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�ese notes are a collection of Trefethen
and Bau (Lecture 28) and my own (later)
interpolations. �e result on the convergence
of the power method is due to Luca Trevisan
(http://theory.stanford.edu/~trevisan/
expander-online/lecture03.pdf) which was
pointed out to me by Petros Drineas.

In these notes, we will frequently assume that A is symmetric. Some of the meth-
ods generalize to non-symmetric matrices (e.g. the power method), but there are o�en
complexities involved. Please consult Golub and van Loan for more details on these cases.

1 useful properties of eigenvalues.

LEMMA 1 Let A be a symmetric matrix. If p(A) is a polynomial of A, then the eigenvectors
of A and p(A) are the same, but the eigenvalues change.

Proof Note that p(A) = c0I + c1A + c2A2 + ⋯ + ckAk for some coe�cients c0 , . . . , ck .
�en A = VDV T is the eigenvalue decomposition and A j = VD jV T . Hence p(A) =

V p(D)V T . ∎

(�e same proof holds for non-symmetric matrices with the Jordan canonical decomposi-
tion instead.)
LEMMA 2 (Gerschgorin disks, Golub and van Loan Theorem 7.2.1) Let A be any matrix. Suppose that
A = D + F where D is diagonal and F has zero diagonal. (So D are the diagonal entries of A
and F are all the other entries. �en the eigenvalues of A are contained within the set:

λ(A) ⊆
n
⋃
i=1

G i

where G i is the ith Gerschgorin disk:

G i = {z ∈ C ∶ ∣z − D i , i ∣ ≤ ∑
j
∣Fi , j ∣.

Proof Let λ ∈ λ(A) be any eigenvalue that is not equal to D i , i for any i. �en Ax = λx
yields:

(D + F − λI)x = 0⇔ x = (D − λI)−1Fx.
From the latter fact, we have:

1 ≤ ∥(D − λI)−1F∥
for any sub-multiplicative norm. If this is the∞-norm, then

∥(D − λI)−1F∥∞ = ∑
j

∣Fk , j ∣
∣Dk ,k − λ∣

for some value k. Or ∣Dk ,k − λ∣ ≤ ∑ j ∣Fk , j ∣ and so λ is in Gk .
Note that if λ = D i , i then this result holds immediately. ∎

EXAMPLE 3 For the Laplacian matrix in Poisson’s equation on a 2d mesh, all the Gerschgorin
disks intersect and give a bound on the largest eigenvalue of A of 8.

2 the power method

Recall that one way to �nd the largest eigenvalue and associated eigenvector of a matrix
is to use the power method

Given a starting vector x with norm(x) = 1 and tolerance τ
Iterate

y = Ax
λ = xTy
x = y/ norm(y)

Until norm(Ax − λx) ≤ τ (your tolerance)

If the largest magnitude eigenvalue associated with A is unique, then this iteration con-
verges to it.

— TODO – Insert picture of the eigenvalue convergence.
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2.1 A USEFUL UPPER BOUND ON THE SPECTRAL RADIUS OF A SYMMETRIC
POSIT IVE DEFINITE MATRIX.

In many cases, we do not actually need the largest eigenvalue of a matrix itself, but
rather, a bound on the spectral radius. �at is, we want to compute a value θ such that
ρ(A) ≤ θ. �is is easy to do via Gerschgorin disks. However, we also usually want θ to be
close to ρ(A). Gerschgorin disks can be fairly far away.

EXAMPLE 4 Consider the matrix A = [
0 eT
e 0 ] where e has length n. �en the Gerschgorin

bound on the largest eigenvalue if n. However, the largest eigenvalue is actually
√
n.

For this reason, we might think of using the power method to approximate the spectral
radius. For a symmetric matrix, however, we will always have ∣λ∣ ≤ ∣ρ(A)∣ because the
spectral radius is the most extreme point. �e following theorem gives an upper bound.

THEOREM 5 (Trevisan 9.6, Lecture Notes on Graph Partitioning, Expanders and Spectral Methods, 2006) Let
M be a symmetric positive semi-de�nite matrix, then running the power method for k steps
from a vector x(0) with x(0)i = ±1 at random, produces a vector x(k) with Rayleigh quotient

x(k)
T
Mx(k)/x(k)

T
x(k) ≥ ρ(A)(1 − ε) 1

1 + 4n(1 − ε)2k
.

with probability at least 3/16.

�is can be then translated into a useful upper-bound on ρ(A) and you can use the
tightest value of ε to make the result you want.

