THE TRI-FACED CONJUGATE GRADIENT METHOD

David F. Gleich
November 12, 2019

The conjugate gradients (CG) method is one of the most celebrated algorithms for
solving Ax = b when A is large, sparse, and symmetric positive definite. It is also a sly
method in the sense that there are three derivations of the CG method. Each starts from a
different point, but gives rise to the same sequence of iterates. They are:

1. the Lanczos process - e.g. via matrix approximation
2. the steepest descent method - i.e. via optimization
3. the three-term recurrents - i.e. via orthogonal polynomials

The derivation for the Lanzcos process is, perhaps, the best as it provides a straightfor-
ward path to solve symmetric indefinite systems as well.
Throughout these notes, let A be n x n, symmetric positive definite.

1 CONJUGATE GRADIENTS VIA THE LANCZOS PROCESS

1.1 THE LANCZOS PROCESS

Because A is symmetric, we can run the Lanczos process to iteratively compute a
tridiagonal matrix T that approximates the matrix A. For linear systems, we also begin the
Lanczos process with the vector b/|b|. After k steps, we have:

A V. =V Tin
M S ——
nxnnxk pxk+l k+lxk

where V = [vl een ,vk] holds the first k vectors in the Lanczos process and Vi, holds
the first k vectors and the k + 1st vector. The matrix

;1 ﬁz '
T = Bk :[d]

T
ﬁk ax ﬁk+lek

ﬁkﬂ

where T is the k x k tridiagonal matrix from the first k rows. When it’s important, we’ll
write:
AV =V Tin

to denote the full sequence of matrices. Likewise, the Lanczos process gives rise to a
sequence of tridiagonal matrices:

T, T2 .. Ti, Trsrs - -

However, we'll often drop the index k when it applies to any index. For instance, in exact
arithmetic, V' AV = T.

Note The vector vi = b/|b]|, and also Ve, = v, for all k.

Quiz Show that T is positive definite if A is positive definite.

1.2 LANCZOS AND LINEAR SYSTEMS
Lety = Vz be a vector in the span of the Lanzcos vectors after k steps. Recall that we
showed this means that y is a member of the kth Krylov subspace

Yy €]Ck(A,b)
For any vectory = Vz:
[b—Ay| = [b-AVz| = Vi ([bller = Tiiz) | = [[[bller - Tiiz].-

Thus, we want to pick z such that ||b| e; — T,z is small at each step.
In the conjugate gradients method, we choose z such that

Tz=|b|e

so that
libler = Tiirz| = |Brsrzkl.

In contrast, in the MINRES method, we choose z to minimize |||b|e; — Tx,,z| at each
step; and in the SYMMLQ method, we choose y = V,,z and z is the minimum norm
solution of T}, z. We won't spend too much time studying these methods.

1.3 THE SIMPLE CG METHOD
Consequently, and conceptually, the CG method is rather simple:

for k=1, 2, ...
Compute Vi, Tj from k-steps of the Lanczos process
Solve Tka = Hb||e1
Compute X = Vizp
If |Bry1zk| < tol, stop.

The essence of the method is that we replace solving Ax = b with solving Tiz = |b|e,.
Put another way, the idea is that the matrix T “approximates” A.

The difficulty with the simple method However, at each step, there is still quite a bit
of work in this method. We can efficiently compute the kth step of the Lanczos vector
sequence from the k — 1st step, so computing V and T isn't a problem using one matrix
vector and a few inner-products, so it's O(mat-vec + n) work where O(mat-vec) is the
work involved in the matrix-vector product. To solve the system with T is O (k) work
because it’s a tridiagonal system. However, the problem is that computing x; = Vz is
O(nk) work. If n is large and k is small, then this operation is expensive. Another problem
is that we need to keep k Lanczos vectors. This gets very expensive in terms of memory
for large k.

1.4 MAKING CG EFFICIENT
We'll now see how to do the CG method with O(mat-vec + n) work per iterations. To
do so, we need to determine how to compute x;, directly from x;_; and avoid storing V.
We'll have to keep the last two iterates though, so we can continue the Lanczos process.
In the following discussion, we'll work through how to make this happen. There is
one leap in this derivation that we’ll get to soon.

Using and updating Cholesky for the subsystem We begin with a straightforward com-
putation. Think about how to compute z; efficiently. Recall that A is symmetric positive
definite. Based on the quiz above, this means that T is also symmetric, positive definite.
So it has a Cholesky factorization

T) = FyF].

On the last homework, we worked out that:

M
F- U2 172

Bk Mk

Moreover, we can compute py,; and #x.1 from

Troy = Ty Prae]| [Fr Fj Hrsiek |
* /5k+1e,f Of+1 Hk+1e£ Nk+1 Hk+1

By equating terms, we find that

Brr1ek = prr1Frer = piinier
and
) 2
Ok+1 = Hip1 + Biyr-

We can solve both of these to find:

Uk+1 = ﬁk+1/”lk and 7x41 = \/ Fk+1 — ”24.1'

But, there is no way to compute z;,; from z; because all the elements change. To go
beyond this, we need to look at the problem more closely.

