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Analyzing algorithms for linear systems, least squares, and eigenvalues.

We have now seen a few different types of algorithms to solve the fundamental matrix

computations.

Eliminationwith andwithout pivoting for linear systems, Richardson, SteepestDescent,

Gauss Seidel, Jacobi, etc.

How should we pick which one to use to solve our problem? There are various ways of

thinking about this question. The first one regards what is feasible with your matrix.

1 time and memory requirements

The simplest way to analyze the algorithms is in terms of how much time and memory

they require. It turns out memory is usually a more pressing constraint than time. So let’s

start with that one!

To run the Richardson method or steepest descent method, we require:

1. a way to multiple A by a vector v

2. memory to store two or three vectors of length n. (You saw this on the homework.)

To run the elimination matrix that gave us the LU factorization of a matrix, we require:

1. O(n2)memory for a general matrix problem because we change the matrix after

the first step

2. O(n)memory for the changes to the vector b 1 1 These can often be done in place as well.

For a general dense matrix, there is no difference between the memory requirements.

However, for a matrix with any type of structure, or especially sparse structure, then it

is easier to think about how to exploit that structure to make the Richardson, steepest

descent method run with less memory.

Consider amatrix that is Toeplitz. For Richardson, we only need to storeO(n)memory

to be able to do the matrix-vector products. Whereas for the LU factorization, we will

need to build the matrix at O(n2)memory in order to run the algorithm.

Of course, there is the problem of how long the Richardsonmethod takes, and whether

or not it will even converge. (Remember, we only showed that we could guarantee conver-

gence for a symmetric positive definite matrix.)

2 the flop count

One common way of evaluating the work of an algorithm is in terms of the number of

floating point operations it does. This measure is classical, but still important, because *

floating point operations used to be muchmore expensive than other processor operations

* most systems now have special hardware dedicated to floating point computation such

as vector processing units (called AVX on Intel processors) or GPUs. Hence, having a

fairly exact count of the number of FLOPS allows us to understand how fast a particular

operation may go on a computer.

Aside. There is a lot more to high performance computations, such as

cache efficient, blocking, vectorization, than just purely understanding the

FLOPS, however. The use of FLOPS counts are largely just to suggest an

upper-bound on performance.
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Aside again. What is a FLOP and FLOPS? A floating point operation

(FLOP). Or a floating point operation per second (FLOPS)? Suffice it to

say that these acronyms are used inconsistently and potentially mixed. The

context determines if we are counting floating point operations (FLOPs) or

measuring floating point operations per second (FLOPS).This is extremely

confusing when there is a prefix. What is one gigaflop? One billion floating

point operations or one billion floating point operations per second. Again,

context will determine if we are counting or timing.

2.1 A WARM UP: THE FLOP COUNT OF MATRIX-MULTIPLY.
Consider the following algorithm for multiplying two matrices.

1 function matmul(A::Matrix, B::Matrix)

2 m,k = size(A)

3 k,n = size(B)

4 C = similar(A, m, n)

5 fill!(C, 0)

6 for j=1:n

7 for i=1:m

8 for r=1:k

9 C[i,j] += A[i,r]*B[r,j]

10 end

11 end

12 end

13 return C

We can count the number of FLOPs by looking just at the inner-loop, which is an

inner-product. Let’s consider a simple 4-element vector

C[i , j] = A[i , 1] ∗ B[1, j] + A[i , 2] ∗ B[1, 2] + A[i , 3] ∗ B[3, j] + A[i , 4] ∗ B[4, j].

There are 4 multiplications and 3 additions, for a total of 7 flops. The way our code above

works, however, is to use 8 flops because we always add to the existing value:

C[i , j] ← C[i , j]+A[i , 1]∗B[1, j]+A[i , 2]∗B[1, 2]+A[i , 3]∗B[3, j]+A[i , 4]∗B[4, j].

Here, we have the convention that← is the “assign’ ’ operation, which is commonly ex-

pressed as = inside of programming languages, but has a distinct meaning from the

mathematical = operation. For instance, \verb{x = 2*x} is perfectly common computer

code, but if used mathematically essentially implies that x = 0.
Consequently, there are 2r FLOPs in the innermost loop. This is executed mn times,

so there are 2rmn FLOPs in this computation of a matrix-matrix product.