2.2 THE SMALLEST EIGENVALUE OF A SYMMETRIC POSIT IVE SEMI-DEFINITE
MATRIX.

�e above result gives us an immediate algorithm to �nd the smallest eigenvalue of a
symmetric positive semi-de�nite matrix. We get an upperbound θ ≥ ρ(A) and run the
power method on θI − A. In this case, we have to adjust the eigenvalue estimate λ = xTy
to λ = θ − xTy to adjust for the di�erence.

2.3 THE INVERSE POWER METHOD.
�ere are a variety of ways to use the power method to get other eigenvalues besides

the largest. �e �rst is the inverse power method, where we run the power method on
A−1 itself, which corresponds to the changing one line of the iteration:

y = Ax → Ay = x

so that we solve a linear system at each step. With this change, the power method will
converge to the smallest magnitude eigenvalue of A instead. (�at is, the one closest to 0.)

— TODO – Insert picture of the eigenvalue transformation 1/λ

2.4 TARGETING A SPECIF IC EIGENVALUE.
If we wish to �nd an eigenvalue close to a value α, then we can use the iteration:

(A− αI)y = x.

�e eigenvalues of A that are near α will be close to zero in the matrix (A− αI), and so
when we use inverse iteration on (A− αI) then we will �nd those as the solutions.

— TODO – Insert picture of the eigenvalue transformation 1/(λ − α)
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2.5 USING A FOLDED SPECTRUM TO TARGET AN EIGENVALUE.
If A is large and sparse, then we may not have a good way to solve linear systems

with A. �is is o�en the case for problems that arise based on data where we do not have
well-known and e�ective preconditioner techniques. In this case, if we are interested in
�nding the smallest eigenvalue, we can employ an idea called the folded spectrum. �e idea
is that A2 is always a symmetric positive semi-de�nite matrix whose small eigenvalues are
close to 0. If we have an upper-bound on the spectral radius of θ2 ≤ A2, then we can use
the same idea for the smallest eigenvalue of a symmetric positive semi-de�nite matrix.

�is can further be adapted to target an eigenvalue near α by using (A− αI)2 to make
eigenvalues nearby α close to zero. �is approach is called the folded spectrummethod.

2.6 F INDING OTHER EIGENVALUES VIA DEFLATION
We can actually use the power method itself to compute multiple eigenvectors via a

procedure called de�ation. Let x, λ be an eigenpair of A. �en create a householder matrix
H with x as associated vector such that Hx = e1. �e matrix HAHT has the following
structure:

[
λ 0
0 B]

�is is actually what we did way back when we created the SVD!

EXAMPLE 6 Here is some example code to demonstrate this.

A = randn(5,5)

A = A+A’

## Example of the deflation method

λs,X = eig(A)

eval = rand(1:size(A,2))

x = X[:,eval] # just an

xe1 = zeros(size(A,1))

xe1[1] = norm(x)

v = xe1-x

H = eye(size(A)...) - 2*v*v’/(v’*v)

display(H*A*H’)

display(λs[eval])

3 subspace iteration and the qr algorithm

We can generalize the power method to compute the largest few eigenvalues and
vectors.

Given a starting orthogonal matrix X and tolerance τ
Iterate

Y = AX
Λ = diagonal elements of XTAX arranged as a diagonal matrix

[X , R] = qr(Y)

Until norm(AX − XΛ) ≤ τ (your tolerance)

Again, if the matrix is symmetric, and these large eigenvalues are unique, we can show
that this converges. �is method is also called the block power method or the orthogonal
iteration.

3.1 SUBSPACE ITERATION
Except that when this is usually done, we want to do it for all eigenvalues and vectors,

and start with the identity matrix.

Given tolerance τ
Set X = I
Iterate

Y = AX
Λ = diagonal elements of XTAX arranged as a diagonal matrix

[X , R] = qr(Y)

Until norm(AX − XΛ) ≤ τ (your tolerance)
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EXAMPLE 7 Here’s one sample of the subspace method converging

A = randn(5,5)

A = A+A’

X = eye(size(A,1),size(A,2))

D = diagm(sort(diag(X’*A*X)))

for i = 1:200

Y = A*X

D = diagm(sort(diag(X’*Y)))

X,R = qr(Y)

end

@show [diag(D) eigvals(A)]

3.2 THE QR ITERATION
Here’s another way you’ll read about to compute eigenvalues and eigenvectors and it’s

called the QR iteration.

Given tolerance τ
X = I
Iterate

Q , R = qr(A)
A = RQ.

Λ = diagonal elements of A arranged as a diagonal matrix

X = XQ
Until norm(AX − XΛ) ≤ τ (your tolerance)

When I saw this algorihtm, I found it truly strange! Why would you take the product of
a QR factorization in the reverse order? �e following important note gives some intuition
for what is going on:
Important note. A = QR implies that R = QTA. So Anext = QTAQ. Essentially, we

are multiplying by an orthogonal matrix on the le� and the right.

