are always zero.
Note that this form helps us greatly! Note that no matter how we

change x, we cannot eliminate b̂2 from the difference between b and Ax.
Hence, the best we can do to minimize the expression is to set x so that
b̂1 = R1x.

Consequently, we can use any method to produce a QR factorization
to solve a least squares problem via the following algorithm:

Compute a full or thin QR factorization .
Compute b̂1 = first n rows of Qb when Q is full ,

or b̂1 = QTb when Q is m × n.
Solve R1x = b̂1.
Return x

16.4 a givens rotations and qr for a small
vector .

Consider the problem of computing a QR factorization for a 2 × 1
vector v. Recall that an orthogonal matrix is a generalization of a rotation,
so we can write it as:

Q = [cos θ sin θ− sin θ cos θ] .
Let’s see how to pick Q for v.

An obvious way is to try and compute θ in the above expression such
that

Q(θ)v = γe1
for some γ.

However, there is a better way to do this! Note that Q(θ) only has two
unknowns, c = cos θ and s = sin θ. To compute Q, we just need these two
values! Let’s write out the equations:

[c s−s c] [v1v2] = [γ0]
This gives two equations and two unknowns.

v1c + v2s = γ and v2c − v1s = 0.
We can solve these to get3

c = v1/γ and s = v2/γ.
Because the matrix is orthogonal, we must have γ = √v21 + v22 or γ =−√v21 + v22 so that the length of v doesn’t change.

This 2 × 2 matrix Q(θ) is called a Givens rotation.

16 ⋅ least squares via qr factorization & orthogonalization 99

https://netlib.org/lapack/lawnspdf/lawn148.pdf
https://netlib.org/lapack/lawnspdf/lawn148.pdf

What happens in Julia
with 0-columns?

16.5 the qr factorization for a 3x1 vector .

Suppose v is 3 × 1. Then we could seek to build a 2d rotation matrix
and solve for the coefficients. However, there is an alternative mechanism
where we can use matrix structure. Let v = [v1 v2 v3]T . Let
16.6 givens rotations in julia

TODO

16.7 computing qr for a column

Consider computing a QR factorization for a n × 1 vector v now. By
the definition, we have:

Qv = γe1 .
where γ = ±∥v∥. This is a good exercise to work out for yourself!

100 iii ⋅ finitely terminating algorithms

Learning objectives
1. Look at deflation as a technique

to find the eigenvalue and sin-
gular value decomposition of
a matrix in a finite number of
steps.

2. Recognize a key subroutine that
provides a single eigenvalue or
singular value pair and how to
use that to get others.

EIGENVALUE AND SINGULAR VALUE
COMPUTATIONS 16

In this chapter, we treat the eigenvalue and singular value problems as
finitely terminating algorithms rather than iterative algorithms as most
textbooks do. This is because we assume that there exist programs to
compute the following properties.

Program 1:
maximize

x
∥Ax∥2

subject to ∥x∥2 = 1 Program 2:
maximize

x
xTAx

subject to ∥x∥2 = 1.
For program 2, we also assume that A is symmetric. Note that both of
these programs can be solved via the iterative power method discussed in
in the previous section. Moreover, even more specialized solvers for them
can be built using tools developed elsewhere in this book.

16.8 the eigenvalue decomposition

Let A be a symmetric matrix.

16.9 the singular value decomposition

We will following a similar deflation procedure.

16.10 solving the subproblems

16.11 invariant subspaces

exercises

1. In class, we discussed deflation techniques for computingmore than
one eigenvalue and eigenvector with the power method. Briefly,
assume that we setup the power method to compute the largest
eigenvalue and eigenvector. As a convergence tolerance, use

∥Ax − λx∥ ≤ ∥A∥F ε
where ε is the machine precision for double precision numbers,
‘eps(1.0)‘ in Julia.
Recall also that deflation is the following procedure: given a matrix
A and an eigenvector x and eigenvalue λ, we compute B = A− λxxT .
This removes the largest eigenvalue and eigenvector.
Compute a few steps of deflation and

101

102 iii ⋅ finitely terminating algorithms

ANALYSIS IV

We have now seen a few different types of algorithms to solve the
fundamental matrix computations.

Elimination with and without pivoting for linear systems, Richardson,
Steepest Descent, Gauss Seidel, Jacobi, etc.

How should we pick which one to use to solve our problem? There
are various ways of thinking about this question. We’ll see a few different
types of analysis of these algorithms including work and operation count.
But we will also consider stability.

104 iv ⋅ analysis

1 These can often be done in place as
well.

TIME & MEMORY REQUIREMENTS 17
The simplest way to analyze the algorithms is in terms of how much

time and memory they require. It turns out memory is usually a more
pressing constraint than time. So let’s start with that one!

17.1 memory requirements

To run the Richardson method or steepest descent method (lecture 8),
we require:

1. a way to multiple A by a vector v
2. memory to store two or three vectors of length n. (You saw this on

the homework.)
To run the elimination matrix that gave us the LU factorization of a

matrix, we require:
1. O(n2) memory for a general matrix problem because we change

the matrix after the first step
2. O(n)memory for the changes to the vector b 1

For a general dense matrix, there is no difference between the mem-
ory requirements. However, for a matrix with any type of structure, or
especially sparse structure, then it is easier to think about how to exploit
that structure to make the Richardson, steepest descent method run with
less memory.

Consider a matrix that is Toeplitz. For Richardson, we only need to
store O(n)memory to be able to do the matrix-vector products. Whereas
for the LU factorization, we will need to build thematrix atO(n2)memory
in order to run the algorithm.

Of course, there is the problem of how long the Richardson method
takes, and whether or not it will even converge. (Remember, we only
showed that we could guarantee convergence for a symmetric positive
definite matrix.)

17.2 the flop count

One common way of evaluating the work of an algorithm is in terms of
the number of floating point operations it does. This measure is classical,
but still important, because

· floating point operations used to be much more expensive than
other processor operations

105

Aside. There is a lot more to high
performance computations, such as
cache efficient, blocking, vectoriza-
tion, than just purely understanding
the FLOPS, however. The use of
FLOPS counts are largely just to
suggest an upper-bound on perfor-
mance.
Aside Again. What is a FLOP and
FLOPS? A floating point operation
(FLOP). Or a floating point opera-
tion per second (FLOPS)? Suffice
it to say that these acronyms are
used inconsistently and potentially
mixed. The context determines
if we are counting floating point
operations (FLOPs) or measuring
floating point operations per second
(FLOPS). This is extremely confus-
ing when there is a prefix. What is
one gigaflop? One billion floating
point operations or one billion float-
ing point operations per second.
Again, context will determine if we
are counting or timing.

· most systems now have special hardware dedicated to floating point
computation such as vector processing units (called AVX on Intel
processors) or GPUs.

Hence, having a fairly exact count of the number of FLOPS allows us to
understand how fast a particular operation may go on a computer.

17.3 a warm up : the flop count of
matrix-multiply.

Consider the following algorithm for multiplying two matrices.

1 function matmul (A:: Matrix , B:: Matrix)
2 m,k = size(A)
3 k,n = size(B)
4 C = similar (A, m, n)
5 fill !(C, 0)
6 for j=1:n
7 for i=1:m
8 for r=1:k
9 C[i,j] += A[i,r]∗B[r,j]
10 end
11 end
12 end
13 return C

We can count the number of FLOPs by looking just at the inner-loop,
which is an inner-product. Let’s consider a simple 4-element vector

C[i , j] = A[i , 1]∗B[1, j]+A[i , 2]∗B[1, 2]+A[i , 3]∗B[3, j]+A[i , 4]∗B[4, j].
There are 4 multiplications and 3 additions, for a total of 7 flops. The way
our code above works, however, is to use 8 flops because we always add to
the existing value:

C[i , j]← C[i , j]+A[i , 1]∗B[1, j]+A[i , 2]∗B[1, 2]+A[i , 3]∗B[3, j]+A[i , 4]∗B[4, j].
Here, we have the convention that ← is the “assign” operation, which
is commonly expressed as = inside of programming languages, but has
a distinct meaning from the mathematical = operation. For instance,
x = 2*x is perfectly common computer code, but if used mathematically
essentially implies that x = 0.

Consequently, there are 2r FLOPs in the innermost loop. This is
executed mn times, so there are 2rmn FLOPs in this computation of a
matrix-matrix product.

17.4 the flop count of lu

Let’s consider something more interesting, the pivoted LU decomposi-
tion of a matrix. Our code is

106 iv ⋅ analysis

1 function myreduce_all_pivot (A:: Matrix)
2 A = copy(A) # save a copy
3 n = size(A ,1)
4 L = Matrix (1.0I,n,n)
5 U = Matrix (1.0I,n,n)
6 d = zeros (n)
7 p = collect (1:n)
8 for i=1:n −1
9 maxval = abs(A[i,i])
10 newrow = i
11 for j=i+1:n
12 if abs(A[j,i]) > maxval
13 newrow = j
14 maxval = abs(A[j,i])
15 end
16 end
17 if maxval < eps (1.0)
18 error ("the system is singular ")
19 end
20
21 j = newrow
22 # swap the ith row/ column
23 tmp = A[i ,:]
24 A[i ,:] .= A[j ,:]
25 A[j ,:] .= tmp
26
27 p[i],p[j] = p[j], p[i]
28 L[i ,1:i −1] , L[j ,1:i −1] = L[j ,1:i −1] , L[i ,1:i −1]
29
30 α = A[i,i]
31 d[i] = α
32 U[i,i+1: end] = A[i,i+1: end]/α
33 L[i+1: end ,i] = A[i+1: end ,i]/α
34 A[i+1: end ,i+1: end] −= A[i+1: end ,i]∗A[i,i+1: end]’/α
35 end
36 d[n] = A[n,n]
37 return L,U,d,p
38 end

In the first block of code (lines 2-7) we do no FLOPs because it’s just
allocating memory. There are n − 1 executions of the loop on line 8, and
each execution consists of
line 12 : (n − i) floating point comparisons (these are counted because

they may require something like a subtraction), whereas absolute
values are not because they can be done with an extremely simple
operation.

lines 21-28 : a swap, that does not involve FLOPs
lines 32-33 : 2(n − i) divisions
line 34 : 3(n − i)2 multiplications, additions, and divisions (one of each

for each of (n − 1)2 elements.
Next, we have to sum this over all i. So the total FLOP count of this

17 ⋅ time & memory requirements 107

2 These final sums must be integer
values as they are counts of integers!

implementation is
n−1∑
i=1
(n − i) + 2(n − i) + 3(n − i)2 .

There are various rules to compute these sums called a “finite calculus”
that work like a crank equivalent to standard calculus. However, I find it
easier just to use Wolfram Alpha, which yields

n−1∑
i=1
(n − i) + 2(n − i) + 3(n − i)2 = n3 − n.

Note, however, that we can reduce Line 34 to 2(n − i)2 FLOPs if we
use the elements of either L or U by avoiding the division. Also, note that
if we actually computed the standard LU decomposition whereU[i , i + 1 ∶
end] = A[i , i + 1 ∶ end] then we could further avoid n − i divisions,
yielding a more efficient count of 2

n−1∑
i=1
(n − i) + (n − i) + 2(n − i)2 = 2

3
(n3 − n).

108 iv ⋅ analysis

SENSITIVITY & CONDITIONING 18
Oneof themost interestingmatrices andmatrix problems arose around

the turn of the century when David Hilbert wanted to look at approximat-
ing functions by polynomials. This leads to a way to quantify how difficult
a linear systems is to solve on the computer, called the condition number.
A derivation of this matrix is given in lecture 32, but the matrix is simple
to state:

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1/2 1/3 1/4 ⋯
1/2 1/3 1/4 1/5 ⋯
1/3 1/4 1/5 1/6 ⋯⋮ ⋮ ⋮ ⋮ ⋱

A i j = 1
i+ j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Linear systems with this matrix are incredibly sensitive to changes in

the right hand side. Here is an example where we build a solution to the
linear system of equations.

1 function hilbert (n)
2 return [1/(i+j −1) for i=1:n, j=1:n]
3 end
4 n = 15
5 A = hilbert (n)
6 x = ones(n)
7 b = A∗x
8 bt = b + eps (1.0)∗ rand(StableRNG (1) , n)
9 xt = A\bt

julia> xt = A\bt

15-element Vector{Float64}:

1.000000013796333

0.9999984758819328

1.000027709924497

1.0002316088164172

0.989170724718275

1.1282615824076014

0.18208208600167303

4.274200531997128

-7.762766220634516

17.113970204553503

-19.459355915473054

18.642614568867764

109

1 It seems like a good exercise in
combinatorics to work out what the
one-norm of this matrix is!
Aside. For those with additional
background on numerical analysis,
we suggest repeating this section
with more sophisticated and accu-
rate quadrature methods.

-8.871061666536182

4.233468847532954

0.5291574408371379

This shows that we get the answer completely wrong even though wemade
an incredibly small changes to the right hand side!

julia> b - bt

15-element Vector{Float64}:

0.0

0.0

-2.220446049250313e-16

0.0

-2.220446049250313e-16

0.0

-2.220446049250313e-16

-2.220446049250313e-16

0.0

0.0

-2.220446049250313e-16

-1.1102230246251565e-16

-2.220446049250313e-16

0.0

0.0

18.1 an informal analysis

To understand why, consider what happens if we make a tiny error
in evaluating b. The answer we want is the solution x in Ax = b but we
actually see b′ = b + d where ∥d∥ is very small. Then, we would compute

Ay = b′ y = x + A−1d.
Consequently, as a rough measure of sensitivity, we’d consider ∥A−1d∥.

As you might expect, the Hilbert matrix is sufficiently structured that
we can just write down the inverse after some tedious calculation. (Or we
can just look it up on—say—Wikipedia.)

A−1i j = (−1)i+ j(n + i − 1n − j
)(n + j − 1

n − i)(i + j − 2
i − 1)

2

This gets large extremely quickly.1
Hence, we have y = x + big ⋅ small, so in general, we’ll expect large

changes to y if we slightly change our right hand side.

110 iv ⋅ analysis

2 The matrix method is just one
method of solving the original
problem, that happens to result in
a problem with an ill-conditioned
linear system of equations.

18.2 a more refined analysis

The origin of the Hilbert problem is to approximate a function f (x)
by a polynomial. That problem itself actually is well conditioned.2 Small
changes to f (x) give small changes to the polynomial.

The real problem here is that we have chosen to represent the polyno-
mial in a monomial basis. This is know to result in problems that occur
because monomials are an ill-conditioned basis for polynomials. Small
changes to the monomial coefficients cause big changes to the polynomial
functions they represent. In this case, an issue that arises for this problem
is that a small perturbation to b actually gives a large perturbation to f (x).
Hence, we should see large changes to x even for small changes in b.

Let’s briefly study this perspective. Recall that

b j = ∫ 1

0
f (x)x j−1 dx .

Suppose we use a crude approximation of the integral via a set of equally
spaced points x1 = 0, x2 = 1/N , x3 = 2/N , . . . , xN = (N − 1)/N , xN+1 = 1,
then

b j ≈ N∑
k=0

f (xk+1)x j−11/N .

Let f be a length N vector of these function values f i = f (x i). Then

b ≈ 1
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1
x1 x2 ⋯ xN
x21 x22 ⋯ x2N⋮ ⋮ ⋱ ⋮
xn−11 xn−12 ⋯ xn−1N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¸¹¹¶
=M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x1)
f (x2)
f (x3)⋮
f (xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f

or more compactly b = Mf .

The matrix M is non-singular as long as the points x1 , . . . , xN are
distinct, which they are for equally spaced points. So given a change to b,
then M−1b gives the change to the function values that b represents.

18.3 a formal analysis : the condition number

This type of analysis has been formalized by studying the condition
number of a problem. Let

m(x) ∶ Rn → Rd

be a map that represents the mathematical relationship between the input
to a computer methodm to its output. For instance

· addition thenm(x) = x1 + x2
· subtraction thenm(x) = x1 − x2
· variance thenm(x) = ∑i(x i − 1/N∑ j x j))2

18 ⋅ sensitivity & conditioning 111

3 Note that the Jacobian is limd →
0∥m(x + d) −m(x)∥∥d∥.

· linear system thenm(b) = A−1x
Note that, crucially, m(x) represents the mathematical function we are
trying to compute and this has no aspect of the computer implementation.

QuizWhat is the mapm for least squares?
Once we have these functions, then we can study their relative sensi-

tivity.