2.2 THE FLOP COUNT OF LU
Let’s consider something more interesting, the pivoted LU decomposition of a matrix.

Our code is

1 function myreduce_all_pivot(A::Matrix)

2 A = copy(A) # save a copy

3 n = size(A,1)

4 L = Matrix(1.0I,n,n)

5 U = Matrix(1.0I,n,n)

6 d = zeros(n)

7 p = collect(1:n)

8 for i=1:n-1

9 maxval = abs(A[i,i])

10 newrow = i

11 for j=i+1:n

12 if abs(A[j,i]) > maxval

13 newrow = j

14 maxval = abs(A[j,i])

15 end

16 end

17 if maxval < eps(1.0)
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18 error("the system is singular")

19 end

20

21 j = newrow

22 # swap the ith row/column

23 tmp = A[i,:]

24 A[i,:] .= A[j,:]

25 A[j,:] .= tmp

26

27 p[i],p[j] = p[j], p[i]

28 L[i,1:i-1], L[j,1:i-1] = L[j,1:i-1], L[i,1:i-1]

29

30 α = A[i,i]

31 d[i] = α
32 U[i,i+1:end] = A[i,i+1:end]/α
33 L[i+1:end,i] = A[i+1:end,i]/α
34 A[i+1:end,i+1:end] -= A[i+1:end,i]*A[i,i+1:end]’/α
35 end

36 d[n] = A[n,n]

37 return L,U,d,p

38 end

In the first block of code (lines 2-7) we do no FLOPs because it’s just allocatingmemory.

There are n − 1 executions of the loop on line 8, and each execution consists of

· Line 12: (n − i) floating point comparisons (these are counted because they may

require something like a subtraction), whereas absolute values are not because

they can be done with an extremely simple operation.

· Lines 21-28: a swap, that does not involve FLOPs

· Lines 32-33: 2(n − i) divisions
· Line 34: 3(n − i)2 multiplications, additions, and divisions (one of each for each

of (n − 1)2 elements.

Next, we have to sum this over all i. So the total FLOP count of this implementation is

n−1

∑
i=1
(n − i) + 2(n − i) + 3(n − i)2 .

There are various rules to compute these sums called a “finite calculus’ ’ that work like a

crank equivalent to standard calculus. However, I find it easier just to use Wolfram Alpha,

which yields
n−1

∑
i=1
(n − i) + 2(n − i) + 3(n − i)2 = n3 − n.

Note, however, that we can reduce Line 34 to $2(n-i)ˆ2 FLOPs if we use the elements

of either L or U by avoiding the division. Also, note that if we actually computed the

standard LU decomposition where U[i , i + 1 ∶ end] = A[i , i + 1 ∶ end] then we could

further avoid n − i divisions, yielding a more efficient count of

n−1

∑
i=1
(n − i) + (n − i) + 2(n − i)2 = 2

3
(n3 − n).

Aside. Note that these final sums must be integer values!

3 sensitivity of input-output maps

3.1 DERIVATION OF THE HILBERT MATRIX
One of the most interesting matrices and matrix problems arose around the turn of the

century when David Hilbert wanted to look at approximating functions by polynomials.

This leads to a way to quantify how difficult a linear systems is to solve on the computer,

called the condition number.
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Given a function f (x) we want to create a polynomial approximation p(x) that
minimizes the squared error over the interval [0, 1]. Let p(x) = c1+c2x+c3x2+⋯+ckxk−1.

Then we want to pick c such that:

E(c) = ∫ 1

0
( f (x) − p(x))2 dx

is as small as possible. If we simply expand the objective function, then we have:

E(c) = ∫ 1

0
( f (x) − p(x))2 dx = ∫ 1

0
( f (x) −∑k

j=1 c jx j−1)2 dx

E(c) =
k

∑
j=1

k

∑
i=1

c i c j ∫ 1

0
x j−1x i−1 dx − 2

k

∑
j=1

c j ∫ 1

0
f (x)x j−1 dx + ∫ 1

0
f (x)2 dx .

Hence, we have

E(c) = cTAc − 2cTb
where

A i j = ∫ 1

0
x j−1x i−1 dx = 1/(i + j − 1) b j = ∫ 1

0
f (x)x j−1 dx .

This minimizer of this is just the solution Ac = b.
But the matrix A is surprising. It is called the Hilbert matrix (after David Hilbert) and

is one of the most highly sensitive linear systems of equations.

3.2 AN INFORMAL ANALYSIS
To understand why, consider what happens if we make a tiny error in evaluating b.

The answer we want is the solution x in Ax = b but we actually see b′ = b+ d where ∥d∥ is
very small. Then, we would compute

Ay = b′ y = x + A−1d.

Consequently, as a rough measure of sensitivity, we’d consider ∥A−1d∥.
As you might expect, the Hilbert matrix is sufficiently structured that we can just write

down the inverse after some tedious calculation. (Or we can just look it up on—say—

Wikipedia.)

