
THE TRI - FACED CONJUGATE GRADIENT METHOD

David F. Gleich
November 12, 2019

�e conjugate gradients (CG) method is one of the most celebrated algorithms for
solving Ax = b when A is large, sparse, and symmetric positive de�nite. It is also a sly
method in the sense that there are three derivations of the CG method. Each starts from a
di�erent point, but gives rise to the same sequence of iterates. �ey are:

1. the Lanczos process – e.g. via matrix approximation

2. the steepest descent method – i.e. via optimization

3. the three-term recurrents – i.e. via orthogonal polynomials

�e derivation for the Lanzcos process is, perhaps, the best as it provides a straightfor-
ward path to solve symmetric inde�nite systems as well.

�roughout these notes, let A be n × n, symmetric positive de�nite.

1 conjugate gradients via the lanczos process

1.1 THE LANCZOS PROCESS
Because A is symmetric, we can run the Lanczos process to iteratively compute a

tridiagonal matrix T that approximates the matrix A. For linear systems, we also begin the
Lanczos process with the vector b/∥b∥. A�er k steps, we have:

A
´¸¶
n×n

V
´¸¶
n×k

= V k+1
´¸¶
n×k+1

T k+1
´¸¶
k+1×k

where V = [v1 , . . . , vk] holds the �rst k vectors in the Lanczos process and V k+1 holds
the �rst k vectors and the k + 1st vector. �e matrix

T k+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2
β2 α2 ⋱

⋱ ⋱ βk
βk αk

βk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [T̄
βk+1eTk

]

where T̄ is the k × k tridiagonal matrix from the �rst k rows. When it’s important, we’ll
write:

AV k = V k+1T k+1

to denote the full sequence of matrices. Likewise, the Lanczos process gives rise to a
sequence of tridiagonal matrices:

T̄1 , T̄2 , . . . , T̄ k , T̄ k+1 , . . .

However, we’ll o�en drop the index k when it applies to any index. For instance, in exact
arithmetic, V TAV = T̄ .

Note �e vector v1 = b/∥b∥, and also Ve1 = v1 for all k.

Quiz Show that T̄ is positive de�nite if A is positive de�nite.

1

1.2 LANCZOS AND LINEAR SYSTEMS
Let y = Vz be a vector in the span of the Lanzcos vectors a�er k steps. Recall that we

showed this means that y is a member of the kth Krylov subspace

y ∈ Kk(A, b).

For any vector y = Vz:

∥b − Ay∥ = ∥b − AVz∥ = ∥V k+1 (∥b∥e1 − T k+1z) ∥ = ∥∥b∥e1 − T k+1z∥ .

�us, we want to pick z such that ∥b∥e1 − T k+1z is small at each step.
In the conjugate gradients method, we choose z such that

T̄z = ∥b∥e1

so that
∥∥b∥e1 − T k+1z∥ = ∣βk+1zk ∣.

In contrast, in the MINRES method, we choose z to minimize ∥∥b∥e1 − T k+1z∥ at each
step; and in the SYMMLQ method, we choose y = V k+1z and z is the minimum norm
solution of TT

k+1z. We won’t spend too much time studying these methods.

1.3 THE SIMPLE CG METHOD
Consequently, and conceptually, the CG method is rather simple:

for k=1, 2, ...

Compute V k , T k from k-steps of the Lanczos process

Solve T̄ kzk = ∥b∥e1
Compute xk = V kzk
If ∣βk+1zk ∣ < tol, stop.

�e essence of the method is that we replace solving Ax = b with solving T̄ kz = ∥b∥e1.
Put another way, the idea is that the matrix T̄ k “approximates” A.

�e di�culty with the simple method However, at each step, there is still quite a bit
of work in this method. We can e�ciently compute the kth step of the Lanczos vector
sequence from the k − 1st step, so computing V k and T k isn’t a problem using one matrix
vector and a few inner-products, so it’s O(mat-vec + n) work where O(mat-vec) is the
work involved in the matrix-vector product. To solve the system with T̄ is O(k) work
because it’s a tridiagonal system. However, the problem is that computing xk = V kz is
O(nk)work. If n is large and k is small, then this operation is expensive. Another problem
is that we need to keep k Lanczos vectors. �is gets very expensive in terms of memory
for large k.

1.4 MAKING CG EFFICIENT
We’ll now see how to do the CG method with O(mat-vec + n) work per iterations. To

do so, we need to determine how to compute xk directly from xk−1 and avoid storing V k .
We’ll have to keep the last two iterates though, so we can continue the Lanczos process.

In the following discussion, we’ll work through how to make this happen. �ere is
one leap in this derivation that we’ll get to soon.

Using and updating Cholesky for the subsystem We begin with a straightforward com-
putation. �ink about how to compute zk e�ciently. Recall that A is symmetric positive
de�nite. Based on the quiz above, this means that T̄ is also symmetric, positive de�nite.
So it has a Cholesky factorization

T̄ k = F kFT
k .

2

On the last homework, we worked out that:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

η1
µ2 η2

⋱ ⋱
µk ηk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Moreover, we can compute µk+1 and ηk+1 from

T̄ k+1 = [T̄ k βk+1ek
βk+1eTk αk+1

] = [F k
µk+1eTk ηk+1

] [F
T
k µk+1ek

ηk+1
] .

By equating terms, we �nd that

βk+1ek = µk+1F kek = µk+1ηkek
and

αk+1 = η2k+1 + µ2k+1 .
We can solve both of these to �nd:

µk+1 = βk+1/ηk and ηk+1 =
√

αk+1 − µ2k+1 .