Definition 18.1
The relative condition number of a mapm relates the relative
change of the output with respect to the relative change of the
input. For a specific change, d, the value is

κ(x, d;m) = ∥m(x + d) −m(x)∥/∥m(x)∥∥d∥/∥x∥ .

For the worst case on a differentiable function as ∥d∥ → 0, we
have3

κ(x;m) = ∥(∇m)(x)∥∥m(x)∥ ∥x∥ .
We need to be slightly careful with the choice of norm when we do

these analyses in terms of the dimension of the Jacobian matrix.
— TODO – Expand on this with Gautschi’s notes too.

example 18.2 What is the condition number of the simple act of
multiplying two numbers? The map m(x , y) = xy. ◆
18.4 the condition number of a linear system

For the mapm(b) = A−1b we have:

∇m = A−1 and Ax = b
in which case we have

κ(b;m) = ∥A−1∥ ∥b∥∥A−1b∥
but in terms of the solution x we have:

κ(b;m) = ∥A−1∥ ∥Ax∥∥x∥ .

Note that for any vector x and an operator induced norm, we have:

∥Ax∥∥x∥ ≤ ∥A∥
by the definition of an operator-induced norm. Thus

κ(b;m) ≤ ∥A∥∥A−1∥ .
112 iv ⋅ analysis

The condition number of solving a linear system arises so often that
we give it a special name.

Definition 18.3 (condition number of a matrix)
The condition number of a matrix is an upper bound on the
condition number of solving a linear system of equations for
a general solution x and a general right hand side b. We write

κ(A) = ∥A∥∥A−1∥
which gives the condition number for any operator induced
matrix norm. The choice of norm is typically the 2-norm
unless otherwise specified.

18 ⋅ sensitivity & conditioning 113

114 iv ⋅ analysis

1 Trefethen and Bau, Lecture 18,
Theorem 18.1

CONDITIONING OF LEAST SQUARES & THE
PSEUDOINVERSE 19

Consider a least squares problem with a full rank A

minimize
x

∥Ax − b∥ .

There are two natural maps to consider:

a map from b to x x = (ATA)−1ATb

a map from b to Ax y = A(ATA)−1ATb.

The vector y is the vector of least squares predictions. Even if xmight be
sensitive, it’s possible that ymay be substantially less sensitive.

There is a nice geometric discussion of how to analyze conditioning
for this problem in Trefethen and Bau.1.

range(A)b

θ

0

y

A least squares problem involves the interaction of b with range(A).
The angle between the two is θ. If θ is zero, then b is in the range of A and
the residual of the least squares problem is 0.

We can easily compute cos θ as the ratio ∥y∥/∥b∥. This quantity will
play a role in the conditioning. If θ = 0, then cos θ = 1, whereas if θ = ±π/2,
then cos θ = 0.
19.1 the pseudoinverse .

It’s easiest to analyze this problem by establishing a single quantity for(ATA)−1AT . This is the pseudoinverse.

A+ = (ATA)−1AT .

115

However, we will write this in terms of the SVD of A. Let A = UΣV T .
Then (ATA)−1 = (VΣTΣV T)−1 = V(ΣTΣ)−1V T

A+ = (ATA)−1AT = V(ΣTΣ)−1V TVΣTU T = V(ΣTΣ)−1ΣTU T .

The term (ΣTΣ)−1ΣT simplifies greatly. First, note that all matrices in-
volved are diagonal. Sincewe are looking at full rank least squares problems,
then m ≥ n and all σi /= 0. Thus:

(ΣTΣ)−1 is n × n, diagonal = ⎧⎪⎪⎨⎪⎪⎩
1
σ 2
i

on diagonal

0 otherwise.

Hence, the entire matrix is:

(ΣTΣ)−1ΣT = n ×m, diagonal = ⎧⎪⎪⎨⎪⎪⎩
1
σ i on diagonal
0 otherwise.

This defines the pseudo-inverse of a diagonal matrix, which we often write:

Σ+ = (ΣTΣ)−1ΣT .

To recap: the pseudoinverse of A is

A+ = VΣ+U T .

19.2 the condition number of least squares in
terms of the pseudoinverse .

Let x = A+b. Then the condition number of the least squares vector x
in terms of b is:

κ(b) = ∥A+∥∥b∥∥x∥ = ∥A+∥ ∥b∥∥y∥ ∥y∥∥x∥ = ∥A
+∥

cos θ
∥y∥∥x∥ .

This second term ∥y∥
∥x∥ = ∥Ax∥∥x∥ measures how large y is compared with

x. Clearly, this is less than ∥A∥. So we have
κ(b) ≤ ∥A+∥∥A∥ 1

cos θ
.

However, if we let 1
η = ∥Ax∥

∥A∥∥x∥ , then
∥y∥
∥x∥ = ∥A∥ 1η . Consequently, we

have
κ(b) = ∥A+∥∥A∥ 1

η cos θ
.

Because the term ∥A+∥∥A∥ arises just as frequently as ∥A−1∥∥A∥, we
extend the definition of κ(A) with a rectangular matrix A.

116 iv ⋅ analysis

19.3 the condition number of the least
squares prediction .

Let y = AA+b. Then
y = UΣV TVΣ+U Tb = UΣΣ+U Tb.

The matrix AA+ is an orthogonal projection onto range(A). What
this means for us is that ∥AA+∥ = 1 for the operator induced 2-norm.
Consequently

κ(b) = ∥AA+∥ ∥b∥∥y∥ = 1
cos θ

.

The condition number of an eigenvalue —————
Relationship with Freschet derivative ———————————–
For the full-rank least squares system, the mathematical map from
One-pass algorithms for variance ——————————–
See online codes for this.

19 ⋅ conditioning of least squares & the pseudoinverse 117

118 iv ⋅ analysis

1 Most of these notes and ideas
are taken from Trefethen and Bau,
Numerical Linear Algebra, Lecture
14 and Higham, Accuracy and
Stability of Numerical Algorithms,
Chapter 1.

BACKWARDS STABILITY 20
There are two aspects to numerical accuracy.1 The first aspect is the

conditioning of a problem taht we addressed above. The second aspect
is the stability of the algorithm to compute it. This lecture is about algo-
rithmic stability, not about the conditioning of a problem. Take the most
trivial function f (x) = x. The following algorithm:

for i=1 to 60
x =

√
x

for i=1 to 60
x = x2

computes the this identity function for x ≥ 0. Yet, if you run this algorithm
on a computer, you will compute the function:

f̃ (x) = ⎧⎪⎪⎨⎪⎪⎩
0 0 ≤ x < 1
1 x ≥ 1.

What this shows is that this rather silly algorithm is not a good idea.
Let’s make this idea precise and develop a definition that would allow

us to make a more precise statement. Let ỹ ≈ f (x) and let y = f (x).
Ideally, we’d like the

absolute error = ∣ ỹ − y∣
to be small. But if y is large, this isn’t reasonble. So a better goal would be
ensure the

relative error = ∣ ỹ − y∣/∣y∣
is small. The problemwith this type of error analysis is that we immediately
encounter the conditioning of the underyling problem. That is, if the
problem is ill-conditioned, we will not be able to show that the relative
error is always small. This is independent of any algorithm that we have.
What has proven to be useful instead is the idea of backwards error analysis.
That is, we ask the question:

is ỹ the exact computation of some x + δ?
Formally, can we show that an algorithm will have a small δ such that

ỹ = f (x + δ)?
If so, then we use this property to establish a relative error bound via the
condition number argument:

∣ ỹ − y∣/∣y∣ is something like κ(y)∣δ∣.
119

2 Throughout this note, u is the
machine precision.

Let’s put this slightly more formally now.

Definition 20.1
An algorithm is backwards stable for computing y = f (x)
if it computes ỹ = f (x + δ) with ∣δ∣/∣x∣ ≤ Cu where C is a
constant and u is the machine precision.2

For a matrix problem f (x), we apply this as:
ỹ = f (x + d) where ∥d∥/∥x∥ ≤ Cnu.

In this case, Cn may depend on the dimension n of the matrix.
One question immediately presents itself: Are floating point operations

backwards stable? We defined

fl(x + y) = (x + y)(1 + δ) for ∣δ∣ ≤ u.
But we can just move the (1 + δ) inside and we have:

fl(x + y) = x(1 + δ) + y(1 + δ).
Thus, we are computing the exact addition for a problem whose input is
perturbed by (1 + δ).

Now let’s see how this analysis plays out in other cases as well.

120 iv ⋅ analysis

These notes were copied from
Gene Golub’s CME 302 Matrix
Computations class while David
was a student at Stanford.

1 It’s a good exercise to stitch this
bound together from x̃ + A−1∆x̃ = x.

BACKWARDS STABILITY OF LU
DECOMPOSITION 21
WarningWe will adopt slightly non-standard notation. The quantity ∆
is a matrix, as are any symbols prefixed with δ, such as δL or δU . Upper
tildes, like L̃ will denote quantities represented on the computer.

Our goal is to show that Gaussian Elimination is a backwards stable
algorithm. If we show that Gaussian elimination is backwards stable, then
we will show that we can compute x̃ such that

(A+ ∆)x̃ = b.
In words, we compute the solution to a perturbed system where the per-
turbation is the matrix ∆. If so, then, if Ax = b, we have:1∥x − x̃∥∥x∥ ≤ ρκ(A)

1 − ρκ(A)
where ρ = ∥∆∥/∥A∥.

Thus, if we can show that ∥∆∥ is small, we will have a nice bound on
the error of the solution.

framework

This is a complicated operation. When we solve Ax = b with Gaussian
elimination, we have three steps:

1. Factoring A = LU . We will show that we find: L̃Ũ = A+ E. We will
assume that partial pivoting is used, although, we will assume the
permutation is known up front.

2. Next we have to solve Ly = b, or on the computer,

(L̃ + δL) (y + δy)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=ỹ

= b.
In other words, we again solve a perturbed system exactly.

3. Finally, we have to solve Ux = y. But on the computer, this is now:

(Ũ + δU)(x + δx) = ỹ = y + δy.
Together, these results show that

b = (L̃ + δL)(Ũ + δU)(x + δx).
But, we have:

(L̃+δL)(Ũ+δU) = L̃Ũ+δLŨ+L̃δU+δLδU = A+E+δLŨ+L̃δU+δLδU .

121

2 This is a straightforward obser-
vation if you look at LU in exact
arithmetic:

A(k) = [U C
0 D] ,

where U is (k − 1)-by-(k − 1).

Thus, (A+ ∆)(x + δx) = b
with ∆ = E + δLŨ + L̃δU + δLδU .

Now we go through and find bounds on all of these terms.

errors in lu

Our goal now is to show that what we compute on the computer is:
L̃Ũ = A+ E for some E.

We’ll show this in two steps. In the first step, we’ll just introduce
additive errors into each of our operations. In the second step, we’ll use
the properties of floating point arithmetic to bound those errors.

Gaussian Elimination with Errors

Suppose we are computing the LU factorization of A. We’ll represent
this as a sequence of changes to the matrix

A = A(1) zero 1st columnÐ→ A(2) zero 2st columnÐ→ A(3) → ⋯ → A(n−1) .

Thus, A(k) is the matrix after k − 1 columns have been zeroed. To move
to the k+1st step, we compute:

A(k+1)i j = A(k)i j − L i kA
(k)
k j , L i k = A(k)i k

A(k)kk

.

Let B(k) be the matrix after k−1 columns have been zeroed in floating
point arithmetic. We have:

B(k+1)i j = B(k)i j − L̃ i kB
(k)
k j + µ(k+1)i , j , L̃ i k = B(k)i k

B(k)kk

(1 + η i k).
In these expressions, η is a standard floating point guarantee, but µ(k+1)i , j

represents the simple floating point error in computing B(k+1)i j from the
intermediate terms. Thus, µ is a pure difference that we will quantify in
terms of floating point operations later. Also, for this expression, note that
µ does not need to include the effect from η because we are analyzing this
expression with L̃ – the computed quantity, not the exact quantity.

For each element B i j there is a maximum k such that we will stop
looking at that element in the future.2 Thus, when we stop looking at an
element B i j there are two reasons: 1) it’s in the upper triangle and i ≤ k, or
2) it’s zero in the lower-triangle with j < k.

So we’ll divide our analysis into two cases that correspond to these two

122 iv ⋅ analysis

3 I think there might be an index
mistake in here, be wary.

outcomes. First, suppose we are in the upper-triangle, so j ≥ i. Then,
B(2)i j = B(1)i j − L̃ i ,1B

(1)
1, j + µ(2)i j

B(3)i j = B(2)i j − L̃ i ,2B
(2)
2, j + µ(3)i j⋯

B(i)i j = B(i−1)i j − L̃ i , i−1B
(i−1)
i , j + µ(i)i j .

The goal here is a relationship between B(1)i j and B(i)i j . If we sum up all
of these expressions, we have:

i∑
k=2

B(k)i j = i−1∑
k=1

B(k)i j − i−1∑
k=1

L̃ i ,kB
(k)
k , j + i∑

k=2
µ(k)i j .

Note that this sum telescopes! In other words, we get massive cancellation
of the B(k)i j terms. After all of them are removed, we have:

B(i)i j = B(1)i j − i−1∑
k=1

L̃ i ,kB
(k)
k , j + i∑

k=2
µ(k)i j .

We can rearrange this to show that:

B(1)i j + E i j = B(i)i j + i−1∑
k=1

L̃ i ,kB
(k)
k , j

where E i j = ∑i
k=2 µ

(k)
i j .

We are half done with showing the error in the LU factorization. At
this point, we’ve shown that the upper-triangular piece of our factorization
is correct for a matrix A + E, with a precise accounting of where the
errors occur. Now, we just have to show that same thing holds in the
lower-triangular region.

If i > j, then

B(2)i j = B(1)i j − L̃ i ,1B
(1)
1, j + µ(2)i j

B(3)i j = B(2)i j − L̃ i ,2B
(2)
2, j + µ(3)i j⋯

B(j)i j = B(j−1)i j − L̃ i , j−1B
(j−1)
j−1, j + µ(j)i j .

This is, of course, the same.3 But we also have:

0 = B(j)i j − L̃ i , jB(j)j j + µ(j+1)i j

because B i j becomes 0 in the (j + 1)st step. After a similar cancellation of
terms, we get:

B(1)i j = 0 + j∑
k=1

L̃ i ,kB(k)k , j + E i j

where E i j = ∑ j+1
k=2 µ

(k)
i j .

21 ⋅ backwards stability of lu decomposition 123

4 Recall that 1
1−u = 1 + u + u

2 +

Thus, what we compute on the computer is:

L̃Ũ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L̃2,1 1
L̃3,1 L̃3,2 1⋮ ⋮ ⋱
L̃n ,1 L̃n ,2 ⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(1)1,1 B(1)1,2 B(1)1,3 ⋯ B(1)1,n
B(2)2,2 B(2)2,3 ⋯ B(2)2,n

B(3)3,3 ⋮⋱ ⋮
B(n)n ,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using our equations that we derived, we can show:

L̃Ũ = B(1) + E = A+ E .
Bounding the errors

Now, we need to bound each element in E. We have:

L̃ i ,k = fl (B(k)i k /B(k)kk) = (B(k)i k /B(k)kk)(1 + η i k)
and

fl (L̃ i ,kB(k)k , j) = (L̃ i ,kB(k)k , j)(1 + θ(k)i j),
so that:

B(k+1)i j = fl (B(k)i j − (L̃ i ,kB(k)k , j)(1 + θ(k)i j)) = (B(k)i j − (L̃ i ,kB(k)k , j)(1 + θ(k)i j)) (1+ϕ(k)i j).
The quantities η, θ , and ϕ all obey ∣ ⋅ ∣ ≤ u, the machine round-off error.
By reworking this bound for a while, we get:

µ(k+1)i j = B(k+1)i j

⎛⎜⎝
ϕ(k)i j

1 + ϕ(k)i j

⎞⎟⎠ − L̃ i ,kB(k)k , j θ
(k)
i j .

Using the bound ∣L̃ i j ∣ ≤ 1 from using partial pivoting, we find:

∣µ(k+1)i j ∣ ≤ ∣B(k+1)i j ∣ u
1 − u + ∣B(k)k j ∣u.

We are getting close to a bound. We now need to understand how
big elements in B can get! Here, we’ll use exact computation again. Let∣A i j ∣ ≤ a for all i , j. Using

A(k+1)i j = A(k)i j − L i kA
(k)
k j , L i k = A(k)i k

A(k)kk

we find ∣A(2)i j ∣ ≤ ∣A(1)i j ∣ + ∣A(1)k j ∣ ≤ 2a
∣A(3)i j ∣ ≤ ∣A(2)i j ∣ + ∣A(2)k j ∣ ≤ 4a⋮
∣A(n)i j ∣ ≤ 2n−1a.