A−1i j = (−1)i+ j(
n + i − 1
n − j

)(n + j − 1
n − i )(

i + j − 2
i − 1 )

2

This gets large extremely quickly.2 2 It seems like a good exercise in combina-

torics to work out what the one-norm of this

matrix is!
Hence, we have y = x + big ⋅ small, so in general, we’ll expect large changes to y if we

slightly change our right hand side.

3.3 A MORE REFINED ANALYSIS
Aside, for those with additional background on numerical analysis, we sug-

gest repeating this section withmore sophisticated and accurate quadrature

methods.

Recall that this problem is to approximate a function f (x) by a polynomial. That

problem itself actually is well conditioned.3 Small changes to f (x) give small changes to 3 Thematrix method is just one method of

solving the original problem, that happens to

result in a problem with an ill-conditioned

linear system of equations.

the polynomial.

The real problem here is that we have chosen to represent the polynomial in a mono-

mial basis. This is know to result in problems that occur because monomials are an

ill-conditioned basis for polynomials. Small changes to the monomial coefficients cause

big changes to the polynomial functions they represent. In this case, an issue that arises

for this problem is that a small perturbation to b actually gives a large perturbation to

f (x). Hence, we should see large changes to x even for small changes in b.
Let’s briefly study this perspective. Recall that

b j = ∫ 1

0
f (x)x j−1 dx .
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Suppose we use a crude approximation of the integral via a set of equally spaced points

x1 = 0, x2 = 1/N , x3 = 2/N , . . . , xN = (N − 1)/N , xN+1 = 1, then

b j ≈
N

∑
k=0

f (xk+1)x j−1
1/N .

Let f be a length N vector of these function values f i = f (x i). Then

b ≈ 1

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1

x1 x2 ⋯ xN
x21 x22 ⋯ x2N
⋮ ⋮ ⋱ ⋮

xn−11 xn−12 ⋯ xn−1N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x1)
f (x2)
f (x3)
⋮

f (xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f

or more compactly b = Mf .

The matrix M is non-singular as long as the points x1 , . . . , xN are distinct, which they

are for equally spaced points. So given a change to b, then M−1b gives the change to the

function values that b represents.

3.4 A FORMAL ANALYSIS: THE CONDITION NUMBER
This type of analysis has been formalized by studying the condition number of a

problem. Let

m(x) ∶ Rn → Rd

be a map that represents the mathematical relationship between the input to a computer

methodm to its output. For instance

· addition thenm(x) = x1 + x2
· subtraction thenm(x) = x1 − x2
· variance thenm(x) = ∑i(x i − 1/N∑ j x j))2
· linear system thenm(b) = A−1x

Note that, crucuially, m(x) represents the mathematical function we are trying to

compute and this has no aspect of the computer implementation.

QuizWhat is the mapm for least squares?

Once we have these functions, then we can study their relative sensitivity.

DEFINITION 1 The relative condition number of a map m relates the relative change of the
output with respect to the relative change of the input. For a specific change, d, the value is

κ(x, d;m) = ∥m(x + d) −m(x)∥/∥m(x)∥∥d∥/∥x∥ .

For the worst case on a differentiable function as ∥d∥ → 0, we have4 4 Note that the Jacobian is limd →
0∥m(x + d) −m(x)∥∥d∥.

κ(x;m) = ∥(∇m)(x)∥∥m(x)∥ ∥x∥ .

We need to be slightly careful with the choice of norm when we do these analyses in

terms of the dimension of the Jacobian matrix.

— TODO – Expand on this with Gautschi’s notes too.

EXAMPLE 2 What is the condition number of the simple act of multiplying two numbers? The
map m(x , y) = xy.

3.5 THE CONDITION NUMBER OF A LINEAR SYSTEM

For the mapm(b) = A−1b we have:

∇m = A−1 and Ax = b
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in which case we have

κ(b;m) = ∥A−1∥ ∥b∥
∥A−1b∥

but in terms of the solution x we have:

κ(b;m) = ∥A−1∥ ∥Ax∥∥x∥ .

Note that for any vector x and an operator induced norm, we have:

∥Ax∥
∥x∥ ≤ ∥A∥

by the definition of an operator-induced norm. Thus

κ(b;m) ≤ ∥A∥∥A−1∥ .

The condition number of solving a linear system arises so often that we give it a special

name.

DEFINITION 3 (condition number of a matrix) The condition number of a matrix is an upper bound
on the condition number of solving a linear system of equations for a general solution x and
a general right hand side b. We write

κ(A) = ∥A∥∥A−1∥

which gives the condition number for any operator induced matrix norm. The choice of norm
is typically the 2-norm unless otherwise specified.