EXAMPLE 8 Here’s one sample of the QR iteration converging

X = eye(size(A,1),size(A,2))

A = copy(Ainit)

for i = 1:100

Q,R = qr(A)

A = R*Q

D = diagm(sort(diag(A)))

X = X*Q

end

@show [diag(D) eigvals(Ainit)]

3.3 QR AND SUBSPACE ITERATION ARE EQUIVALENT
Here, we’ll consider the following two methods and show that they are equivalent.

Subspace iteration

X0 = I
for i = 1, ...

X i , R i = qr(AX i−1)

QR iteration

A1 = A
for i = 1, ...

Q i , R i = qr(Ai)
Ai+1 = R iQ i

LEMMA 9 X i = Q1Q2⋯Q i

Proof We’ll prove this by induction. �e key insight is that R i is actually the same matrix.
(Technical note, we need to assume that the signs of the diagonal elements of R i are taken
to be positive to get a unique Q factor in the QR decomposition.)
Base case. X1 = qrQ(AX i−1) = qr(A) and also Q1 = qrQ(A) as well. Because

R i = QT
1 A = XT

1 A, we get the same R i factor here.
Inductive hypothesis.We assume that X i = Q1Q2⋯Q i .
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Important note. We saw this before, but Ai = Q iR i implies that R i = QT
i Ai . So

Ai+1 = QT
i AiQ i . If we iterate this, then note that

Ai+1 = QT
i AiQ i = QT

i ⋯QT
1 AQ1⋯Q i . ∎

By our induction hypotheis Ai+1 = XT
i AX i .

Note that X i+1R i+1 = qr(AX i) = qr(AQ1⋯Q i).
So XT

i+1AQ1⋯Q i = R i+1.

3.4 THE ISSUE WITH QR
�e problem with the QR method is that it is very expensive. Each iteration is O(n3).
In order to make this more e�cient, we want to translate the matrix A into one that

has a structure that makes the RQ-iteration e�cient. �e properties we need are:
1. we can translate a general symmetric matrix A to a matrix B with this property via

orthogonal transformations B = QTAQ or similarity transformations B = X−1AX
(so we preserve eigenvalues)

2. computing a QR factorization of B is e�cient
3. computing the product RQ is e�cient
4. the matrix RQ has the same property as B.

�ere are somemodestly esoteric classes of matrices that enable these (such as hierarchical
semi-seperable), but the most straightforward case is a tridiagonal matrix.

Here, we show that if B is tridiagonal, then RQ is also tridiagonal. �is gives us most
of the properties since we always saw how tridiagonal matrices enable a linear-time QR
factorization. (In the section on GMRES.)

Consider a symmetric tridiagonal matrix

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ●

● ● ●

● ● ●

● ● ●

● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�en in the �rst step of QR, we are going to “zero” out the 2, 1 entry via a Givens
transform. �is gives us:

Q1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ●

● ●

1
1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

QT
1 B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × ×

0 × ×

● ● ●

● ● ●

● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Q2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
● ●

● ●

1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

QT
2 Q

T
1 B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● ●

0 × × ×

0 × ×

● ● ●

● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence, at the end, we’ll have

QT
4 Q

T
3 Q

T
2 Q

T
1 B = R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● ●

0 ● ● ●

0 ● ● ●

0 ● ●

0 ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Q = Q1Q2Q3Q4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ●

● ●

1
1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
● ●

● ●

1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋯

So

RQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● ●

0 ● ● ●

0 ● ● ●

0 ● ●

0 ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ●

● ●

1
1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
linear combination of columns 1,2

Q2Q3Q4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × ●

× × ● ●

0 ● ● ●

0 ● ●

0 ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Q2Q3Q4

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● × ×

● × × ●

× × ● ●

0 ● ●

0 ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Q3Q4

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● × ×

● ● × ×

● × × ●

× × ●

0 ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Q4

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● ● × ×

● ● ● × ×

● ● × ×

● × ×

× ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can keep going with this and we’ll �nd that RQ is upper-Hessenberg.
But, R = QTA so RQ = QTQQ is symmetric, upper-Hessenberg, i.e. tridiagonal!

4 reduction to tridiagonal form

EXAMPLE 10 A = randn(6)

5 qr with shifts

6 eigenvalues and eigenvectors of sparse matrices

Run the power method! �en we’ll get

6.1 DEFLATION
6.2 SUBSPACE ITERATION
6.3 LANCZOS
6.4 ARPACK
EXAMPLE 11 �is example shows how to use the eigs function in Matlab

A = sprandsym(10000,50/10000);

[V,D] = eigs(A);
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