We’ll return to this bound in a second. It’s pretty absurd.

124 iv ⋅ analysis

Instead, let’s bound ∣B(k)i j ∣ ≤ Ga where G is called the growth factor.
The result above suggests that the growth factor is 2n−1. But let’s just go
ahead and use G. In that case, we get: 4

∣µ(k+1)i j ∣ ≤ Ga u
1 − u+Gau = Ga(2u−u2)(1+u+u2+. . .) ≈ 2uGa+O(u2).

This is, finally, some progress. We now have a bound on all the terms µ i j
in the summation formulas that define the matrix E. Recall that

E i j = i∑
k=2

µ(k)i j

if j ≥ i. Thus, ∣E i j ∣ ≤ (i − 1)2uGa

for any element in the upper triangular region. For elements in the lower-
triangular region

∣E i j ∣ = RRRRRRRRRRR
j+1∑
k=2

µ(k)i j

RRRRRRRRRRR ≤ j2uGa.

We can summarize this analysis via a matrix equation:

∣E∣ ≤ 2uGa

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ ⋯ 0
1 1 1 ⋯ ⋯ 1
1 2 2 ⋯ ⋯ 2⋮ ⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋮ n − 2 n − 2
1 2 3 ⋯ n − 1 n − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(u2).

Thus, A+ E = L̃Ũ .
And we’re done with part 1.

Growth factors

What we showed is that ∣E i j ∣ ≤ 2uGa where G ≤ 2n−1. That is not
exactly small. And it can occur! The matrix

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1−1 1 0 0 1−1 −1 1 0 1−1 −1 −1 1 1−1 −1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has an LU factorization with Un ,n = 2n−1. This is entirely general.

While this exponential explosion in the growth factor can occur. It
never seems to occur naturally. It only arises in a few examples that are
designed to elicit it. This has provoked much study of why this occurs.

Sankar, Spielman, and Teng recently took up this issue. Their paper
“Smoothed Analysis of the Condition Numbers and Growth Factors of
Matrices” (SIMAX 2006) shows some remarkable new results about the
growth factor of a random perturbation of a matrix. Here’s the abstract.

21 ⋅ backwards stability of lu decomposition 125

5 I’m slightly less confident in the
notes for this section, reader be-
ware; Trefethen, Lecture 17 and
Golub and van Loan Section 3.1
have this analysis.

6 This matrix can take a few differ-
ent forms depending on how the
summation is evaluated.

Let Â be an arbitrary matrix and let A be a slight random
perturbation of Â. We prove that it is unlikely that A has
a large condition number. Using this result, we prove that
it is unlikely that A has large growth factor under Gaussian
elimination without pivoting. By combining these results, we
show that the smoothed precision necessary to solve Ax = b,
for any b, using Gaussian elimination without pivoting is
logarithmic. Moreover, when Â is an all-zero square matrix,
our results significantly improve the average-case analysis of
Gaussian elimination without pivoting performed by Yeung
and Chan (SIAM J.Matrix Anal. Appl., 18 (1997), pp. 499-517).

Errors in forward-and-back-substitution

Here, we’ll consider the problem: 5

Tv = h
where T is lower-triangular, n × n, non-singular. Element-wise, we find:

⎡⎢⎢⎢⎢⎢⎣
T11⋮ ⋱
Tn1 ⋯ Tnn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
v1⋮
vn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
h1⋮
hn

⎤⎥⎥⎥⎥⎥⎦
.

Thus, we get the forward substitution procedure:

v1 = h1/T11⋮
vk = hk − Tk ,1v1 − Tk ,2v2 −⋯ − Tk ,k−1vk−1

Tkk
.

Let ṽk be the computed value in floating point. In floating point, this gives
us:

ṽk = ⎛⎝
(hk −∑k−1

i=1 Tk , i ṽ i(1 + ωk , i))(1 + αk)
Tk ,k

⎞⎠(1 + τk)
= hk −∑k−1

i=1 Tk , i ṽ i(1 + ωk , i)
Tk ,k/(1 + αk)(1 + τk) .

With some more coffee-shop manipulations, we arrive at:
k∑
i=1

Tk , i ṽ i(1 + λk , i) = hk

or

T ṽ +
⎡⎢⎢⎢⎢⎢⎣
λ1,1T1,1
λ2,1T2,1 λ2,1T2,1⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎦
ṽ = h.

Equivalently,6 (T + δT)v = h
126 iv ⋅ analysis

where

∣δT ∣ ≤ u
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣T1,1∣∣T2,1∣ 2∣T2,2∣
2∣T3,1∣ ∣T3,2∣ 3∣T3,3∣⋮ ⋮ ⋱(n − 1)∣Tn ,1∣ ⋯ ⋯ ∣Tn ,n−1∣ n∣Tn ,n ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(u2)

Thus, for solving a triangular system, we have errors:

(T + δT)v = h where ∣δTi j ∣ ≤ nut + O(u2) and ∣Ti j ∣ ≤ t.
Overall errors

In our framework, the solution x̃ = x + δx satisfies:

(A+ ∆)x = b
where ∆ = E + δLŨ + L̃δU + δLδU . Let’s look at the maximum errors in
each of these terms:

max
i j
∣δL̃ i j ∣ ≤ nu + O(u2)

max
i j
∣δŨ i j ∣ ≤ nuGa + O(u2).

This tells us:

max
i j
∣Delta i j ∣ ≤ max

i j
∣E i j ∣ +max

i j
∣(δLŨ)i j ∣ +max

i j
∣(L̃δU)i j ∣ +max

i j
∣(δLδU)i j ∣

≤ 2uGan + n2Gau + n2Gau + O(u2).
Thus, ∥∆∥∞ ≤ 2n2(n + 1)uGa.

This merits a theorem.

Theorem 21.1
Gaussian Elimination is Backwards Stable!

Now, we can go even further, and bound the error in the solution as
well. Let ρ = ∥∆∥

∥A∥ . Then

ρ ≥ 2n2(n + 1)G
because ∥A∥∞ ≥ a. Going back to the beginning, we now have:

∥x − x̃∥∥x∥ ≤ ρκ(A)
1 − ρκ(A) = 2n2(n + 1)Gκ(A)

1 − 2n2(n + 1)Gκ(A)

21 ⋅ backwards stability of lu decomposition 127

exercises

1. Here is a matrix that achieves the worst-case growth factor for LU

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 ⋯ −1
1 −1 0 ⋯ −1
1 1 −1 ⋯ −1⋮ ⋮ ⋯ ⋱ ⋮
1 1 ⋯ 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= T − 2I − veTn

where T is a lower-triangular matrix of all 1s and v is a vector with
ones in all but the last element.
(a) Develop an expression for the inverse of this matrix.
(b) Develop an expression for ATA and A−TA−1.
(c) Develop an expression or upper bound for κ(A) .

2.

128 iv ⋅ analysis

Learning objectives
1. Recognize how to analyze a ma-

trix where we see the worst case
behavior for the LU factoriza-
tion.

2. Explain how we can use the
tools we have developed to
analyze this matrix.

UNSTABLE LU FACTORIZATIONS 21
In Lecture 21, we showed that sequential variable elimination or LU

factorizations are backwards stable methods. Except the worst case bound
is bad as we saw with matrices of the form

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0 1−1 1 0 ⋯ 0 1−1 −1 1 ⋯ 0 1−1 −1 −1 ⋱ ⋱ 1−1 −1 −1 ⋯ −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The goal of this lecture is to illustrate that we can analyze this matrix to
make sure it isn’t any of the other potential problems. It’s also an example
of how we can mix numerical computation with theoretical validation to
do so. Our goal for the lecture is to compute an analytical form for the
inverse and condition number.

21.0.1 The inverse

For a small matrix, the inverse has a suggestive pattern:

129

130 iv ⋅ analysis

SUBSPACE METHODS V

The simple methods for solving linear systems and eigenvalue prob-
lems are all based on the idea of looking at matrix powers, i.e. methods
that would have guarantees like

x(k) − x ≈ Mk(x(0) − x)
for some matrix Mk → 0. We saw these for linear systems and eigenvalues.

The one exception was steepest descent (and Nesterov accelerated
steepest descent), where we saw that

x(k) − x = [k∏
j=1
(I − αkA)](x(0) − x)

where the coefficients αk is adaptively chosen.
This expression∏k

j=1(I −αkM) gives a polynomial in a matrix pk(A).
Right now, this isn’t saying much. But the idea with subspace methods is
to change these deterministic choices into completely adaptive choices.

For instance, rather than looking at only the steepest descent polyno-
mial pk(A), what if we looked any any polynomial of up to powers of Ak?
Likewise, rather than looking at

132 v ⋅ subspace methods

Learning objectives
1. Recognize that the Neumann

method for solving Ax = b
can be explained in terms of
subspaces and polynomials.

2. Understand that the Krylov
subspace is a subspace of matrix
powers: span(b, Ab, A2b, . . .)

3. Recognize that this view sug-
gests a more powerful approach
to approximately solve a linear
system of equations by search-
ing the entire matrix power
subspace

The following derivations are largely
procedural. Essentially, we are
seeking to find generalizations
of some easy ideas that permit
us to find new perspectives. We
will then be able to use these new
perspectives to identify particular
methods. To study the methods,
then, we’ll take advantage of the
perspective we used to derive it!
This type of analysis can be subtle.
So please do ask questions if you
have trouble understanding why we
are looking at something.
1 The ideas behind these methods
were independently described
around the same time by both
Krylov and Lanczos.

THE MATRIX POWERS SUBSPACE, AKA THE
KRYLOV SUBSPACE 22
22.1 motivation

Recall the first method we saw to solve a linear system of equations:

Ax = b
where we conceptually multiplied by the inverse

(A)−1 ≈ I + (I − A) + (I − A)2 + . . .
to get the algorithm:

x(k) = k∑
j=0
(I − A) jb.

Let’s call this the Neumann-series algorithm for linear systems.
This converged as long as ρ(I − A) < 1. We could modify it so that it

would work for any symmetric positive definite problem by incorporating
a scaling that gave us the Richardson method.

The inspiration for our next set of methods arises from a set of subtle
insights about this originalmethod. Thiswill yield a set of newperspectives
that we will use to generate a family of solvers for linear systems called
Krylov methods. In keeping with the idea of introducing names that refer
to ideas instead of people, we also call this the power subspace methods.1

First, note that:

x(k) = [b (I − A)b . . . (I − A)kb] e.
That is, we can represent the kth iteration as a (simple!) linear combination
of the basis vectors

(b, (I − A)b, . . . , (I − A)kb.
This means that, for some vector c, we can write:

x(k) = [b Ab A2b . . .Akb] c.
Let’s work this out, which will give us a lead on our next perspective.

Lemma 22.1
Consider the kth iteration from a Neumann-series based
approach, where x(k) = ∑k

j=0(I − A) jb. Then we can write
x(k) = ∑k

j=0 c jA jb for some coefficients c0 , . . . , ck .

133

2 See the discussion section 22.1.1.

3 Much more on polynomials will
be discussed in a future chapter on
Orthogonal Polynomials, lecture 25.
Read more there now if you wish.
4 We define this in terms of a gen-
eral set S, which could be a mathe-
matical ring as we need only addi-
tion and multiplication to define a
polynomial.

proof The proof follows from the binomial expansion:

(I − A)kb = k∑
j=0
(k
j
)(−A) jb.

But a more useful realization is as follows:

(I − A)kb = polynomial(A)b.
In which case, the theorem is just giving a change of basis between poly-
nomials in powers of (1 − x) and x.2

Just to be clear, let’s state the other result as well.

Corollary 22.2
Consider the kth iteration from a Neumann-series based
approch, where x(k) = ∑k

j=0(I − A) jb, then x(k) = p(A)b for
some polynomial p(x) = ∑k

j=0 c jx j .

22.1.1 The basis for a polynomial

What is a polynomial?3 In our setting, we are only concerned with
univariate polynomials. Consequently, a polynomial is any function of the
form4

p(x) ∶ S→ S where p(x) = c0 + c1x + c2x2 +⋯ckxk .

For the moment, think of S = R, the reals, which is where much of our
intuition will come from. The degree of the polynomial is the highest
power. So p(x) = 5 + 2x + 3x2 is a degree 2 polynomial. The basis for a
polynomial has to do with how we represent p(x) as a sum of functions of
x. For instance, we can introduce

f0(x) = 1, f1(x) = (1 − x), f2(x) = (1 − x)2 then
p(x) = 3 f2(x) − 8 f1(x) + 0 f0(x).

The set of functions we use to write a polynomial is called the polynomial
basis. Note that the actual function p(x) is independent of the basis in
which we write the functions.

Hence, what the previous lemma shows is simply that

p(x) = k∑
j=0

f j(x)´¹¸¹¶
=(1−x) j

= k∑
j=0

s j дj(x)´¹¹¸¹¹¶
=(x j)

.

In this case, we need to produce coefficients s j that correspond with the
power, or monomial basis, дj(x) = x j .

134 v ⋅ subspace methods

5 The Cayley-Hamilton The-
orem states that there is a de-
gree n polynomial q(x) such
that q(A) = 0. (And also that
q(x) = ∏n

i=1(x − λ i) where λ i are
the eigenvalues, but that isn’t rele-
vant.) Consider that q(A)A−1 = 0
too, but q(A) = cnAn + . . . c0I so
q(A)A−1 = cnAn−1 + c0A−1 = 0,
which we can solve for A−1 to get
a degree n − 1 polynomial for the
inverse.

22.1.2 Subspaces and Polynomials

Consider xk from the Neumann series

Subspaces
The subspace view is that

x(k) = [b Ab A2b ⋯ Ak−1b] c
to indicate that x(k) is a specific
linear combination of the basis
vectors from the matrix powers

subspace

[b Ab A2b ⋯ Ak−1b] .

Polynomials
The polynomial view is that

x(k) = b + (I − A)b+
(I − A)2b +⋯+
(I − A)k−1b

= poly(A)b
where poly(A) ≈ A−1.

The key thing in both perspectives is that we can choose c to find a
different element of the matrix power subspace or a different polynomial to
find a better approximation of A−1. And also that these are the same idea!

The goal of our next set of methods, the

Krylov subspace methods

is to seek better vectors in these subspaces than the choice of the Neumann
series. Equivalently, we can think of these as finding a better polynomial
to represent A−1.

22.2 the matrix powers subspace

The matrix powers subspace is the set of vectors

Kk(A, b) = span(b,Ab,A2b, . . .Akb).
This is typically called the Krylov subspace. Hence, the Neumann method
just uses a specific element ofKk(A, b) to approximation the solution of
the linear system.

There is nothing “magic” about the Krylov subspace. Although, it does
arise surprisingly often and in a number of forms.

Let’s start with a simple theorem (with a slightly magic proof).

Theorem 22.3
Let A be full rank. Suppose that Akb ∈ Kk−1(A, b). Then the
solution of Ax = b is contained withinKk−1(A, b) as well.

proof Let X be any basis forKk−1(A, b). Then we have that Akb = Xy
for some vector yk . Consequently, we also have that Ak+1b = Xyk+1.
Hence, for any set of powers beyond k, they exist in the basis X. The
simplest way to prove this is to appeal to a slightly fancy result involving the
Cayley-Hamilton theorem. 5 Note that, by the Cayley-Hamilton theorem,

22 ⋅ the matrix powers subspace , aka the krylov subspace 135

size of subspace
1 6 11

100

105

1010

1015

matrix condition
number for n=20

FIGURE 22.1 – The matrix X
quickly becomes ill-conditioned
with only a few entries from the
matrix power basis.

there is a degree n polynomial p(A) such that p(A) = A−1. (See section
below for an explicit derivation.) Hence, we by the assumptions of the
theorem, we have that p(A)b is in the subspace too.

The reason this theorem is nice is because is says we never need to
be concerned about singular X. If X is singular, then we have solved our
linear system!

22.2.1 A polynomial expression for the matrix inverse

22.2.2 The problem with the Krylov subspace

When we want to work with the Krylov subspace, we need a basis for
it. The simple choice is

X = [b Ab A2b . . .Akb]
as that is how the subspace is defined. The problemwith this basis, however,
is that X becomes very ill-conditioned as k gets large.

Let’s see this for a diagonal linear system! Suppose that

An =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1/2

1/4
1/8 ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where An is n-by-n.