Theleap What we actually want is
-1
X = [b|ViT “ey.
Let’s substitute the Cholesky fatorization in here:
x; = |b| ViF TF e,.
The “leap” is that we need to look at:

xp=|b| - Cp - p;
N—— ——
=ViF T =F-le

As we study these expressions, we'll find that they can be updated efficiently.
First, lets tackle p,. Given p, = [pl, e ,pk]T, note that:

F P €
F _ = .
k+1Pk+1 [#k“e{ ’7k+1:| [Pk+1] [0]

Thus, px+1 = —pk+1Pk/Mk+1. This is great news because p,, , only differs from p, by the
last element.
Let’s see how to find Cy; from Cj. Well write:

T
Ck+1Fk+1 = Vi

or

T
[Ck Ck+1][Fk H’;Zlfk]:[Vk Vist] -
+

Hence,
Pkr1Crek + Chr1rr1 = Pk+1€k + Nk+1Ck+1 = Vitl-
Thus, we can compute ¢ just from cy.
The last step is to show that we can combine these and compute x; from x;. Again,
we expand:

Xk+1 = Ck+lpk+1 = Ckpk +Ck+1Pk+1-
—
—x¢
And we have found an efficient expression for x in the CG method.
All together now, we have:

B1 = [b]

Vo = 0, Xo = 0
vi =b/p
for i=1, 2, ...
w=Av; - Bivi
o; :viTw
W <~ W — QX;V;
Biv1 = [w]
Viel = W/Bin1
if i=1
Wi =0, ni =/, pi=P1/ni, ci=vi/n.
else
i = Bilnicr, ni=Jai—pd, pi=—pipii/ni, €= (Vi — picic1) /i

Xi = Xj-1* piCi

In this iteration, you only need to keep the vector v; and ¢; to complete the iteration.

2 CONJUGATE GRADIENTS VIA OPTIMIZATION
In the second derivation of the CG method, we study the problem:
. 1oy T
min ¢(x) where ¢(x) = 5x Ax-x'b
where A is # x n, symmetric positive definite. In this case, the solution is x = A~'b, which
we can derive by setting the gradient of ¢(x) to zero," that is,
d¢/ox=Ax-b=0.

Thus, in the second derivation of the CG method we work from the premise of finding
a sequence of vectors x; that make ¢(xy) smaller at each step.

Aside on steepest descent One of the classic ways to minimize a function is called
gradient descent, and it computes

KD 230 g

where a; > 0 and g, is the gradient 9¢/dx evaluated at x(¥). For this function ¢, g, =
Ax; — b. The constant «; is chosen to make:
$(xk - agy)

as small as possible. It’s a bit of a tangent to derive this value, but we can work out the
solution, which is:*

T
_ 8i 8k
X = T .
8. A8y
This simple method:
x(D =9
for k=1, ...
gk = ax(¥) _p

if |g®] < to1
stop and return Xx;
T T
k) = g0 Tg(k) /(g T gg(k)y
(k4D Z x(0) 4 g g(k)
will always converge to the solution of a positive definite system using only matrix-vector
products. The convergence rate is proportional to the condition number of the matrix.
Now, suppose we consider a sequence of directions p*) such that x(**1) = x(k) 4
ockp(k), we can set:

T T
ap =p B (p) " Apth)y
as long as p(F) (%) £ 0 where r(¥) is the kth residual b — Ax(F).
To get to conjugate gradients, we want the set of search directions p‘*) to be linearly

independent, and in fact, conjugate. We call a sequence of vectors conjugate if p(*) TAp(f) =
0if i # j. In this case, x() = 7 a;p(? or x*) € span{p),...,p(M)}.

4

This section is incomplete

' this condition suffices because the problem
is strongly convex

* check the sign on this value

3 CG HISTORY

. Initially proposed by Hestenes and Stiefel as a direct method (1952). Both Hestenes
and Stiefel came up with the method independently, and then wrote a joint paper
about it.

. First suggested as a large sparse solver by Reid (1971).

. Finally widely accepted for matrices once preconditioning was invented.

Information from Diane O’Leary, https://
www.siam.org/meetings/1a09/talks/oleary.
pdf and Numerical Analysis: Historical
Developments in the 20th Century; By C.
Brezinski, L. Wuytack; Gene H. Golub and
Dianne P. O’Leary, “Some history of the
conjugate gradient and Lanczos algorithms:
1948-1976,” SIAM Review 31 (1989) 50-102.
http://www.cs.umd.edu/~oleary/reprints/
j28.pdf

https://www.siam.org/meetings/la09/talks/oleary.pdf
https://www.siam.org/meetings/la09/talks/oleary.pdf
https://www.siam.org/meetings/la09/talks/oleary.pdf
http://www.cs.umd.edu/~oleary/reprints/j28.pdf
http://www.cs.umd.edu/~oleary/reprints/j28.pdf

	Conjugate Gradients via the Lanczos Process
	The Lanczos Process
	Lanczos and Linear Systems
	The simple CG method
	Making CG efficient

	Conjugate Gradients via Optimization
	CG history

