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1 elimination methods for least squares

1.1 THE SIMPLE ELIMINATION SOLVE
We can also use variable elimination for least squares problems. Consider

minimize ∥Ax − b∥ .

Partition A = [a C] and x = [ γy ] . Then

minimize ∥γa + Cy − b∥ .

We proceed as follows, suppose we know y. Let d = Cy−b. Then this is just the one varible
least squares problem

minimize ∥γa − d∥ .

If we explain what this is, then we are looking for the best scaling of the vector a to get us
as close to possible to d.

TODO Add figure that explains this

A little bit of thinking yields the following insight: the scaling of a is closest to d when
the difference γa − d is orthogonal to a. If this weren’t the case, then we could decrease
the distance by moving a little bit in any direction. Hence, the solution γ must satisfy the
relationship:

aT(γa − d) = 0 or γ = 1
aTa

aTd.

Now, we proceed as follows and substitute γ(y) into our original least squares problem

minimize ∥γ(y)a + Cy − b∥ → minimize ∥ 1
aT aa

T(Cy − b)a + Cy − b∥ .

We can simplify this expression to

minimize ∥(I − 1
aT aa

TaT)(Cy − b)∥ .

This new problem has one fewer variable. If we recurse on this idea, we have the following
algorithm.

function least_squares_eliminate(A,b)

a = A[:,1]

na = norm(a)

q = a/na

if size(A,2) == 1

return [a’*b]/na

end

y = least_squares_eliminate(A[:,2:end]-q*q’*A[:,2:end], b - q*q’*b)

γ = q’*(b - A[:,2:end]*y)/na

return pushfirst!(y,γ)
end
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1.2 A MATRIX VERSION
TODO See if we can get something better here. . .

Thematrix structure in this problem is already slightly apparent. LetT = (I− 1
aT aa

TaT).
Then we have

least-squares(A, b) → least-squares(TAS , Tb).

Here S is a matrix that selects the last n − 1 columns of a matrix.
Now, it turns out there is an issue here. The matrix T is a special type of matrix called

a projection. A projection matrix is any matrix where T2
= T . It represents a projection

onto a subspace, so T2
= T because the projection of a projection is the same projection.

For this matrix T it’s just a few lines of algebra to verify that T2
= T .

TODO Add these lines

This is a small issue, though, because Ta = 0 and so TA = [0 TC]. Thus, we lose all
the information associated with a after the first transformation. However, suppose we just
memorize this and store a – after normalization – at each iteration into a matrix Q.

To be entirely precise, let A = [a1 ⋯ an]. Let T1 , . . . Tn be the matrix I − qiqT
i

formed in the least squares elimination algorithm at the ith call. Then we have:

qi =
1

∥T i−1⋯T1ai∥
T i−1⋯T1ai .

In a bit of remarkable luck, the matrix Q turns out to be orthogonal. In fact, it’s the
result of the Gram-Schmidt process.

1.3 THE GRAM-SCHMIDT PROCESS
TODO

1.4 THE QR FACTORIZATION
All of these ideas can be generalized. The idea is that we transform A

2


	Elimination methods for least squares
	The simple elimination solve
	A matrix version
	The Gram-Schmidt process
	The QR factorization