Then suppose that b = e, so we get the vector of all ones. We have that

X =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 1/2 1/4 . . . 1/(2k)
1 1/4 1/16 . . . 1/(4k)⋮ ⋮ ⋮ ⋱ ⋮
1 1/(2n−1) 1/(2n−1)2 . . . 1/(2n−1)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For k large (think k ≥ 52 for floating point), then

Akb =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1≤ ε≤ ε2≤ ε4⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Further note that for subsequent k , Ak+1b ≈ Akb and so the matrix X is
nearly singular because it has columns that are the same.

A good way to characterize this is via the ill-conditioning of the matrix.
We plot the condition number of X as a function of k.

This example is hardly unique.

136 v ⋅ subspace methods

Up next: A better basis for the subspace

What we’d ideally like is an orthogonal basis for Kk(A, b). We can
get this via the Arnoldi process. When the Arnoldi process is used on a
symmetric matrix, it simplifies and becomes the Lanczos process.

22 ⋅ the matrix powers subspace , aka the krylov subspace 137

138 v ⋅ subspace methods

Learning objectives
1. Identify the Arnoldi process

outcome as an orthogonal basis
for the Krylov / matrix power
subspace

2. Recognize how the Arnoldi pro-
cess simplifies on a symmetric
matrix and we can

3. Recognize that the residual
of Ax = b simplifies when
expressed in the Arnoldi or
Lanczos basis for the Krylov
subspace.

1 The matrix [0Ik
] has size k + 1 by k

and is a “upward shift”

[0Ik
] = [e2 e3 ⋯ ek+1]

or

[0Ik
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0
1 0 ⋯ 0
0 1 ⋯ 0
0 ⋯ ⋱ . . .
0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 This ideas has been asked by
students.

ORTHOGONAL BASES FOR THE MATRIX
POWERS SUBSPACE, AKA THE ARNOLDI AND
LANCZOS PROCESSES 23

The Krylov or matrix power subspace is

K k = span(b,Ab,A2b, . . . ,Akb).
As shown in the previous lecture, this subspace is useful to represent the
iterates from the Neumann and Richardson methods.

The problem with this subspace is that the directly creating it from
the monomial basis results in the ill-conditioning. Specifically, Xk =[b Ab A2b . . . Akb] is ill-conditioned. Note that there is already
structure in the matrix X. We have Xk+1 = [b AXk]. We also have1

AXk+1 = Xk [0Ik] .
An orthogonal matrix always has condition number 1. We now seek

to understand how to build a well-conditioned basis for this subspace.

23.1 orthogonalizing at each step

The first idea we consider is building the orthogonalization iteratively
at each step.2

Let Xk = [b Ab A2b . . . Akb]. Then suppose we have Xk =
QkRk as the thin-QR factorization of this matrix where Rk is square. We
can straightforwardly update from

Xk ,QkRk to Xk+1 ,Qk+1 ,Rk+1 .

Let Xk+1 = [QkRk y] be a block partitioning of this matrix. Then
QT

k Xk+1 = [Rk QT
k y]. Consider the difference pieces of the last column

of this matrix:
QT

k y = [z1z2] .
If we build a Householder matrix V k+1 where

V k+1z = [z1±∥z2∥e1]
then we have

Xk+1 = QkV k+1´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=Q k+1

[Rk [z1±∥z2∥e1]]´¹¹¹¸¹¹¹¶
=Rk+1

.

139

Note that the matrix R is not involved in building the orthogonal basis Q
we are interested in. So we need not worry about maintaining R.

This gives us an easy algorithm to build Qk as a product of orthogonal
reflectors matrices.

1 function successive_orthogonalization (A,b,k)
2 # determine the element type of reflector
3 FloatType = unify_type (eltype (A), eltype (b))
4 Qs = OrthogonalReflector { FloatType }[]
5 push !(Qs , reflector (FloatType , b, index =1))
6 y = copy(b)
7 for i in 1:k
8 y = A∗y
9 z = reflector_transpose_product (Qs , y) # compute Qk ’∗y
10 push !(Qs , reflector (FloatType , y, index =i+1))
11 end
12 return Qs
13 end

This algorithm, however, can be easily simplified. Note that we don’t
actually need all of the vector z, we only need z2.

We also do not directly need the full orthogonal matrix Q.
However, there is an even bigger simplification possible. Recall also

that AXk = Xk+1 [0Ik]. Using our QR decomposition:

AXk = AQkRk = Qk+1Rk+1 [0Ik] .
The matrix Rk is non-singular because otherwise, the Krylov subspace
would be complete. This means that

AQk = Qk+1Rk+1 [0Ik]R−1k .

Finally,

the matrix Rk+1 [0Ik]R−1k is an upper Hessenberg matrix,

Hk+1Rk+1 [0Ik]R−1k = TODO Add picture of upper Hessenberg.

Using this idea gives us the Arnoldi process where we attempt to
directly compute the matrix Hk+1.

23.2 the arnoldi process

The idea with the Arnoldi process is that we can build an orthogonal
basis for

the Krylov subspace K k directly from A, b without QR.

140 v ⋅ subspace methods

That is, we can identify the matrix Qk that is an orthogonal directly from
the expression:

AQk = Qk+1Hk+1 , q1 = b/∥b∥ , QT
kQk = I , Q = [q1 q2 ⋯ qk] .

This, perhaps surprisingly, can be done rather straightforwardly and con-
structively just by enumerating constraints and conditions.

Consider the case for k = 1
Aq1 = [q1 q2] [H1,1

H2,1
] .

We are given q1 by the construction of starting with b. Hence, we can
compute y = Aq1. We want to find q2 such that

y = H1,1q1 +H2,1q2
where q2 is orthogonal to q1. If we compute σ = qT

1 y, then we find

σ = qT
1 y = H1,1 qT

1 q1´¸¶
=1

+H2,1 qT
1 q

T
2´¹¸¹¶

=0

= H1,1 .

Using the value of H1,1 that we have constructed, we can compute

z = y −H1,1q1 .

By construction
the vector z = H2,1q

andH2,1 = ∥z∥ (by convention, we take the positive norm inH2,1 although
we could also choose the negative norm) and the vector q2 = y/H2,1.

Now consider the case for k = 2 when we know q1 , q2.

A[q1 q2] = [q1 q2 q3]
⎡⎢⎢⎢⎢⎢⎣
H1,1 H1,2
H2,1 H2,2
0 H3,2

⎤⎥⎥⎥⎥⎥⎦
.

We begin by computing y = Aq2. In this case

y = H1,2q1 +H2,2q2 +H3,2q3 .

Let σ1 = q1y and we have

σ1 = H1,2 q1q1´¸¶
=1

+H2,2 qT
1 q2´¸¶
=0

+H3,2 qT
1 q3´¸¶
=0

= H1,2 .

Likewise, we can compute

σ2 = q2y = H2,2 .

Just as before,

compute z = y −H2,1q1 −H2,2q2 and

set H3,2 = ∥z∥ q3 = z/H3,2 .

We can easily code this algorithm. There is only one change we make.
Because of the orthogonality of the vectors qi , after we compute σi

23 ⋅ orthogonal bases for the matrix powers subspace , aka the arnoldi and lanczos processes
141

1 function arnoldi (A,b,k)
2 Q = zeros (n,k+1)
3 H = zeros (k+1,k)
4 Q[: ,1] .= b
5 normalize !(@view (Q[: ,1]))
6 for j=1:k
7 y = A∗Q[:,j]
8 for i=1:j
9 H[i,j] = Q[:,i]’∗y # σ _i
10 y −= H[i,j]∗Q[:,i]
11 end
12 H[j+1,j] = norm(y) # y = z at this point
13 Q[:,j+1] = y / H[j+1,j]
14 end
15 return Q, H
16 end

A cautious check

TODO - We want to verify that nothing went wrong! And directly
show that the Arnoldi process spans the Krylov subspace.

23.3 the lanczos process

23.4 alternative polynomial bases

Exercise

Fix A and b. What is the condition number of problem of minimizing
the residual in the kth Krylov subspace?

Show that the product Rk+1 [0Ik]R−1k is upper triangular.

142 v ⋅ subspace methods

CONJUGATE GRADIENT 24
The conjugate gradients (CG) method is one of the most celebrated

algorithms for solving Ax = b when A is large, sparse, and symmetric
positive definite. It is also a sly method in the sense that there are three
derivations of the CG method. Each starts from a different point, but gives
rise to the same sequence of iterates. They are:

1. the Lanczos process – e.g. via matrix approximation
2. the steepest descent method – i.e. via optimization
3. the three-term recurrents – i.e. via orthogonal polynomials (This is

done in lecture 25.)
The derivation for the Lanzcos process is, perhaps, the best as it pro-

vides a straightforward path to solve symmetric indefinite systems as well.
Throughout these notes, let A be n × n, symmetric positive definite.

24.1 conjugate gradients via the lanczos
process

Because A is symmetric, we can run the Lanczos process to iteratively
compute a tridiagonal matrix T that approximates the matrix A. For linear
systems, we also begin the Lanczos process with the vector b/∥b∥. After k
steps, we have:

A´¸¶
n×n

V´¸¶
n×k

= V k+1´¸¶
n×k+1

T k+1´¸¶
k+1×k

where V = [v1 , . . . , vk] holds the first k vectors in the Lanczos process
and V k+1 holds the first k vectors and the k + 1st vector. The matrix

T k+1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2
β2 α2 ⋱⋱ ⋱ βk

βk αk
βk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [T̄

βk+1eTk
]

where T̄ is the k × k tridiagonal matrix from the first k rows. When it’s
important, we’ll write:

AV k = V k+1T k+1

to denote the full sequence of matrices. Likewise, the Lanczos process
gives rise to a sequence of tridiagonal matrices:

T̄1 , T̄2 , . . . , T̄ k , T̄ k+1 , . . .

143

However, we’ll often drop the index k when it applies to any index. For
instance, in exact arithmetic, V TAV = T̄ .
note The vector v1 = b/∥b∥, and also Ve1 = v1 for all k.
quiz Show that T̄ is positive definite if A is positive definite.

24.1.1 Lanczos and Linear Systems

Let y = Vz be a vector in the span of the Lanzcos vectors after k steps.
Recall that we showed this means that y is a member of the kth Krylov
subspace

y ∈ Kk(A, b).
For any vector y = Vz:

∥b − Ay∥ = ∥b − AVz∥ = ∥V k+1 (∥b∥e1 − T k+1z) ∥ = ∥∥b∥e1 − T k+1z∥ .
Thus, we want to pick z such that ∥b∥e1 − T k+1z is small at each step.

In the conjugate gradients method, we choose z such that

T̄z = ∥b∥e1
so that ∥∥b∥e1 − T k+1z∥ = ∣βk+1zk ∣.
In contrast, in theMINRESmethod, we choose z tominimize ∥∥b∥e1 − T k+1z∥
at each step; and in the SYMMLQmethod, we choose y = V k+1z and z is
the minimum norm solution of TT

k+1z. We won’t spend too much time
studying these methods.

24.1.2 The simple CG method

Consequently, and conceptually, the CG method is rather simple:
for k=1, 2, ...

Compute V k , T k from k−steps of the Lanczos process
Solve T̄ kzk = ∥b∥e1
Compute xk = V kzk
If ∣βk+1zk ∣ < tol , stop.

The essence of the method is that we replace solving Ax = b with solving
T̄ kz = ∥b∥e1. Put anotherway, the idea is that thematrix T̄ k “approximates”
A.

the difficulty with the simple method However, at each
step, there is still quite a bit of work in this method. We can efficiently
compute the kth step of the Lanczos vector sequence from the k − 1st step,
so computing V k and T k isn’t a problem using one matrix vector and a
few inner-products, so it’s O(mat-vec + n) work where O(mat-vec) is the
work involved in the matrix-vector product. To solve the system with T̄
is O(k) work because it’s a tridiagonal system. However, the problem is

144 v ⋅ subspace methods

that computing xk = V kz is O(nk) work. If n is large and k is small, then
this operation is expensive. Another problem is that we need to keep k
Lanczos vectors. This gets very expensive in terms of memory for large k.

24.1.3 Making CG efficient

We’ll now see how to do the CG method with O(mat-vec + n) work per
iterations. To do so, we need to determine how to compute xk directly
from xk−1 and avoid storing V k . We’ll have to keep the last two iterates
though, so we can continue the Lanczos process.

In the following discussion, we’ll work through how to make this
happen. There is one leap in this derivation that we’ll get to soon.

using and updating cholesky for the subsystem We
begin with a straightforward computation. Think about how to compute
zk efficiently. Recall that A is symmetric positive definite. Based on the
quiz above, this means that T̄ is also symmetric, positive definite. So it
has a Cholesky factorization

T̄ k = F kFT
k .

On the last homework, we worked out that:

F =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

η1
µ2 η2⋱ ⋱

µk ηk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Moreover, we can compute µk+1 and ηk+1 from

T̄ k+1 = [T̄ k βk+1ek
βk+1eTk αk+1

] = [F k
µk+1eTk ηk+1

] [FT
k µk+1ek

ηk+1
] .

By equating terms, we find that

βk+1ek = µk+1F kek = µk+1ηkek

and
αk+1 = η2k+1 + µ2k+1 .

We can solve both of these to find:

µk+1 = βk+1/ηk and ηk+1 =√αk+1 − µ2k+1 .
But, there is no way to compute zk+1 from zk because all the elements

change. To go beyond this, we need to look at the problem more closely.

the leap What we actually want is

xk = ∥b∥V k T̄
−1
e1 .

24 ⋅ conjugate gradient 145

Let’s substitute the Cholesky fatorization in here:

xk = ∥b∥V kF−TF−1e1 .

The “leap” is that we need to look at:

xk = ∥b∥ ⋅ Ck´¸¶
=V kF−T

⋅ pk´¸¶
=F−1e1

.

As we study these expressions, we’ll find that they can be updated efficiently.
First, let’s tackle pk . Given pk = [p1 , . . . , pk]T , note that:

F k+1pk+1 = [F
µk+1eTk ηk+1

] [pk
pk+1
] = [e10] .

Thus, pk+1 = −µk+1pk/ηk+1. This is great news because pk+1 only differs
from pk by the last element.

Let’s see how to find Ck+1 from Ck . We’ll write:

Ck+1FT
k+1 = V k+1

or
[Ck ck+1] [FT

k µk+1ek
ηk+1

] = [V k vk+1] .
Hence,

µk+1Ckek + ck+1ηk+1 = µk+1ck + ηk+1ck+1 = vk+1 .
Thus, we can compute ck+1 just from ck .

The last step is to show that we can combine these and compute xk+1
from xk . Again, we expand:

xk+1 = Ck+1pk+1 = Ckpk´¹¸¹¶
=xk

+ck+1pk+1 .
And we have found an efficient expression for xk in the CG method.

All together now, we have:
β1 = ∥b∥
v0 = 0, x0 = 0
v1 = b/β1
for i=1, 2, ...

w = Av i − β iv i−1
α i = vTi w
w ← w − α iv i
β i+1 = ∥w∥
v i+1 = w/β i+1
if i = 1

µ i = 0, η i =
√α i , p i = β1/η i , ci = v1/η1.

else

µ i = β i/η i−1, η i =
√

α i − µ2i , p i = −µ i p i−1/η i , ci = (v i − µ ici−1)/η i
xi = xi−1 + p ici

In this iteration, you only need to keep the vector v i and ci to complete
the iteration.

146 v ⋅ subspace methods

This section is incom-
plete

1 this condition suffices because the
problem is strongly convex

2 check the sign on this value

24.2 conjugate gradients via optimization

In the second derivation of the CG method, we study the problem:

min ϕ(x) where ϕ(x) = 1
2
xTAx − xTb

where A is n × n, symmetric positive definite. In this case, the solution is
x = A−1b, which we can derive by setting the gradient of ϕ(x) to zero,1
that is,

∂ϕ/∂x = Ax − b = 0.
Thus, in the second derivation of the CG method we work from the

premise of finding a sequence of vectors xk that make ϕ(xk) smaller at
each step.

aside on steepest descent One of the classic ways to minimize
a function is called gradient descent, and it computes

x(k+1) = x(k) − αkgk
where αk > 0 and gk is the gradient ∂ϕ/∂x evaluated at x(k). For this
function ϕ, gk = Axk − b. The constant αk is chosen to make:

ϕ(xk − αgk)
as small as possible. It’s a bit of a tangent to derive this value, but we can
work out the solution, which is:2

αk = gTk gk
gTk Agk

.