3.6 THE CONDITION NUMBER OF A LEAST SQUARES SYSTEM
Consider a least squares problem with a full rank A

minimize
x

∥Ax − b∥ .

There are two natural maps to consider:

a map from b to x x = (ATA)−1ATb

a map from b to Ax y = A(ATA)−1ATb.
The vector y is the vector of least squares predictions. Even if x might be sensitive, it’s

possible that ymay be substantially less sensitive.

There is a nice geometric discussion of how to analyze conditioning for this problem

in Trefethen and Bau.5. 5 Trefethen and Bau, Lecture 18, Theorem 18.1

range(A)
b

θ

0

y

A least squares problem involves the interaction of bwith range(A). The angle between

the two is θ. If θ is zero, then b is in the range of A and the residual of the least squares

problem is 0$.

We can easily compute cos θ as the ratio ∥y∥/∥b∥. This quantity will play a role in the

conditioning. If θ = 0, then cos θ = 1, whereas if θ = ±π/2, then cos θ = 0.
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3.6.1 The Pseudoinverse.

It’s easiest to analyze this problem by establishing a single quantity for $(AˆT A)ˆ{-1}
AˆT $. This is the pseudoinverse.

A+ = (ATA)−1AT
.

However, we will write this in terms of the SVD of A. Let A = UΣV T
. Then

(ATA)−1 = (VΣTΣV T)−1 = V(ΣTΣ)−1V T

A+ = (ATA)−1AT = V(ΣTΣ)−1V TVΣTU T = V(ΣTΣ)−1ΣTU T
.

The term (ΣTΣ)−1ΣT
simplifies greatly. First, note that all matrices involved are diagonal.

Since we are looking at full rank least squares problems, then m ≥ n and all σi /= 0. Thus:

(ΣTΣ)−1 is n × n, diagonal =
⎧⎪⎪⎨⎪⎪⎩

1

σ 2
i

on diagonal

0 otherwise.

Hence, the entire matrix is:

(ΣTΣ)−1ΣT = n ×m, diagonal =
⎧⎪⎪⎨⎪⎪⎩

1

σ i
on diagonal

0 otherwise.

This defines the pseudo-inverse of a diagonal matrix, which we often write:

Σ+ = (ΣTΣ)−1ΣT
.

To recap: the pseudoinverse of A is

A+ = VΣ+U T
.

3.6.2 The condition number of least squares in terms of the pseudoinverse.

Let x = A+b. Then the condition number of the least squares vector x in terms of b is:

κ(b) = ∥A
+∥∥b∥
∥x∥ = ∥A+∥ ∥b∥∥y∥

∥y∥
∥x∥ =

∥A+∥
cos θ

∥y∥
∥x∥ .

This second term
∥y∥
∥x∥ =

∥Ax∥
∥x∥ measures how large y is compared with x. Clearly, this is

less than ∥A∥. So we have

κ(b) ≤ ∥A+∥∥A∥ 1

cos θ
.

However, if we let 1

η =
∥Ax∥
∥A∥∥x∥ , then

∥y∥
∥x∥ = ∥A∥

1

η . Consequently, we have

κ(b) = ∥A+∥∥A∥ 1

η cos θ
.

Because the term ∥A+∥∥A∥ arises just as frequently as ∥A−1∥∥A∥, we extend the defi-

nition of κ(A) with a rectangular matrix A.

3.6.3 The condition number of the least squares prediction.

Let y = AA+b. Then

y = UΣV TVΣ+U Tb = UΣΣ+U Tb.

The matrix AA+ is an orthogonal projection onto range(A). What this means for us

is that ∥AA+∥ = 1 for the operator induced 2-norm. Consequently

κ(b) = ∥AA+∥ ∥b∥∥y∥ =
1

cos θ
.
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3.7 THE CONDITION NUMBER OF AN EIGENVALUE
3.8 RELATIONSHIP WITH FRESCHET DERIVATIVE

For the full-rank least squares system, the mathematical map from

4 backwards stability

There are two aspects to numerical accuracy.6 The first aspect is the conditioning of 6 Most of these notes and ideas are taken

from Trefethen and Bau, Numerical Linear

Algebra, Lecture 14 and Higham, Accuracy

and Stability of Numerical Algorithms,

Chapter 1.

a problem taht we addressed above. The second aspect is the stability of the algorithm

to compute it. This lecture is about algorithmic stability, not about the conditioning of a

problem. Take the most trivial function f (x) = x. The following algorithm:

for i=1 to 60

x =
√

x

for i=1 to 60

x = x2

computes the this identity function for x ≥ 0. Yet, if you run this algorithm on a

computer, you will compute the function:

f̃ (x) =
⎧⎪⎪⎨⎪⎪⎩

0 0 ≤ x < 1
1 x ≥ 1.

