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1 THE CONDITION NUMBER AS A FUNDAMENTAL MATRIX

QUANTITY
Here, we show that the condition number of a matrix determines how quickly various
simple iterative methods will converge on symmetric positive 1 — ﬁ definite linear

systems. Thus, throughout these notes, we will assume that A is symmetric positive
definite.

1.1 RICHARDSON
Recall the Richardson iteration for Ax = b:

r) = b - ax® x(HD) = x (0 o0,
We can write this in terms of the gradient for the quadratic problem:
f(x) = %XTAX ~-x'b  with gradient g(x) = Ax—b = —r(x)

which gives
x(rD) (k) wg(k).
Now consider the error vector

e = x() _y
The evolution of the error is determined by

et D) = x(D) _yx — x(B) 4 or®) —x = x() 4 wb - wax®) —x.
But note that wb = wAXx for the true solution x. Hence
et D = x() 1 Ax — wAx®) —x = (I - wA)(x¥) —x)

or simply
e D = (1- wA)e® = (I-wA)ke®.

This converges quickly if we can make the spectral radius p(I — wA) small. For a
symmetric positive definite matrix, there is an easy way to do this. The derivation is not
particularly interesting. The choice is:
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where A1 and A,, are the smallest and largest eigenvalues of A respectively.! For this choice
we have
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There is no condition number yet, but it’s hiding inside this formula! For a symmetric
positive definite system, we have x(A) = %, and so we can adjust this expression to
include this ratio: .
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So the asympotic error in Richardson on a symmetric positive definite system goes to 0 at
aratel - ﬁ. Formally,

[ < (1= 1)* e

Learning objectives

1. See how the matrix condition number
arises in terms of converge of Richardson
with the optimal parameter.

2. See how the matrix condition num-
ber arises in terms of converge of Steepest
Descent.

3. Compare the rates of convergence.

Up to this point, for Richardson, this is
entirely general and actually has not used
the assumption that A is symmetric positive
definite.

' The way to determine this quantity is to
look at how I — wA changes the eigenvalues of
A. This transform maps the region [A1, 1, ]
to the region [1-wA,, 1—wA; |. We now want
to pick w to minimize max(|1 — wA,|,|1 -
wA1]). Note that when w is small enough,
then 1 — wl, and 1 — wA; are both positive
and 1 — wA; determines the spectral radius,
which decreases with w. As w increases,

1 — w), goes negative first (assuming A; #
An) and so at some point we have |1 — wA,| =
-1+ why = |1 — wAi| = 1 - wA;, which
gives w = 2/(A1 + Ay) as required. This
equivalency point is minimizer as further
increasing w just results in a larger spectral
radius.



1.2 STEEPEST DESCENT

We will now show that the steepest descent iteration converges for a symmetric positive
definite system that also depends on x(A).> Recall that steepest descent uses a dynamic
choice of w, called & or y, that minimizes the function

f(x) = %xTAx -x'b
at each step. The iteration is

_8(xe)"g(xk)
g(xi) T Ag(xi)

We are going to tweak this setup slightly. Note that at a solution x = A™'b we have

xE =xB) —pie(xi)  yk

_ T (— - T - T ,—
f(A7'b)=1b"ATAAb-b"ATTb=-1b"A7"D.

The strategy we are going to use is to study the rate f(x;) — —%bTA_lb. But this is a
slightly annoying constant to have around, so we just study the function

s(x) = %xTAx ~-x"b+ %bTA’lb

instead. This function is just shifted by a constant, and so the gradient is unchanged. Now,
we can study the rate at which s(x;) — 0 instead, which makes life slightly easier.

This shifted function s is also nice for another reason. Let n(x) = V'xTA™'x. Then we
can show that n(x) is a vector norm.? Typically we write this as

|x[ 41 = VXTA'x.
Using this norm, we can write
s(x) = 31 Ax = b[ 3 = 3[g(x) 3

The goal is to show that s(x(**1)) < s(x(K)) (constant less than 1). We have the following
that allow us to do so

T
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(k+1)y _ 1 1T 4-1 T 1.2.T 1 (gfgk)z
s(x )= 5“ (I-yrA)g; lar = 38k A 8 — Vi8i 8k + 3 V8 A8y = s(xx) - EigTAg
k A8k
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s =sx) (-5, ) =s(x)(1 - ——
? g Agys(xx) 8 Ag8[ A" g,
because s(x;) = 1gT A”'g,.
(gfgk)z

The key is that this quantity o is fairly close to a condition number. Let 0
k

Agy g,fA‘lgk
be the inverse quantity so

_ 8148847 g,

0
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Then we have

TA TA_I TA TA—l 1
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So we have )
s(x** Dy = s(x®) (1 - (A

* This is a very slick proof that involves a
number of interesting quantities; it’s been
designed over years to be clever and simple,
so it’s the sort of proof that would be hard to
come up with yourself, so read through it a
few times to see what is going on.

Recall that A is symmetric and so AT =
AL

3 This is a good exercise. The only challeng-
ing step is the triangle inequality. The easy
to way to show this is to use the fact that
n(x) = |F~'x|| where F is the Choleksy
factor of A™! (which exists because we have
a symmetric positive definite A and A~



which is exactly the same rate as Richardson. To improve this, we need a stronger bound
on 0.

One such stronger bound is called the Kanterovich inequality. Let A be a symmetric
positive definite matrix and let v be any vector with v7v = 1, then

(/\1 + /\n)z

(vTAv)(vTAv) < L

This give us a better bound on 8 and we get

1-1/0 < (= A)° <("(A)_1

(AL +A4,)2 " K(A)+1) < (1-1/x(4))".

This completes the proof.

1.3 COMPARISON
Which method is faster? For Richardson we have

k k
[e® ] < (1-5) @]
whereas for Steepest Descent we have

s(x** Dy < (1= 1yQ2k)s(x).

To conclude that steepest descent is faster requires a comparison of s(x(¥)) and ||e(®|.
We will continue to study this relationship.
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