This simple method:
x(1) = 0
for k=1, ...

g(k) = Ax(k) − b
if ∥g(k)∥ < tol

stop and return xk
α(k) = g(k)Tg(k)/(g(k)TAg(k))
x(k+1) = x(k) + αkg(k)

will always converge to the solution of a positive definite system using
only matrix-vector products. The convergence rate is proportional to the
condition number of the matrix.

Now, suppose we consider a sequence of directions p(k) such that
x(k+1) = x(k) + αkp(k), we can set:

αk = p(k)Tr(k)/(p(k)TAp(k))
as long as p(k)r(k) /= 0 where r(k) is the kth residual b − Ax(k).

To get to conjugate gradients, we want the set of search directions p(k)
to be linearly independent, and in fact, conjugate. We call a sequence of
vectors conjugate if p(i)

T
Ap(j) = 0 if i /= j. In this case, x(k) = ∑n

i=1 α ip(i)

or x(k) ∈ span{p(1) , . . . , p(k)}.
24 ⋅ conjugate gradient 147

Information from Diane O’Leary,
https://www.siam.org/meetings/

la09/talks/oleary.pdf and Nu-
merical Analysis: Historical De-
velopments in the 20th Century;
By C. Brezinski, L. Wuytack; Gene
H. Golub and Dianne P. O’Leary,
“Some history of the conjugate
gradient and Lanczos algorithms:
1948-1976,” SIAM Review 31 (1989)
50-102. http://www.cs.umd.edu/
~oleary/reprints/j28.pdf

24.3 cg history

1. Initially proposed by Hestenes and Stiefel as a direct method (1952).
Both Hestenes and Stiefel came up with the method independently,
and then wrote a joint paper about it.

2. First suggested as a large sparse solver by Reid (1971).
3. Finally widely accepted for matrices once preconditioning was in-

vented.

148 v ⋅ subspace methods

https://www.siam.org/meetings/la09/talks/oleary.pdf
https://www.siam.org/meetings/la09/talks/oleary.pdf
http://www.cs.umd.edu/~oleary/reprints/j28.pdf
http://www.cs.umd.edu/~oleary/reprints/j28.pdf

The notes here arise from Saad, It-
erative Methods, 2nd edition §6.72;
Gutknecht, A General Framework
for Recursions for Krylov Space
Solvers, ETH SAM report 2005-09,
ftp://ftp.sam.math.ethz.ch/pub/

sam-reports/reports/reports2005/

2005-09.pdf; and my own notes
from working with Gene Golub.

1 Multivariate generalizations exist,
but we won’t need them.

ORTHOGONAL POLYNOMIALS & MATRIX
COMPUTATIONS 25

One of the most wonderful and surprising connections in the field
of matrix computations is the elegant interplay between matrices and
orthogonal polynomials. These relationships lead to magnificently simple
insights into complicated methods. In this lecture we shall unshroud some
of these connections. However, the field is so deep. Probably the best
textbook on the topic was written by Purdue’s ownWalter Gautschi. It is
tersely titled: “Orthogonal Polynomials.”

We will use xk as the kth iterate in this section
instead of x(k). This is because we are frequently

taking transposes of the iterate and x(k)T

becomes awkward.

25.1 what are orthogonal polynomials?

For the purposes of this lecture, a polynomial is a univariate function:1

p(t) = n∑
i=0

p i t i .

For example:
p(t) = 1

2
t2 − 1

2

q(t) = 5
2
t3 − 3

2
t.

The degree of a polynomial is the power of the largest term. In the generic
polynomial definition, the degree is n. For the examples of p and q, the
degrees are 2 and 3 respectively. A polynomial of degree 0 is a constant.

We call two polynomials orthogonal if:

∫ 1

−1
p(t)q(t) dt = 0.

This is a type of continuous analog of two vectors:

vTu = n∑
i=1

v iu i = 0.

149

ftp://ftp.sam.math.ethz.ch/pub/sam-reports/reports/reports2005/2005-09.pdf
ftp://ftp.sam.math.ethz.ch/pub/sam-reports/reports/reports2005/2005-09.pdf
ftp://ftp.sam.math.ethz.ch/pub/sam-reports/reports/reports2005/2005-09.pdf

example 25.1 The two polynomials p and q given above are orthogo-
nal.

∫ 1

−1
p(t)q(t) dt = ∫ 1

−1

1
2
(t2 − 1)1

2
(5t3 − 3t) dt

= 1
4 ∫

1

−1
5t5 − 5t3 − 3t3 + 3t dt

= 1
4 ∫

1

−1
5t5 − 8t3 + 3t dt.

All of these terms are odd functions, and they are integrated over a sym-
metric region, hence the result is 0. ◆

More generally, we can consider polynomials that are orthogonal with
respect to

an arbitrary interval ∫ b

a
p(t)q(t) dt

a weighted integral ∫ b

a
p(t)q(t) dw(t)

a discrete weight ∫ b

a
p(t)q(t) dw(t) = n∑

i=1
p(λ i)q(λ i)w i

If two polynomials are orthogonal with respect to an integral ∫ b
a dw(t),

then we’ll often call this themeasure that they are orthogonal with respect
to.

Sequences and families of orthogonal polynomials

We are often concerned with a sequence or family of orthogonal poly-
nomials. Wewill index these by the degree of a polynomial, so that we have
the sequence in order of increasing degree. Let pk(t) be the polynomial
of degree k. By convention, we take p−1(t) = 0 and p0(t) = c for some
constant.

Thus, we have the following sequence of orthogonal polynomials that
are orthogonal with respect to ∫ 1

−1 dt:

p−1(t) = 0
p0(t) = 1
p1(t) = t
p2(t) = 1

2 (3t2 − 1)
p3(t) = 1

2 (5t3 − t)
p4(t) = 1

8 (35t4 − 30t2 + 3)
This sequence is called the Legendre polynomials. Other popular families
are:

150 v ⋅ subspace methods

2 In the notes I’m writing this from,
µk is ρk , so beware of future typos.

Family Measure

Legendre ∫ 1
−1 dt

Laguarre ∫∞0 e−t dt
Hermite ∫∞−∞ e−t

2
dt

Chebyshev (1st kind) ∫ 1
−1

1
√
1−t2

dt
Chebyshev (2nd kind) ∫ 1

−1

√
1 − t2 dt

Jacobi ∫ 1
−1(1 − t)α(1 + t)β dt

Gegenbauer ∫ 1
−1(1 − t2)α−1/2 dt

Note that these can be scaled and shifted to arbitrary intervals [a, b] too.
Orthonormal polynomials

Yes, there are orthonormal polynomials too! Checkout Gautschi’s book
for more on the relationship. If ∫ b

a dw(t) is the measure, the idea is that
we need ∫ b

a p(t)2 dw(t) = 1 in order to get orthonormal polynomials.

25.2 the three term recurrence &
tridiagonal matrices

The following fact, which we will not prove, is profound:

Theorem 25.2
Any sequence of orthogonal polynomials of increasing degree
satisfies a three-term recurrence and any three-term recur-
rence defines a sequence of orthogonal polynomials.

example 25.3 Consider the Legendre polynomials (described above).
They satisfy:

pk+1(t) = 2k + 1
k + 1 tpk(t) − k

k + 1 pk−1(t).
For instance,

p2(t) = 2 + 1
1 + 1 t t´¸¶

p1(t)

− 1
1 + 1 1´¸¶

p0(t)

.

◆
The general form of the three-term recurrence is:2

pk+1(t) = µk(pk(t) − γk tpk(t)) + ηk pk−1(t),
where the constants µk , γk , ηk may depend on k. What this recurrence
means is that if we have any sequences of numbers µk , γk , ηk , then they
give rise to a set of polynomials that is orthogonal with respect to some
measure.

25 ⋅ orthogonal polynomials & matrix computations 151

3 This is the detail that you should
work out!

From a three-term recurrence to a tridiagonal matrix

It’s this three term recurrence that brings us back to matrix computa-
tions, and specificall tridiagonal matrices. Consider the Legendre family.
Another way to write the recurrence is:

p−1(t) = 0 p0(t) = 1 p1(t) = t (k+1)pk+1(t) = (2k+1)tpk(t)−kpk−1(t).
This recurrence forms a matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−t 1
1 −3t 2
0 ⋱ ⋱ ⋱

k −(2k + 1)t (k + 1)⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¸¹¹¹¶
tridiagonalT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0(t)
p1(t)
p2(t)⋮
pk+1(t)⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0⋮
0⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Thus, for instance, we can evaluate a sequence of orthogonal polynomials
at a point t by constructing T(t) and solving:

T(t)p = e1 .
Consequently, any tridiagonal matrix corresponds to a set of orthogonal
polynomials.

There’s a Matlab demo of this in the orthopolys.m function!
There are additional relationships with a matrix called the Jacobi ma-

trix:

J =
⎡⎢⎢⎢⎢⎢⎣
α1 1
β1 α2 1
0 ⋱ ⋱ ⋱0

⎤⎥⎥⎥⎥⎥⎦
but you’ll need to read more about that in Gautschi’s book.

25.3 polynomials and matrices

Note that if we have a univariate polynomial p(t) = ∑n
i=0 p i t i , then

we can evaluate that polynomial with a squarematrix argument:

p(A) = n∑
i=0

p iAi .

25.4 polynomials and iterative methods

First, let us introduce the idea of using polynomials and iterative meth-
ods. This has been a homework or exam problem in the past, so it’s worth
understanding the details! Consider a Krylov subspace method. The kth
iterate xk is inKk(A, b) = span{b,Ab, . . . ,Ak−1b}. This means that there
is some polynomial such that:3

152 v ⋅ subspace methods

4 Take a moment to understand
what is going on here, as it’s a key
step. We are first noting that rk can
be expressed as a polynomial in A.
We are now saying, let’s control that
polynomial to achieve our goal! But
we’ll have to obey some constraints
to make it work.

xk = sk−1(A)b.
Now, if xk is determined by a polynomial sk−1(t) of degree k − 1, this
means the residual at the kth step is determined by a polynomial of degree
k:

rk = b−Axk = b−Ask−1(A)b = (I−Ask−1(A))b. Thus rk = pk(A)b
where the polynomial pk(t) = 1 − tsk−1(t) has degree k.

We call these two polynomials:

sk(t) the solution polynomial
pk(t) the residual polynomial.

It turns out that the residual polynomial already must have some
special structure! Note that pk(t) is defined to be equal to 1 − tsk−1(t).
Thus, pk(0) = 1. So any residual polynomial must evaluate to 1 at the
value t = 0. As a matrix statement, this means: pk(0)b = b.
25.5 orthogonal polynomials and iterative

methods

Thus far, we haven’t run into orthogonal polynomials yet. But let’s
design an iterative method with a fairly natural property using orthogonal
polynomials.

design goal We want the kth residual from the iterative method
to be orthogonal to all previous residuals. Or more formally, rTk r j = 0
for j < k. This goal is equivalent to the idea that our residual should
always include new information at each step and should never include
information we could have factored out.

Orthogonal polynomials will help us achieve this goal!

Let’s state what we have:

rk = b − Axk = pk(A)b.
We want:

rTk r j = bT pk(A)T p j(A)b = 0.
Thus, if we create an orthogonal polynomial pk(t) where pk(0) = 1 and

∫ pk(t)p j(t) dw(t) = (rk)Tr j ,
we will implicitly create an iterative method where the residuals are or-
thogonal.4

The three term recurrence helps us do this!

25 ⋅ orthogonal polynomials & matrix computations 153

5 Check for an error here... and this
simplifies more, see Saad

Recall:

pk+1(t) = µk(pk(t) − γk tpk(t)) + ηk pk−1(t).
So if we can determine µk , γk , ηk from our constraints, then we’ll be able
to figure out what the next residual polynomial is.

Let’s enumerate our constraints:

(i)pk+1(0) = 1
(ii)rk+1 = pk+1(A)b = µk(rk − γkArk) + ηkrk−1
(iii)(rk+1)Tr j = 0, j < k.

Constraint (i) implies:

1 = pk+1(0) = µk + ηk ⇒ ηk = 1 − µk .

Thus, we now have a revised constraint (ii):

rk+1 = pk+1(A)b = µk(rk − γkArk) + (1 − µk)rk−1 .
If we apply constraint (iii) with j = k, we have:

0 = (rk)Trk+1 = µk((rk)Trk − γk(rk)TArk) + (1 − µk)(rk)Trk−1
or

γk = rTk rk
rTk Ark

.

Finally, using constraint (iii) with j = k − 1, we can solve for5

µk = rTk−1rk−1
rTk−1rk−1 + γkrTk−1Ark .

This lets us compute rk+1

Getting the solution polynomial

Thus far, we have the residual polynomial rk = pk(A)b. We do, how-
ever, need to recreate the solution too! To do so, we note that

sk(t) = 1 − pk+1(t)
t

= 1 − µk(pk(t) − γk tpk(t)) − (1 − µk)pk−1(t)
t

.

Now we add and subtract µk/t in order to rewrite this as:

sk(t) = µk [1 − pk(t)t
− γk pk(t)] − (1 − µk)1 − pk−1(t)t

= µk(sk−1(t) − γk pk(t)) − (1 − µk)sk−2(t).
Hence, we have:

xk+1 = µk(xk − γkrk) − (1 − µk)xk−1 .

154 v ⋅ subspace methods

25.6 a polynomial form of conjugate
gradient

In a small surprise, we’ve arrived at a new form of the conjugate gradi-
ent algorithm! The iterates generated by this method are mathematically
equivalent to those generated by CG! The way to prove this is to show that
the residuals constructed in CG automatically satisfy the same property
and live in the same subspace, hence, they must be the same.

25 ⋅ orthogonal polynomials & matrix computations 155

156 v ⋅ subspace methods

EFFICIENT GMRES 26
Recall the prototype-GMRES method.

Given A, b where we can only multiply by A.
for i=1 to maxiter

Update the Arnoldi factorization Qk ,Hk+1.
Solve for zk by minimizing ∥Hk+1zk − ∥b∥e1∥,

i.e. zk = argmin ∥Hk+1zk − ∥b∥e1∥
Let xk = Qkzk .
Check ∥Axk − b∥

To implement this, we need to solve a lseast squares problem at each
step. This takes O(k2) work because it’s a Hessenberg matrix. Then we
need to construct the solution and check the residual. These take O(nk)
and another matrix-vector product. We can do all of these steps more
efficiently!

Here is the outline for the essential idea to optimize GMRES.

we only need to check the residual at each step, and do not need to compute xk .

So the method we’ll look at optimizing is:
Given A, b where we can only multiply by A.
for i=1 to maxiter

Update the Arnoldi factorization Qk ,Hk+1.
Compute ∥rk∥ where

rk = Axk − b
xk = Qkzk
zk = argmin ∥Hk+1zk − ∥b∥e1∥

and stop once ∥rk∥ is sufficiently small , i.e.
Update ∥rk∥ → ∥rk+1∥ and stop if it ’s small enough .

Explicitly compute zk = argmin ∥Hk+1zk − ∥b∥e1∥
and return xk = Qkzk only at the end of the iteration

26.0.1 The optimization idea

Let’s study the quantity we want to compute, let ∥b∥ = β0, then
∥rk∥ = ∥b − Axk∥ = ∥b − AQkyk∥ = ∥Hkyk − β0e1∥ .

After a four steps, this is:XXXXXXXXXXX[
× × × ×
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hk

y4 − β0 ⎡⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎦
XXXXXXXXXXX.

We solve least squares problems via QR, so suppose that

Hk = U kRk

157

Finish and improve this figure, the
point is we use J1 , . . . , J4 to do the
Givens rotations. These give us
UT

4 = J4 J3 . . . J1 .

is the QR factorization after k-steps. Then

∥rk∥ = ∥U kRkyk − β0e1∥ = ∥Rkyk − β0U T
k e1∥ .

Showing this after a few steps gives us the idea more clearly:

∥rk∥ = XXXXXXXXXXX[
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rk

y4 − β0
⎡⎢⎢⎢⎢⎣
γ1
γ2
γ3
γ4
γ5

⎤⎥⎥⎥⎥⎦´¸¶
UT

k e1

XXXXXXXXXXX. = β0γ5 .

(Remember we solve for yk such that this term is zero in the first four
components. So we just need to figure out what γ5 is to get ∥rk∥.
26.0.2 Taking it deeper

We need to note a two things here to continue our optimization:
1. We only need Givens rotations to get Hk → Rk .
2. We only need one rotation to update Rk → Rk+1. (Woah!)

Let’s review step 1 and see how that will help us with step 2.