What this shows is that this rather silly algorithm is not a good idea.

Let’s make this idea precise and develop a definition that would allow us to make a

more precise statement. Let ỹ ≈ f (x) and let y = f (x). Ideally, we’d like the

absolute error = ∣ ỹ − y∣

to be small. But if y is large, this isn’t reasonble. So a better goal would be ensure the

relative error = ∣ ỹ − y∣/∣y∣

is small. The problem with this type of error analysis is that we immediately encounter

the conditioning of the underyling problem. That is, if the problem is ill-conditioned, we

will not be able to show that the relative error is always small. This is independent of any

algorithm that we have. What has proven to be useful instead is the idea of backwards
error analysis. That is, we ask the question:

is ỹ the exact computation of some x + δ?

Formally, can we show that an algorithm will have a small δ such that

ỹ = f (x + δ)?

If so, then we use this property to establish a relative error bound via the condition number

argument:

∣ ỹ − y∣/∣y∣ is something like κ(y)∣δ∣.
Let’s put this slightly more formally now.

DEFINITION 4 An algorithm is backwards stable for computing y = f (x) if it computes
ỹ = f (x + δ) with ∣δ∣/∣x∣ ≤ Cu where C is a constant and u is the machine precision.7 7 Throughout this note, u is the machine

precision.

For a matrix problem f (x), we apply this as:

ỹ = f (x + d) where ∥d∥/∥x∥ ≤ Cnu.

In this case, Cn may depend on the dimension n of the matrix.

One question immediately presents itself: Are floating point operations backwards

stable? We defined

fl(x + y) = (x + y)(1 + δ) for ∣δ∣ ≤ u.
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But we can just move the (1 + δ) inside and we have:

fl(x + y) = x(1 + δ) + y(1 + δ).

Thus, we are computing the exact addition for a problem whose input is perturbed by

(1 + δ).
Now let’s see how this analysis plays out in other cases as well.

4.1 ONE-PASS ALGORITHMS FOR VARIANCE
See online codes for this.

4.2 PAGERANK ALGORITHMS
Much of my experience with these issues arises when trying to compute accurate

solutions of the PageRank linear system of equations. Let A be the adjacency matrix of

a directed graph. An entry of A i j = 1 when there is a link from node i to node j and
an entry has a value of 0 otherwise. For PageRank, we mathematically model a Markov

process that behaves as follows. At node i

· with probability α, we follow an out-link to another node. (If there are no out-links,

then we jump to a page chosen uniformly at random.)

· with probability (1 − α), we jump to a page chosen uniformly at random.

Let Xt be the identity of the node at step t. The PageRank vector of the graph is defined

as the amount of time that this process spends in each node as it runs forever:

x i = lim
T→∞

1

T

T

∑
k=0

⎧⎪⎪⎨⎪⎪⎩

1 Xt = i
0 otherwise

.

There are a variety of ways to get the following condition, but in the interest of time,

let’s just note that we can get there by simply assuming that x i exists like we did with the

hitting time analysis.8 If there is such a vector x, we can convert this into a linear system 8 Formally, this would require showing that

the above limit and sum have a unique limit.

Both are actually the case, but involve a

study in stochastic processes that is outside

the scope of this material. We will show a

related derivation to justify existence.

of equations by noting that the value of x i must depend on the other values x j as in the

next equation. Let d j be the number of nodes that node j links to (so this is the out-degree
of node j).

x i = α ∑
j links to i

⎧⎪⎪⎨⎪⎪⎩

x j/d j d j > 0
x j/n d j = 0

+ (1 − α)
n

∑
j=1

x j/n

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
random jumps

Let P be the matrix where

Pi , j =
⎧⎪⎪⎨⎪⎪⎩

1/d j node j links to node i, d j > 0
0 otherwise.

If A is the adjacency matrix described above then

P = ATD−1 where D−1i j =
⎧⎪⎪⎨⎪⎪⎩

1/d i i = j, d j > 0
0 otherwise.

The matrix D−1 is really the inverse of the diagonal matrix of node degrees, where we

simply skip over any node with degree 0.9 Let c be the indicator vector where c i = 1 for 9 This is often called the pseudoinverse.

all nodes with d j = 0 and c i = 0 for all other nodes. Then

x = αPx + α/necTx + (1 − α)e/n.

In may cases, we assume the vector c = 0. In which case

Given the matrix A, the following algorithm
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