But, there is no way to compute zk+1 from zk because all the elements change. To go
beyond this, we need to look at the problem more closely.

�e leap What we actually want is

xk = ∥b∥V k T̄
−1e1 .

Let’s substitute the Cholesky fatorization in here:

xk = ∥b∥V kF−TF−1e1 .

�e “leap” is that we need to look at:

xk = ∥b∥ ⋅ Ck
´¸¶
=V kF−T

⋅ pk
´¸¶
=F−1e1

.

As we study these expressions, we’ll �nd that they can be updated e�ciently.
First, let’s tackle pk . Given pk = [p1 , . . . , pk]

T
, note that:

F k+1pk+1 = [F
µk+1eTk ηk+1

] [pk
pk+1

] = [e10] .

�us, pk+1 = −µk+1pk/ηk+1. �is is great news because pk+1 only di�ers from pk by the
last element.

Let’s see how to �nd Ck+1 from Ck . We’ll write:

Ck+1FT
k+1 = V k+1

or
[Ck ck+1] [

FT
k µk+1ek

ηk+1
] = [V k vk+1] .

Hence,
µk+1Ckek + ck+1ηk+1 = µk+1ck + ηk+1ck+1 = vk+1 .

�us, we can compute ck+1 just from ck .
�e last step is to show that we can combine these and compute xk+1 from xk . Again,

we expand:
xk+1 = Ck+1pk+1 = Ckpk

´¹¸¹¶
=xk

+ck+1pk+1 .

And we have found an e�cient expression for xk in the CG method.
All together now, we have:

3

β1 = ∥b∥
v0 = 0, x0 = 0
v1 = b/β1
for i=1, 2, ...

w = Av i − β iv i−1
α i = vTi w
w ← w − α iv i
β i+1 = ∥w∥
v i+1 = w/β i+1
if i = 1

µ i = 0, η i =
√
α i, p i = β1/η i, ci = v1/η1.

else

µ i = β i/η i−1, η i =
√

α i − µ2i , p i = −µ i p i−1/η i, ci = (v i − µ ici−1)/η i
xi = xi−1 + p ici

In this iteration, you only need to keep the vector v i and ci to complete the iteration.

2 conjugate gradients via optimization
This section is incompleteIn the second derivation of the CG method, we study the problem:

min ϕ(x) where ϕ(x) = 1
2
xTAx − xTb

where A is n × n, symmetric positive de�nite. In this case, the solution is x = A−1b, which
we can derive by setting the gradient of ϕ(x) to zero,1 that is, 1 this condition su�ces because the problem

is strongly convex
∂ϕ/∂x = Ax − b = 0.

�us, in the second derivation of the CGmethod we work from the premise of �nding
a sequence of vectors xk that make ϕ(xk) smaller at each step.

Aside on steepest descent One of the classic ways to minimize a function is called
gradient descent, and it computes

x(k+1) = x(k) − αkgk
where αk > 0 and gk is the gradient ∂ϕ/∂x evaluated at x(k). For this function ϕ, gk =
Axk − b. �e constant αk is chosen to make:

ϕ(xk − αgk)
as small as possible. It’s a bit of a tangent to derive this value, but we can work out the
solution, which is:2 2 check the sign on this value

αk =
gTk gk
gTk Agk

.

�is simple method:
x(1) = 0
for k=1, ...

g(k) = Ax(k) − b
if ∥g(k)∥ < tol

stop and return xk
α(k) = g(k)Tg(k)/(g(k)TAg(k))
x(k+1) = x(k) + αkg(k)

will always converge to the solution of a positive de�nite system using only matrix-vector
products. �e convergence rate is proportional to the condition number of the matrix.

Now, suppose we consider a sequence of directions p(k) such that x(k+1) = x(k) +
αkp(k), we can set:

αk = p(k)
T
r(k)/(p(k)

T
Ap(k))

as long as p(k)r(k) /= 0 where r(k) is the kth residual b − Ax(k).
To get to conjugate gradients, we want the set of search directions p(k) to be linearly

independent, and in fact, conjugate. We call a sequence of vectors conjugate ifp(i)TAp(j) =
0 if i /= j. In this case, x(k) = ∑n

i=1 α ip(i) or x(k) ∈ span{p(1) , . . . , p(k)}.

4

3 cg history
Information from Diane O’Leary, https://
www.siam.org/meetings/la09/talks/oleary.

pdf and Numerical Analysis: Historical
Developments in the 20th Century; By C.
Brezinski, L. Wuytack; Gene H. Golub and
Dianne P. O’Leary, “Some history of the
conjugate gradient and Lanczos algorithms:
1948-1976,” SIAM Review 31 (1989) 50-102.
http://www.cs.umd.edu/~oleary/reprints/

j28.pdf

1. Initially proposed by Hestenes and Stiefel as a direct method (1952). Both Hestenes
and Stiefel came up with the method independently, and then wrote a joint paper
about it.

2. First suggested as a large sparse solver by Reid (1971).

3. Finally widely accepted for matrices once preconditioning was invented.

5

https://www.siam.org/meetings/la09/talks/oleary.pdf
https://www.siam.org/meetings/la09/talks/oleary.pdf
https://www.siam.org/meetings/la09/talks/oleary.pdf
http://www.cs.umd.edu/~oleary/reprints/j28.pdf
http://www.cs.umd.edu/~oleary/reprints/j28.pdf

	Conjugate Gradients via the Lanczos Process
	The Lanczos Process
	Lanczos and Linear Systems
	The simple CG method
	Making CG efficient

	Conjugate Gradients via Optimization
	CG history