[× × × ×× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

] J1→ [∗ ∗ ∗ ∗○ ∗ ∗ ∗
0 × × ×
0 0 × ×
0 0 0 ×

] [× × × ×0 × × ×
0 × × ×
0 0 × ×
0 0 0 ×

] J2→ [× × × ×0 ∗ ∗ ∗
0 ○ ∗ ∗
0 0 × ×
0 0 0 ×

]
[× × × ×0 × × ×
0 0 × ×
0 0 × ×
0 0 0 ×

] J3→ [× × × ×0 × × ×
0 0 ∗ ∗
0 0 ○ ∗
0 0 0 ×

] [× × × ×0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 ×

] J4→ [× × × ×0 × × ×
0 0 × ×
0 0 0 ∗
0 0 0 ○

]
Now, suppose we have U 4 and R4, how do we get U 5 ,R5?

H5 = [H4 h
0 h6,5

] =
⎡⎢⎢⎢⎢⎢⎢⎣
[× × × ×× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

] [×××
×
×

]
[0 0 0 0] h6,5

⎤⎥⎥⎥⎥⎥⎥⎦
If we rotate by U T

4 , we get:

[U T
4 0
0 1]H5 = [U T

4 0
0 1]H5 = [R4 U T

4 z4
0 h6,5

]
So at this point, we just have the one Givens rotation: J5 that we need

to do to fixup the element h6,5 and so U T
5 = J5J4⋯J1, which is just one

update.

26.0.3 Seeking gamma.

Note that the elements of gamma are just the first column of U T
k . Let

gk = U T
k e1 = [γ1 γ2 . . . γk]T . Then by our previous relationship:

gk+1 = U T
k+1e1 = Jk+1U T

k e1 = Jk+1gk .
But this is weird, because J is a k + 1 × k + 1 matrix and gk is a length k
vector. So what we really mean is

Jk+1 [gk0]
158 v ⋅ subspace methods

This section is incom-
plete.

where we grew the vector by one element in order to make it work. Note
that we don’t need to actually update gk even though it should change.

26.0.4 The whole algorithm

g = β0e1
for k=1 to ...

Update Qk ,Hk
Let ηk+1 = Hk+1,k .
Let zk = H1∶k ,k .
Apply J1 ...Jk−1 to zk , and update H
Create Jk to elminate ηk+1.
Determine gk from Jkgk−1 growing by zeros as needed .
If gk(end) is small enough , then stop iterating .

At this point , H has the factor R, and (if we do keep g accurate), then
g is the right hand side , so we can just solve Rkyk = gk and then
output x = Qky.

26.1 gmres vs . fom

See notes.
The major point is that FOM is like CG in that it solves a linear system

based on the truncated Arnoldi factorization.
The large scale study by Peter Brown (http://dx.doi.org/10.1137/

0912003) concluded: there is little difference, but liked the minimum
residual property of GMRES.

26 ⋅ efficient gmres 159

http://dx.doi.org/10.1137/0912003
http://dx.doi.org/10.1137/0912003

160 v ⋅ subspace methods

ADVANCED PROBLEMS VI

The standard problems in linear algebra are

min ∥Ax − b∥ least squares

Ax = b linear systems

Ax = λx eigenvalues

Ax = σy singular values

In this part, we look at variations on these problems that we call

advanced

not because they are hard, but because they would occur in the context
of a different type of application. We will also see one new problem, the
matrix function!

162 vi ⋅ advanced problems

1 Aside, you shouldn’t generally
do this! It’s a good way to fail the
class if you do this without careful
consideration of the alternatives.

MULTIPLE RIGHT HAND SIDES 27
For a linear system of least squares problem, an extremely common

variation is that we have a set of right hand sides to solve. This occurs in
two forms, one where all of the vectors are available at once, and a second
where each solution gives rise to a new problem.

27.1 multiple right hand sides all known
ahead of time

The problem here is that we need to solve Ax = b for many vectors
b1 , . . . , bk . In the simplest case, we will know b1 , . . . , bk ahead of time. In
this case, we really have the matrix problem

AX = B B = [b1 ⋯ bk]
where X is the n by k matrix of all k solutions.

Such a scenario arises in a number of places. First, consider actually
computing the inverse of a matrix A. 1 Then we would set B = I, and there
are k = n vectors b all known.

Another, more realistic scenario, arises in block Gaussian elimination.
Suppose we are solving

Ab = b where we have the partition [A1 A2
A3 A4

] [x1
x2
] = [b1

b2
] .

Then note that if A1 is non-singular, then x1 must satisfy A1x1+A2x1 = b1
or

x1 = A−11 b1 + A−11 A2x2 .

The matrix A−11 A2 is exactly this type of system.
The simplest way to solve these is just to call \ in Julia or Matlab. This

will look at the structure of A1 and choose an appropriate method to solve
for all right hand sides simultaneously. It will use multiple threads and
processors as appropriate.

In practice, what this will do is compute a factorization of the matrix
A and then apply this to all the vectors b1 , . . . , bk at the same time.

In general, for a dense system of linear equations, it takes O(n3) work
to compute a factorization and then O(n2) work to solve a system with
the factors. This gives an overall runtime of O(n2k + n3), which is O(n3)
if k ≤ O(n) andmore interseting if k ≥ O(n).

As an example where the latter scenario arises, consider the partiton
above where A1 is 16 × 16 and n is 1024.

163

2 Again, note that the way to do this
isn’t to compute A−1 and use that
instead of A! That’s another good
way to fail the class.

27.2 multiple right hand sides determined
sequentially

The second setting for multiple right hand sides is that we have

Ax1 = b1
which determines b2, so b2 is unknown until we have solved x1. Then we
must solve

Ax2 = b2
Ax3 = b3 = function of x2 .

and so on...

The key is that the matrix A is fixed, which is a scenario that arises in
· the inverse power method for eigenvalues
· backward Euler for linear ODEs.

inverse power method Recall the power method for dominant
eigenvalue, eigenvector pair of a matrix

x(0) = arbitrary x(k+1) = ρkAx(k) ρk = 1∥Ax(k)∥ .
If the largest magnitude eigenvalue of A is unique, then x(k) will converge
towards the associated eigenvector. The inverse powermethod simply runs
this iteration on A−1 instead (assuming A is non-singular). For instance,
if A is symmetric positive definite, then the inverse power method will
converge to the smallest eigenvalue of A. Here, we have exactly this type
of setting where b(k+1) = ρkx(k).2
backward euler for a linear ode XXX-TODO-XXX

the factorization solution The best way to approach these
problems is to factorize your linear system A via Cholesky, LU, or QR.
These are be done onO(n3)work and then each solve isO(n2) time. This
approach also allows us to exploit structure in the matrix A that may not
exist in the inverse A−1 to make things go faster.

the julia code Julia includes a number of awesome routines to
work with matrix factorizations like the original matrix. For instance,

1 F = lufact (A) # produces a factorization object F
2 F \ y # solves Ax = y using the LU factorizations without recomputing it.

So we could implement the inverse power method as follows

164 vi ⋅ advanced problems

1 function invpower (A:: Matrix)
2 x = normalize !(randn (size(A ,1)))
3 F = lufact (A)
4 for iter = 1: maxiter
5 x = normalize !(F\x)
6 end
7 return x
8 end

27 ⋅ multiple right hand sides 165

166 vi ⋅ advanced problems

The notes here are my own, based
on Golub and van Loan, Trefethen,
and Saad’s textbooks, respectively.

1 So in this case B = MA, x = y and
c = Mb.

2 This is the celebrated Spielman
and Teng nearly-linear time solver
for SDD systems. The current
runtime is O(nnz

√
log n) in theory,

which means that it’s faster to solve
Ax = b with a SDDmatrix than
it is to sort a vector. It’s currently
unknown how to extend that work
to symmetric, positive definite
systems, however.

PRECONDITIONING 28
Preconditioning is the process of taking a given linear system:

Ax = b
and turning it into a new linear system (with B non-singular):

By = c
such that it’s “easy” to find x from y and

an iterative method for By = c is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

faster
more accurate
better behaved
convergent
easier, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

the standard preconditioner . The standard goal with precon-
ditioning is to make an iterative method for Ax = b go faster. Typically
this is done by taking a non-singular matrix M and looking at the linear
system: 1

MAx = Mb.

The standard idea is that MA ≈ I, and we’ll see how to make this idea
precise shortly. Also, we need a fast way to create M, and tomultiply M by
a vector. While this seems like an easy task,many preconditioners involve
solving a system, hence, M = P−1 for some matrix P (which could also be
called a preconditioner!). Thus, just multiplying by M can be expensive
itself.

QuizWhy do we need M to be non-singular?

Question 1 (The fundamental question in preconditioning)
Thus, we arise at the fundamental question. Given Ax = b, how do I pick
M or P such that I actually make the iterative method faster? ◆
Some thoughts on preconditioning

there is no universal preconditioner . A great open prob-
lem is to find a preconditioning strategy that works for all matrices A.
Recently, there has been some work on how to do this for symmetric,
diagonally dominant linear systems;2

167

3 In the third edition, they split this
into 11.3.1 and 11.3.2.

4 This is a corrolary of the Cayley-
Hamilton theorem, among other
facts.

preconditioning is more art than science . As you might
then expect, much of preconditioning is based on well-informed heuristic
procedures. These are ideas that are theoretically grounded, but often
make a leap. Some leaps are more effective than others!

when possible , precondition the problem , not the ma-
trix . Suppose that our problem Ax = b arises from a physics-based
application or a complex engineered system. The problem that we want to
solve gives rise to some matrix A and some right hand side b. While we
could study the matrix A and attempt to use a matrix-based preconditioner
on A, it is often a better strategy to attempt to decompose your problem
as:

A = approximation with analytical solution given a right hand-side+correction.
In which case, we really have:

A = S´¸¶
simple

+ C´¸¶
correction

and M = S−1 is a good preconditioner because

S−1A = I + S−1C .
28.1 a more formal treatment.

The following theorem justifies why S−1 would be a good precondi-
tioner.

Theorem 28.1 (Golub and van Loan, 3rd edition, 10.2.5)
3 If A = I + B is an n-by-n symmetric postive definite matrix
and rank(B) = r, then Krylov methods converge in at most
r + 1 iterations.

proof This is a standard proof strategy. We show that in at most r + 1
iterations, the Krylov spaceKr+1(A, b) contains the solution x. To do so,
note that:

Kk(A, b) = span(b,Ab, . . . ,Ak−1b)
= span(b, (I + B)b, (I + B)2 . . . , (I + B)k−1b)
= span(b, Bb, B2b, . . . , Bk−1b).

Because B has rank r, we know that Br has some polynomial expression
in lower powers4; thus, the Krylov subspace terminates at this step and
we know the space must contain the solution. Because of the optimal-
ity properties, any Krylov method will terminate in r + 1 steps in exact
arithmetic.

168 vi ⋅ advanced problems

More generally speaking, we have the following theorem on the con-
vergence of CG.

Theorem 28.2 (Trefethen 38.5)
Let the CG iteration be applied to a symmetric positive def-
inite linear system Ax = b, where A has 2-norm condition
number κ. Then there is a norm ∥z∥∗ where

∥x − x(k)∥∗ ≤ 2∥x − x(0)∥∗ (
√
κ − 1√
κ + 1)

k

.

This gives rise to a linear convergence theorem that depends on the
condition number of a matrix:

∥x − x(k)∥∗ = O(ρk)
where ρ depends on κ.

QuizWhat is κ(I)?
Suppose κ(A) is big (like one hundred million), then what happens?

We get ρ ≈ 1 (like 0.99999999).

Suppose κ(A) is nearly 1 (like 16), then what happens? We get ρ ≈ 0
(like 3/5).

So given any linear system, if we takeM = A−1, we will converge in one
step. But, computing M−1x is just as expensive as our original problem.
So we want something cheaper.

28.2 designing a preconditioner

The above theorems motivate three different types of preconditioners:
1. Find a matrix P where P−1 is a fast operator and P−1A ≈ I, i.e.

κ(MA)≪ κ(A).
2. Find a matrix P where P−1 is a fast operator and P−1A = I +

low-rank.
3. Find amatrixPwhereP−1 is a fast operator andP−1A = has few eigenvalues.

28 ⋅ preconditioning 169

In all cases we need P to be something that is easy to find as well.
Quiz Why do we get the 3rd type of preconditioner? (This is not a

simple answer, but does follow from the properties of Krylov subspaces; try
showing dim(Kk(A, b)) ≤ 2 when A is diagonalizable with two distinct
eigenvalues.)

Some subtleties

Suppose we want to use conjugate gradient. Then we need A to be
symmetric positive and definite. Suppose we have a matrix MAwhere M
is fast operator and easy to find. Can we always use CG? No, because

MA /= (MA)T
in general.

28.3 types of preconditioners

Thus, we consider four types of preconditioners:

Left solve MA´¸¶
B

x = Mb´¸¶
c

Right solve AM´¸¶
B

(M−1x)´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
y

= b
Left &Right solve M1AM2´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

B

(M−12 x)´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
y

= M1b´¸¶
c

Symmetric solve MAMT´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
B

(M−Tx)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
y

= Mb´¸¶
c

For the CG case above, we want to use a symmetric preconditioner to
preserve symmetry. Often, these are written with C:

C−1AC−T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

y = C−1b x = C−1y.
With the hope that B has a small condition number, or clustered eigenval-
ues, ...

28.3.1 Ensuring positive definiteness

We also need C−1AC−T to be positive definite when A is. We can
insure this by taking CCT as the Cholesky factorization of any positive
definite matrix T .

28.3.2 Optimizing CG

Once we know we are solving a preconditioned linear system, it’s
often advantageous to know this in the linear solver. We can rewrite CG
optimally to use a preconditioner like in Golub and van Loan (4th edition)
11.5.7.

170 vi ⋅ advanced problems

5 This is a matrix based on the
geometric series: 1+t+t2+ . . . = 1

1−t

28.4 examples of preconditioners

28.4.1 Diagonals

The simplest case of preconditioning is to use the diagonal entries. Let
A = D + N (be a splitting into the diagonal and off-diagonal terms), then:

M = D−1
is a preconditioner that makes

MA = I + D−1N .

Quiz Is it always easy to use a diagonal precondition on a matrix?
QuizHow could you do symmetric diagonal preconditioning?

28.4.2 Polynomials

Recall the expansion of A−1 as it’s Neumann series:5

(I − A)−1 = I + A+ A2 + A3 +
Then we can use a finite truncation as the preconditioner to Ax = b:

M ≈ A−1 = I + (I − A) + (I − A)2 + (I − A)3 .
28.4.3 Incomplete factorizations

Incomplete Cholesky and Incomplete LU are both factorizations:

A = CCT − R A = LU T − R
that are Cholesky-like and LU-like, but that have a new residual term. We
call them incomplete if R has a zero-entry whenever A is non-zero. Thus,
these ideas can be used for large sparse systems.

Any symmetric, positive definite matrix with a non-negative inverse
(called a Stieltjes matrix) has an incomplete Cholesky factorization as
worked out in Golub and van Loan.

28.4.4 Sparse approximate inverses

Suppose we want the best tridiagonal preconditioner for a matrix A.
To find this, we could consider the best approximation of the inverse:

minimize ∥I − AM∥
subject to M is tridiagonal.

The sparsity structure should be given, so the more general problem is,
given sparsity structure matrix S:

minimize ∥I − AM∥
subject to M has the same non-zeros as S .

28 ⋅ preconditioning 171

6 Demmel’s textbook: Applied
Numerical Linear Algebra has a
nice treatment of this algorithm.

Consider the tridiagonal case. We can compute M a column at a time:

Let Mei =mi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0⋮
0
α
β
γ
0⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

then
⎡⎢⎢⎢⎢⎢⎣
α
β
γ

⎤⎥⎥⎥⎥⎥⎦
solve minimize ∥ei − [Ai−1 Ai Ai+1]

⎡⎢⎢⎢⎢⎢⎣
α
β
γ

⎤⎥⎥⎥⎥⎥⎦
∥ .

28.4.5 Multi-grid

Recall how we thought about approximating the problem as a type of
preconditioning. Suppose that Ax = b arises from a n-by-n discretization
of Poisson’s equation. This gives us an n2 × n2 linear system: Ax = b.
Now, what if we had solved Poisson’s equation for an n/2-by-n/2 node
discretization instead? This is a continuous equation, so we might hope
it’s reasonable to guess that simply interpolating the solution would give
us a good approximation to Ax = b? But then, we could repeat the same
argument and use an n/4-by-n/4 node discretization, and so on and so
forth.

This idea gives rise to a preconditioner calledmulti-grid that is incred-
ible at solving Poisson’s equations. Using a multi-grid strategy allows us to
solve Ax = b in time O(n2) where the system has size n2 × n2. This is a
linear time algorithm!6

172 vi ⋅ advanced problems

EIGENVALUE
ALGORITHMS VII

174 vii ⋅ eigenvalue algorithms

EIGENVALUE THEORY 29
29.1 invariant subspaces

29.2 degenerate eigenvalues

175

176 vii ⋅ eigenvalue algorithms

These notes are a collection of
Trefethen and Bau (Lecture 28)
and my own (later) interpolations.
The result on the convergence of
the power method is due to Luca
Trevisan (http://theory.stanford.
edu/~trevisan/expander-online/

lecture03.pdf) which was pointed
out to me by Petros Drineas.

EIGENVALUE ALGORITHMS 30
In these notes, we will frequently assume that A is symmetric. Some

of the methods generalize to non-symmetric matrices (e.g. the power
method), but there are often complexities involved. Please consult Golub
and van Loan for more details on these cases.

30.1 useful properties of eigenvalues .

Lemma 30.1
Let A be a symmetric matrix. If p(A) is a polynomial of A,
then the eigenvectors of A and p(A) are the same, but the
eigenvalues change.

proof Note that p(A) = c0I + c1A+ c2A2 +⋯ + ckAk for some coeffi-
cients c0 , . . . , ck . Then A = VDV T is the eigenvalue decomposition and
A j = VD jV T . Hence p(A) = V p(D)V T .

(The same proof holds for non-symmetric matrices with the Jordan canon-
ical decomposition instead.)

Lemma 30.2 (Gerschgorin disks, Golub and van Loan Theorem 7.2.1)
Let A be any matrix. Suppose that A = D+ F where D is diag-
onal and F has zero diagonal. (So D are the diagonal entries
of A and F are all the other entries. Then the eigenvalues of
A are contained within the set:

λ(A) ⊆ n⋃
i=1

G i

where G i is the ith Gerschgorin disk:

G i = {z ∈ C ∶ ∣z − D i , i ∣ ≤∑
j
∣Fi , j ∣.

proof Let λ ∈ λ(A) be any eigenvalue that is not equal to D i , i for any
i. Then Ax = λx yields:

(D + F − λI)x = 0⇔ x = (D − λI)−1Fx.
From the latter fact, we have:

1 ≤ ∥(D − λI)−1F∥
177

http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf
http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf
http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf

for any sub-multiplicative norm. If this is the∞-norm, then

∥(D − λI)−1F∥∞ =∑
j

∣Fk , j ∣∣Dk ,k − λ∣
for some value k. Or ∣Dk ,k − λ∣ ≤ ∑ j ∣Fk , j ∣ and so λ is in Gk .

Note that if λ = D i , i then this result holds immediately.

example 30.3 For the Laplacian matrix in Poisson’s equation on a 2d
mesh, all the Gerschgorin disks intersect and give a bound on the largest
eigenvalue of A of 8. ◆
30.2 the power method

Recall that one way to find the largest eigenvalue and associated eigen-
vector of a matrix is to use the power method

Given a starting vector x with norm(x) = 1 and tolerance τ
Iterate

y = Ax
λ = xTy
x = y/ norm(y)

Until norm(Ax − λx) ≤ τ (your tolerance)

If the largest magnitude eigenvalue associated with A is unique, then this
iteration converges to it.

— TODO – Insert picture of the eigenvalue convergence.

30.2.1 A useful upper bound on the spectral radius of a symmetric positive
definite matrix.

In many cases, we do not actually need the largest eigenvalue of a
matrix itself, but rather, a bound on the spectral radius. That is, we want to
compute a value θ such that ρ(A) ≤ θ. This is easy to do via Gerschgorin
disks. However, we also usually want θ to be close to ρ(A). Gerschgorin
disks can be fairly far away.

example 30.4 Consider the matrix A = [0 eT

e 0] where e has length
n. Then the Gerschgorin bound on the largest eigenvalue if n. However,
the largest eigenvalue is actually

√
n. ◆

For this reason, we might think of using the power method to approxi-
mate the spectral radius. For a symmetric matrix, however, we will always
have ∣λ∣ ≤ ∣ρ(A)∣ because the spectral radius is the most extreme point.
The following theorem gives an upper bound.

Theorem 30.5 (Trevisan 9.6, Lecture Notes on Graph Partitioning, Expanders and Spectral Methods, 2006)
Let M be a symmetric positive semi-definite matrix, then
running the power method for k steps from a vector x(0) with

178 vii ⋅ eigenvalue algorithms

x(0)i = ±1 at random, produces a vector x(k) with Rayleigh
quotient

x(k)
T
Mx(k)/x(k)Tx(k) ≥ ρ(A)(1 − ε) 1

1 + 4n(1 − ε)2k .
with probability at least 3/16.

This can be then translated into a useful upper-bound on ρ(A) and
you can use the tightest value of ε to make the result you want.

30.2.2 The smallest eigenvalue of a symmetric positive semi-definitematrix.

The above result gives us an immediate algorithm to find the smallest
eigenvalue of a symmetric positive semi-definite matrix. We get an upper-
bound θ ≥ ρ(A) and run the power method on θI − A. In this case, we
have to adjust the eigenvalue estimate λ = xTy to λ = θ − xTy to adjust for
the difference.

30.2.3 The inverse power method.

There are a variety of ways to use the power method to get other
eigenvalues besides the largest. The first is the inverse power method,
where we run the power method on A−1 itself, which corresponds to the
changing one line of the iteration:

y = Ax → Ay = x
so that we solve a linear system at each step. With this change, the power
method will converge to the smallest magnitude eigenvalue of A instead.
(That is, the one closest to 0.)

— TODO – Insert picture of the eigenvalue transformation 1/λ
30.2.4 Targeting a specific eigenvalue.

If we wish to find an eigenvalue close to a value α, then we can use the
iteration: (A− αI)y = x.
The eigenvalues of A that are near α will be close to zero in the matrix(A− αI), and so when we use inverse iteration on (A− αI) then we will
find those as the solutions.

— TODO – Insert picture of the eigenvalue transformation 1/(λ − α)
30.2.5 Using a folded spectrum to target an eigenvalue.

If A is large and sparse, then wemay not have a goodway to solve linear
systems with A. This is often the case for problems that arise based on data
where we do not have well-known and effective preconditioner techniques.
In this case, if we are interested in finding the smallest eigenvalue, we can
employ an idea called the folded spectrum. The idea is that A2 is always
a symmetric positive semi-definite matrix whose small eigenvalues are

30 ⋅ eigenvalue algorithms 179

close to 0. If we have an upper-bound on the spectral radius of θ2 ≤ A2,
then we can use the same idea for the smallest eigenvalue of a symmetric
positive semi-definite matrix.

This can further be adapted to target an eigenvalue near α by using(A− αI)2 to make eigenvalues nearby α close to zero. This approach is
called the folded spectrummethod.

30.2.6 Finding other eigenvalues via deflation

We can actually use the power method itself to compute multiple
eigenvectors via a procedure called deflation. Let x, λ be an eigenpair of A.
Then create a householder matrix H with x as associated vector such that
Hx = e1. The matrix HAHT has the following structure:

[λ 0
0 B]

This is actually what we did way back when we created the SVD!

example 30.6 Here is some example code to demonstrate this.
A = randn (5 ,5)
A = A+A’
Example of the deflation method
λs,X = eig(A)
eval = rand (1: size(A ,2))
x = X[:, eval] # just an
xe1 = zeros (size(A ,1))
xe1 [1] = norm(x)
v = xe1 −x
H = eye(size(A)...) − 2∗v∗v’/(v’∗v)
display (H∗A∗H’)
display (λs[eval])

30.3 subspace iteration and the qr algorithm

We can generalize the power method to compute the largest few eigen-
values and vectors.

Given a starting orthogonal matrix X and tolerance τ
Iterate

Y = AX
Λ = diagonal elements of XTAX arranged as a diagonal matrix
[X , R] = qr(Y)

Until norm(AX − XΛ) ≤ τ (your tolerance)

Again, if the matrix is symmetric, and these large eigenvalues are unique,
we can show that this converges. This method is also called the block
power method or the orthogonal iteration.

30.3.1 Subspace iteration

Except that when this is usually done, we want to do it for all eigenval-
ues and vectors, and start with the identity matrix.

180 vii ⋅ eigenvalue algorithms

Given tolerance τ
Set X = I
Iterate

Y = AX
Λ = diagonal elements of XTAX arranged as a diagonal matrix
[X , R] = qr(Y)

Until norm(AX − XΛ) ≤ τ (your tolerance)

example 30.7 Here’s one sample of the subspace method converging
A = randn (5 ,5)
A = A+A’

X = eye(size(A ,1) , size(A ,2))
D = diagm (sort(diag(X’∗A∗X)))
for i = 1:200

Y = A∗X
D = diagm (sort(diag(X’∗Y)))
X,R = qr(Y)

end
@show [diag(D) eigvals (A)]

30.3.2 The QR iteration

Here’s another way you’ll read about to compute eigenvalues and eigen-
vectors and it’s called the QR iteration.

Given tolerance τ
X = I
Iterate

Q , R = qr(A)
A = RQ.
Λ = diagonal elements of A arranged as a diagonal matrix
X = XQ

Until norm(AX − XΛ) ≤ τ (your tolerance)

When I saw this algorihtm, I found it truly strange! Why would you
take the product of a QR factorization in the reverse order? The following
important note gives some intuition for what is going on:

Important note. A = QR implies that R = QTA. So Anext = QTAQ.
Essentially, we are multiplying by an orthogonal matrix on the left and the
right.

example 30.8 Here’s one sample of the QR iteration converging
X = eye(size(A ,1) , size(A ,2))
A = copy(Ainit)
for i = 1:100

Q,R = qr(A)
A = R∗Q
D = diagm (sort(diag(A)))
X = X∗Q

end
@show [diag(D) eigvals (Ainit)]

30 ⋅ eigenvalue algorithms 181

30.3.3 QR and Subspace Iteration are equivalent

Here, we’ll consider the following two methods and show that they are
equivalent.

Subspace iteration

X0 = I
for i = 1, ...
X i , R i = qr(AX i−1)

QR iteration

A1 = A
for i = 1, ...
Q i , R i = qr(Ai)
Ai+1 = R iQ i

Lemma 30.9
X i = Q1Q2⋯Q i

proof We’ll prove this by induction. The key insight is that R i is
actually the same matrix. (Technical note, we need to assume that the
signs of the diagonal elements of R i are taken to be positive to get a unique
Q factor in the QR decomposition.)

Base case. X1 = qrQ(AX i−1) = qr(A) and also Q1 = qrQ(A) as well.
Because R i = QT

1 A = XT
1 A, we get the same R i factor here.

Inductive hypothesis. We assume that X i = Q1Q2⋯Q i .
Important note. We saw this before, but Ai = Q iR i implies that

R i = QT
i Ai . So Ai+1 = QT

i AiQ i . If we iterate this, then note that

Ai+1 = QT
i AiQ i = QT

i ⋯QT
1 AQ1⋯Q i .

By our induction hypotheis Ai+1 = XT
i AX i .

Note that X i+1R i+1 = qr(AX i) = qr(AQ1⋯Q i).
So XT

i+1AQ1⋯Q i = R i+1.

30.3.4 The issue with QR

The problem with the QR method is that it is very expensive. Each
iteration is O(n3).

In order to make this more efficient, we want to translate the matrix
A into one that has a structure that makes the RQ-iteration efficient. The
properties we need are:

1. we can translate a general symmetricmatrixA to amatrixBwith this
property via orthogonal transformations B = QTAQ or similarity
transformations B = X−1AX (so we preserve eigenvalues)

2. computing a QR factorization of B is efficient
3. computing the product RQ is efficient
4. the matrix RQ has the same property as B.

There are some modestly esoteric classes of matrices that enable these
(such as hierarchical semi-seperable), but the most straightforward case is
a tridiagonal matrix.

182 vii ⋅ eigenvalue algorithms

Here, we show that if B is tridiagonal, then RQ is also tridiagonal.
This gives us most of the properties since we always saw how tridiago-
nal matrices enable a linear-time QR factorization. (In the section on
GMRES.)

Consider a symmetric tridiagonal matrix

B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ●● ● ●● ● ●● ● ●● ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then in the first step of QR, we are going to “zero” out the 2, 1 entry

via a Givens transform. This gives us:

Q1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ●● ●
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
QT

1 B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
0 × ×● ● ●● ● ●● ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ● ●● ●
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
QT

2 Q
T
1 B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ● ●
0 × × ×

0 × ×● ● ●● ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Hence, at the end, we’ll have

QT
4 Q

T
3 Q

T
2 Q

T
1 B = R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ● ●
0 ● ● ●

0 ● ● ●
0 ● ●

0 ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q = Q1Q2Q3Q4 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ●● ●
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ● ●● ●
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋯

30 ⋅ eigenvalue algorithms 183

So

RQ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ● ●
0 ● ● ●

0 ● ● ●
0 ● ●

0 ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ●● ●
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¸¹¹¹¶
linear combination of columns 1,2

Q2Q3Q4 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ●× × ● ●
0 ● ● ●

0 ● ●
0 ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Q2Q3Q4

=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● × ×● × × ●× × ● ●
0 ● ●

0 ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Q3Q4

=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ● × ×● ● × ×● × × ●× × ●
0 ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Q4

=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

● ● ● × ×● ● ● × ×● ● × ×● × ×× ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Wecan keep goingwith this andwe’ll find thatRQ is upper-Hessenberg.
But, R = QTA so RQ = QTQQ is symmetric, upper-Hessenberg, i.e.

tridiagonal!

30.4 reduction to tridiagonal form

example 30.10 A = randn(6) ◆
30.5 qr with shifts

30.6 eigenvalues and eigenvectors of sparse
matrices

Run the power method! Then we’ll get

184 vii ⋅ eigenvalue algorithms

30.6.1 Deflation

30.6.2 Subspace iteration

30.6.3 Lanczos

30.6.4 ARPACK

example 30.11 This example shows how to use the eigs function in
Matlab

A = sprandsym (10000 ,50/10000);
[V,D] = eigs(A);

30 ⋅ eigenvalue algorithms 185

186 vii ⋅ eigenvalue algorithms

ALGORITHMS FOR THE SVD 31
The entire goal of our class was to help study matrix problems through

their structure. Here we will consider matrices that have what we will call
"bipartite" structure, following the conventions of a graph theory view on
matrices. Amore standard name for this structure is "consistently ordered"
but that includes quite a few more details.

Where do bipartite matrices arise? The first place is in algorithms for
the SVD. Another place is the 2d Laplacian, or any matrix derived from
a bipartite graph. The point of this lecture is to look at the relationships
between these persepctives.

We have seen algorithms to compute eigenvalues of matrices. Algo-
rithms for the SVD follow from two points of view. Assume without loss
of generality that A has more rows than columns.
view 1 The singular values of the matrix A are the eigenvalues of ATA
view 2 . The singular values of the matrix A are the positive eigenvalues

of B = [0 A
AT 0].

The matrix B in view 2 is a specific instance of a bipartite matrix!
More generally, the theorem underlying **View 2** is

Theorem 31.1
Let B = [0 A

AT 0] and let A = UΣV T be the SVD of A. Then

the eigenvalues of B are ±σi along withm+ n− 2n additional
zeros. Given an eigenvalue +σi eigenvector Bz = σz if we

partition z = [x
y
]. Then, Ay = σx is one of the singular

vectors and value sets.

proof WehaveB = [0 UΣV T

VΣTU T 0] = [U 0
0 V] [0 Σ

ΣT 0] [U 0
0 V].

—TODO– Showmore of this matrix, including the number of zeros. Then
note that there exists a permutation matrix P such that

P [0 Σ
ΣT 0]PT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 σ1
σ1 0

0 σ2
σ2 0 ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
—TODO –Work out more of this matrix, including the number of zeros.

187

Further, we have

[0 σi
σi 0] = [−1/

√
2 1/√2

1/√2 1/√2] [+σi −σi] [−1/
√
2 1/√2

1/√2 1/√2] .
At which point, we are done.

This enables us to work with the matrix B instead of A. Of course, we
do not actually form B, rather we work with it implicitly.

Just like eigenvalue algorithms, the first step is to reduce the matrix
size via a set of orthogonal operations. For the SVD, we can make this
two-sided! This enables us to reduce A to a bidiagonal matrix F .

— TODO – New nodes on doing the bidiagonal reduction via a full
Householder step on the left, then a partial on the right, and then full on
the left. ...

— TODO – Note that we could do lower-bidiagonal too!
We can also see this via the Lanczos perspective. Consider running

the Lanczos method on B.

example 31.2 A =
−5.0 −5.0 5.0 −3.0
−3.0 −2.0 −1.0 1.0

4.0 3.0 0.0 −4.0
0.0 2.0 −4.0 3.0

−5.0 0.0 −3.0 −1.0
5.0 2.0 2.0 −2.0

U,T,rho = lanczos (A, [ones (6); zeros (4)] , 4)

U =
10 x 5 Array {Float64 ,2}:

0.408248 0.0 0.558726 0.0
0.446931

0.408248 0.0 −0.0423861 0.0
0.410261

0.408248 0.0 −0.0192664 0.0 −0.687834
0.408248 0.0 −0.5279 0.0

0.214123
0.408248 0.0 0.466248 0.0 −0.332179
0.408248 0.0 −0.435421 0.0 −0.0513024
0.0 −0.549442 0.0 −0.540403

0.0
0.0 0.0 0.0 −0.636057

0.0
0.0 −0.137361 0.0 0.47354

0.0
0.0 −0.824163 0.0 0.281345

0.0

T =
0.0 2.97209
2.97209 0.0 5.94127

5.94127 0.0 7.37874

188 vii ⋅ eigenvalue algorithms

7.37874 0.0

There is a large amount of structure that emerges! Let’s decode this
structure!

31 ⋅ algorithms for the svd 189

190 vii ⋅ eigenvalue algorithms

APPLICATION
DERIVATIONS VIII

192 viii ⋅ application derivations

DERIVATION OF THE HILBERT MATRIX 32
Oneof themost interestingmatrices andmatrix problems arose around

the turn of the century when David Hilbert wanted to look at approximat-
ing functions by polynomials. This leads to a way to quantify how difficult
a linear systems is to solve on the computer, called the condition number.

Given a function f (x) we want to create a polynomial approximation
p(x) that minimizes the squared error over the interval [0, 1]. Let p(x) =
c1 + c2x + c3x2 +⋯ + ckxk−1. Then we want to pick c such that:

E(c) = ∫ 1

0
(f (x) − p(x))2 dx

is as small as possible. If we simply expand the objective function, then
we have:

E(c) = ∫ 1

0
(f (x) − p(x))2 dx = ∫ 1

0
(f (x) −∑k

j=1 c jx j−1)2 dx
E(c) = k∑

j=1

k∑
i=1

c i c j ∫ 1

0
x j−1x i−1 dx−2 k∑

j=1
c j ∫ 1

0
f (x)x j−1 dx+ ∫ 1

0
f (x)2 dx .

Hence, we have
E(c) = cTAc − 2cTb

where

A i j = ∫ 1

0
x j−1x i−1 dx = 1/(i + j − 1) b j = ∫ 1

0
f (x)x j−1 dx .

This minimizer of this is just the solution Ac = b.
But the matrix A is surprising. It is called the Hilbert matrix (after

David Hilbert) and is one of the most highly sensitive linear systems of
equations (see lecture 18).

193

194 viii ⋅ application derivations

CHESS RANKING 33
Discuss Vigna’s early reference along with Richard Brent’s paper.

195

196 viii ⋅ application derivations

Learning objectives
1. See the derivation of the PageR-

ank linear system of equations.
2. See the relationship between

PageRank and an eigenvector
problem.

1 This graph was originally created
around 2013, so the the data may
have changed slightly.

2 Formally, this is a memoryless
stochastic process, also called a
Markov chain.

PAGERANK 34
The goal of PageRank is to estimate the most important nodes in a

directed graph. Methods to address the importance of nodes in a graph are
an instance of centrality computations in network analysis. PageRank was
initially conceived of for this question when the directed graph represents
a set of connected web pages on the internet. Consequently, you may
often hear a vertex or node called a page and a directed edge a link in this
context.

Let A be the adjacency matrix of a directed graph. An entry of A i j = 1
when there is a directed edge from node i to node j and an entry has a
value of 0 otherwise. Here is an example where we have extracted a subset
of articles fromWikipedia and the directed links among them.1

PageRankMarkov chain

Google

Linear system
Eigenvector

Vector space

Adjacency matrix

GraphDirected graph

Multiset

A =

Pa
ge
Ra
nk

Go
og
le

Ad
jac

en
cy

m
atr

ix
M
ar
ko
v c

ha
in

Ei
ge
nv
ec
to
r

Di
re
cte

d
gr
ap
h

Gr
ap
h

Li
ne
ar
sy
ste
m

Ve
cto

r s
pa
ce

M
ul
tis
et

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
1 1 0 0 1 1 0 1 0 0
1 1 1 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PageRank
Google
Adjacency matrix
Markov chain
Eigenvector
Directed graph
Graph
Linear system
Vector space
Multiset

The way that importance works in PageRank is that we model a pro-
cess2 that behaves as follows. At node i

· with probability α, we follow an out-edge to another node. (If there
are no out-links, then we jump to a page chosen uniformly at ran-
dom.)

· with probability (1 − α), we jump to a page chosen uniformly at
random (a reset or restart behavior).

This process is related to a so called random surfer model because it models
someone randomly clicking around web pages. (This activity used to be
called surfing the web.) At each page, we click a random link. Periodically,
we restart the session entirely – like when someone would get up. This
idea was a better model for how people engaged with the web in 1998 than
it is for the modern social network dominated web and its algorithmic
feeds, but let us continue to analyze it anyway.

197

3 For our case, we have the indices
1 PageRank
2 Google
3 Adjacency matrix
4 Markov chain
5 Eigenvector
6 Directed graph
7 Graph
8 Linear system
9 Vector space
10 Multiset

4 This limit of averages is an in-
stance of what is also called a
Cesáro sum.

Add a reference for where
this can be found.

Assume that each node has an associated index from 1 to n, the total
number of nodes.3 Let Xt be the identity of the node the process is on at
step t. These values are an infinite sequence that represents the behavior.
An example is

X1 X2 X3 X4 X5 X6 X7 ⋯
1 → 3 → 5 → 9 reset 4 → 5 → 4 →

We see a reset after the third step. The PageRank vector of the graph is
defined as the amount of time that this process spends in each node as it
runs forever

x i = lim
T→∞

1
T

T∑
t=0

⎧⎪⎪⎨⎪⎪⎩
1 Xt = i
0 otherwise

.

Let’s explain the sum. For shorthand, note that we can replace the two
cases with an indicator function and Ind[Xt = i] is exactly the function
with value 1 if Xt = i and 0 otherwise. Let f i(T) = 1

T ∑T
t=0 Ind[Xt = i].

Note that f i(T) is always a probability distribution over all nodes i. This
property occurs because there are exactly T places where Ind[Xt = i] is 1
as we look over the choices of i. Consequently, we have a limit of averages
over where the process spends its time.4 Let x be the vector formed by
the x is. Then the vector xmust be a probability distribution itself. These
distributions are also called stochastic vectors.

Definition 34.1 (stochastic vector)
A stochastic vector v has non-negative entries that sum to 1,
that is, v i ≥ 0 and eTv = 0.

In turns out that x always exists for any sample of amemoryless stochas-
tic process, but it need not be unique. We won’t prove this as it’s a lengthy
diversion. For the PageRank process it is unique because of the reset steps,
although we can show this a slightly different way.

Since we know that x i exists, we can attempt to state conditions on
what must be true about it. Our strategy here is the same as we used in
the hitting time analysis in example 3.3. Since we have let the process run
for infinite time, then the probability of getting to x i must be able to be
deduced from the other probabilities. There are three ways to get to node
i

1. from an incoming link,
2. from jumping from a node with no outlinks
3. from a reset jump.

Let d j be the number of nodes that node j links to (so this is the out-degree
of node j). Then

x i = α ∑
j links to i

x j/d j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
incoming links

+ α ∑
j with d j=0

x j/n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nodes with no outlinks

+(1 − α) n∑
j=1

1/n
´¹¹¹¹¹¹¸¹¹¹¹¹¶

reset jumps

.

198 viii ⋅ application derivations

5 This “0-ignoring” inverse is often
called the pseudoinverse.

6 Note that we have c = 0 for
the example with the pages from
Wikipedia.

do this!

Note that this is a linear system of equations, we now seek to introduce
notation to understand it better.

Let P be the matrix where

P̄i , j = ⎧⎪⎪⎨⎪⎪⎩
1/d j node j links to node i, d j > 0
0 otherwise.

If A is the adjacency matrix described above then

P̄ = ATD−1 where D−1i j = ⎧⎪⎪⎨⎪⎪⎩
1/d i i = j, d j > 0
0 otherwise.

The matrix D−1 is really the inverse of the diagonal matrix of node degrees,
where we simply skip over any node with degree 0.5 Let c be the indicator
vector where c i = 1 for all nodes with d i = 0 and c i = 0 for all other nodes,
that is c i = Ind[d i = 0]. Then we can rewrite the elementwise system as

x = αP̄x + αe(cTx)/n + (1 − α)e/n.
If the graph underlying the problem is connected or all pages have outlinks,
then we will have c = 0.6

Let uswrite an example of these equations for the introductory example
of Wikipedia

dothis

34.1 the pagerank linear system & some
notation .

It turns out that we can simplify this setting even more. Note that
the way we have defined P̄ and c are coupled. Columns of P̄ correspond
the outlinks of nodes. For each node without outlines, the corresponding
column of P̄ is empty. This means that c really is an indicator vector over
the columns of P̄ that are empty. Let v be any stochastic vector, which
includes the choice above v = e/n. We can combine these elements into
into a single matrix

P = P̄ + vcT .
Each columnof thismatrixP is now a stochastic vector, which is something
we call a column stochastic matrix.

Definition 34.2 (column stochastic matrix)
A column stochastic matrix P has the property each column
is a stochastic vector, equivalently we have Pi , j ≥ 0 and eTP =
eT .

example 34.3 When P = P̄+vcT , let’s check that it is column stochas-
tic. Since all the quantities are non-negative, we have Pi , j ≥ 0. Now for

34 ⋅ pagerank 199

TODO

eTP = eT , we have
eT(ATD−1 + vcT) = (Ae)T´¹¹¹¹¸¹¹¹¹¶

outdegrees d i or 0

D−1 + (eTv)cT

= Ind[d i > 0]T + Ind[d i = 0]T = eT . ◆
Consequently, the PageRank equation above is

x = αPx + (1 − α)v
where we have substituted v for the stochastic vector e/n. This is currently
written as a fixed point. Usually we write linear systems with a single
variable. This results in the following definition of

Definition 34.4 (PageRank)
The PageRank vector x is defined as the solution of the linear
system

x = αPx + (1 − α)v ⇔ (I − αP)x = (1 − α)v
where P is a column stochastic matrix, 0 < α < 1, and v is a
stochastic vector.

example 34.5 Let us show from this definition that x is a stochastic
vector. , the tricky part is non-negativitiy. ◆
34.2 the pagerank eigenvalue problem

Recall the PageRank vector is the solution of the linear system

(I − αP)x = (1 − α)v
where x is a stochastic vector where eTx = 1. Then we can multiply by just
the right value of 1 to write

x = (αP + (1 − α)veT)x.
This new formulation is an eigenvalue problem instead of a linear system.

34.3 algorithms for pagerank

All of the algorithms from this book can be specialized for PageRank.
We highlight a few key ideas in the problems below.

exercises

1. Let A be a symmetric matrix for the adjacency matrix of an undi-
rected graph. Show that we can multiply the PageRank vector x

200 viii ⋅ application derivations

by a diagonal matrix B to find y = Bx where there is a symmetric
positive definite linear system that we can solve to find y.

2. Develop an algorithm for coordinate descent on the PageRank linear
system.

3. Compare sequential and parallel variable updates on a binomial
random graph. These binomial random graphs can be generated
easily using sprand in Julia and Matlab.

1 using SparseArrays
2 """
3 binomial_graph (n,d)
4
5 Generate a binomial random graph , also called an Erdos Renyi graph ,
6 with n vertices and average degree d. The return value is a sparse
7 adjacency matrix . If d > O(log(n)), for a small constant ,
8 then the graph is connected with high probability . Often
9 d > 2 log(n) is sufficient .
10 """
11 function binomial_graph (n:: Integer ,d:: Real)
12 A = sprand (n, d/n)
13 map !(x−>x > 0 ? 1.0 : 0, A. nzval)
14 return A
15 end

4.
5.

34 ⋅ pagerank 201

202 viii ⋅ application derivations

COLOPHON VIII

204 viii ⋅ application derivations

BIBLIOGRAPHY 34
N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On the spread of
viruses on the internet. In Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 301–310. 2005. Cited on
page 33.

R. Ghosh, S.-h. Teng, K. Lerman, and X. Yan. The interplay between
dynamics and networks: Centrality, communities, and cheeger inequality.
In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1406–1415. 2014. doi:10.

1145/2623330.2623738. Cited on page 33.

L. Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18 (1), pp. 39–43, 1953. doi:10.1007/BF02289026. Cited on page
33.

D. B. Larremore, B. K. Fosdick, K. M. Bubar, S. Zhang, S. M. Kissler,
C. J. E. Metcalf, C. Buckee, and Y. Grad. Estimating sars-cov-2
seroprevalence and epidemiological parameters with uncertainty from
serological surveys. medRxiv, 2020. arXiv:https://www.medrxiv.

org/content/early/2020/06/22/2020.04.15.20067066.full.pdf, doi:
10.1101/2020.04.15.20067066. Cited on page 33.

205

http://dl.acm.org/citation.cfm?id=1070432.1070475
http://dl.acm.org/citation.cfm?id=1070432.1070475
http://dx.doi.org/10.1145/2623330.2623738
http://dx.doi.org/10.1145/2623330.2623738
http://dx.doi.org/10.1145/2623330.2623738
http://dx.doi.org/10.1145/2623330.2623738
http://dx.doi.org/10.1007/BF02289026
http://dx.doi.org/10.1007/BF02289026
http://dx.doi.org/10.1101/2020.04.15.20067066
http://dx.doi.org/10.1101/2020.04.15.20067066
http://dx.doi.org/10.1101/2020.04.15.20067066
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/06/22/2020.04.15.20067066.full.pdf
http://arxiv.org/abs/https://www.medrxiv.org/content/early/2020/06/22/2020.04.15.20067066.full.pdf
http://dx.doi.org/10.1101/2020.04.15.20067066
http://dx.doi.org/10.1101/2020.04.15.20067066

206 BIBLIOGRAPHY

BETTER NAMES IN MATRIX COMPUTATIONS A
hankel matrix left shift matrix
toeplitz matrix right shift matrix
hessenberg matrix bulge triangular

jacobi method simultaneous variable updates / solves / improvement / relaxation
parallel variable updates / solves / improvement / relaxation

gauss-seidel method sequential variable updates / solves / improvement / relaxation
gauss-seidel method sequential variable updates / solves / improvement / relaxation
cesáro sum or mean limit of averages

207

	Matrix Problems and Structure
	What is a matrix?
	Notation
	Structure in Matrices
	A Matrix Model of Viral Spread
	Candyland and Working with Sparse Matrices
	Matrix and Vector Norms

	Simple Iterative Algorithms
	Simple Iterative Methods
	Steepest Descent and Gradient Descent
	Simultaneous and Sequential Variable Updates (aka Jacobi and Gauss-Seidel)
	Eigenvalues and the Power Method

	Finitely Terminating Algorithms
	Elimination methods for linear systems
	Symmetric Positive Definite Systems and Variable Elimination
	General Variable Elimination
	Pivoting and Variable Elimination
	Elimination methods for least squares
	Least squares via QR factorization and orthogonalization

	Analysis
	Time and memory requirements
	Sensitivity and Conditioning
	Conditioning of Least Squares and the Pseudoinverse
	Backwards stability
	Backwards Stability of LU Decomposition

	Subspace Methods
	The Matrix Powers Subspace, aka the Krylov Subspace
	Orthogonal Bases for The Matrix Powers Subspace, aka The Arnoldi and Lanczos Processes
	Conjugate Gradient
	Orthogonal Polynomials and Matrix Computations
	Efficient GMRES

	Advanced Problems
	Multiple Right Hand Sides
	Preconditioning

	Eigenvalue Algorithms
	Eigenvalue Theory
	Eigenvalue Algorithms
	Algorithms for the SVD

	Application Derivations
	Derivation of the Hilbert matrix
	Chess Ranking
	PageRank
	Better Names in Matrix Computations

