ELIMINATION

David F. Gleich
August 21, 2023

1 ELIMINATION METHODS FOR LINEAR SYSTEMS

Lecture 11: Finite methods for solving linear systems of equations.

Thus far, we've seen methods that solve Ax = b via a sequence of vector changes. These
methods have worked by updating x(¥) to x(**1) At no point did they consider changing
the system Ax = b into another system By = d, where y is somehow easier to find than x
and we can compute x from y in a simple fashion.

The next class of methods we will look at will do exactly this! From Ax = b, we will
produce a sequence of systems that get progressively smaller by eliminating variables. The
methods go by a variety of names: elimination, Gaussian elimination, LU decomposition,
Cholesky factorization, and even more names including the Schur complement. However,
the key idea is almost always the same.

1.1 VARIABLE ELIMINATION
Consider the case where we are solving a system Ax = b then we can write this out
and highlight the first row as follows:"

s)

Let the solution correspond to the elements

i

ay+cly=B.
Then the idea behind all of the elmination methods is that, if we are given y by some type
of oracle, we can compute y from y

so that

Y3 == (B-<Ty).

This is neat, it says that if you had all by one solution of your system, it’s easy to find
missing element. >

We aren’t quite done, however, because this hasn’t simplified or changed or system at
all. To do that, note that the remaining equations give the expression

yd+ Ry =f.

This expression involves y and y. But we have y as a function of y and so let’s just substitute
that in. The result is an expression purely in terms of y

1
y(y)d+Ry = (B-cly)d+Ry=f.
By re-arranging the equations, we arrive at the following linear system:

(R- ldcT)y _f-Pa,
o o

1 Of course, the curious will wonder what is
special about the first row. As is common,
there is nothing special about the first row
and this could be done for any row. We'll
return to this idea later.

* Careful readers will note that we need
o # 0 for this idea to work.

A 4x4 example. Suppose we have:

-2 -1 -4 -1 4
-1 -5 -5 -2 4
X =
4 5 2 0 -5
-2 -2 -1 0 2
then
1 -45 -3 -15 2
(R-=dc")yy=| 3 -6 -2 |y=|3
* -1 3 1 -2
B 75
wherey =[-14/3|and y=7/3sox =
~14/3
11 1

If A was n x n, then this method takes the system

(A,b) to (R- Lacm e- Ed)
o o
where this new system is (1 — 1) x (n — 1). Hence, we arrive at an easier or smaller system
to solve! To solve it, we can apply the same idea again until we get down to a 1 x 1 system.
This algorithm is easy to implement on a computer that supports recursion.

function elimination_solve(A::Matrix, b::Vector)
m,n = size(A)
@assert(m==n, "the system is not square")
@assert(n==length(b), "vector b has the wrong length")
if n==
return [b[1]/A[1]]
else
R = A[2:end,2:end]
c = A[1,2:end]
d = A[2:end,1]
alpha = A[1,1]
y = elimination_solve(R-d*xc’/alpha, b[2:end]-b[1]/alphaxd)
gamma = (b[1] - c’*y)/alpha
return pushfirst!(y,gamma)
end
end

This idea is called variable elimination. We elminate the variable y from the system of
equation Ax = b by solving for its expression and them substituting that solution into the
rest of the equations.

Note that if A is symmetric, then d = c and hence R — 1dc” = R - Lcc” is symmetric
as well.

In fact, if A is symmetric positive definite, then z7 Az > 0 for any z. We can show that
D - iccT is also symmetric positive definite too! To do so, we will show that g” Rg —
L(vc'g)? > 0 for any g. We consider using a specially chosen vector z applied to the
equation for A

T T
2 Az = [g] [i CR] [g] = ocp2 +2chg+ gTDg.

At the moment, p is still arbitrary. We can choose it to be anything. However, our goal is
to pick p such that we learn about g"Rg — £ (c"g)?. To do so, let p = —(c"g) /a. Then

ap® +2pc’g+g' Dg=(c"g)’Ja-2(c"g)’/a+g" Dg=g" Dg-(c"g)*/a >0
as required.

This means that if we eliminate a variable on a symmetric positive definite system. The
remaining system is still symmeric positive definite.

1.2 VARIABLE ELIMINATION AS A MATRIX EXPRESSION

The really interesting part about variable elimination is that we can express it as a
matrix expression! The following expression seems like magic. Essentially, by examining
the above equation long enough, we can deduce an expression like the following. It allows

T
]. Then

a ¢
d R

[1 0]_L [(x CT][I —cT/oc]_[oc 0]
-d/a I|""'|d R|[0 I | |0 R-ZidcT|

us to express the elimination operation as a matrix itself. Again, let A = [

Note that L, is a non-singular matrix of the form:
L, =I-ve; wherev; =0.

This means that LII = I + ve;, which can be verified because LILI1 = I. Likewise,
U, =I- e u” where u; = 0. Its inverse is I + e;u” as well. Using these matrices, we can
transform:

Ax=b — LlAUl U_IX = le

If we expand this block-wise, then we get:

a 0 y+icTy 1 018
5 e ta] 775 Lo S

which is exactly our reduced system.
Consequently, we can express our entire sequence of reductions as follows:

o
0 «
LyiLyy-LiAUUp~Upor = | 02 =D

or
A=L;'Ly"-L;), DU U, U

It turns out that these elimination matrix L;' and U;' have some rather special
properties that allow us to realize this form in an exceedingly simple way. For all i we have
L' = (I+ve;)withv; =v, =...=v; =0and so

—1p-2 _ T Ty _ T T Ty T _ W vl o
LiL;"=(I+vie;)(I+vje;)=I+vie; +vje; +vie;vje; =I+vie; +v;e; wheni<j.

This enables us to quickly compute these as follows:

function myreduce_all(A::Matrix)
A = copy(A) # save a copy
size(A,1)
Matrix(1.0I,n,n)
Matrix(1.0I,n,n)
zeros(n)
for i=1:n-1
alpha = A[i,1i]
d[i] = alpha
U[i,i+1l:end] = A[i,i+1l:end]/alpha
L[i+l:end,i] = A[i+1l:end,i]/alpha
A[i+l:end,i+l:end] -= A[i+l:end,i]*A[1i,i+1:end]’/alpha

o cr s
wonon

end

d[n] = A[n,n]

return L,U,d
end

L,U,d = myreduce_all(A)
LxDiagonal(d)*U - A

This is what is most commonly called the LU decomposition of a matrix.
Suppose we start with the system

This has the solution x = 1, y = 5.
Then if we try the variable elimination approach, our first step is

Ox+y=5

5 —

X = 2
0
break!

This scenario involves division by zero because x really is not really a component of that

system!
The solution is easy, if we wish to eliminate x from this equation, we need to use an
equation that includes x.3 In this case, we can simply swap rows 3 This is identical to how in Jacobi and Gauss-
Seidel, if we wished to update the value for
1 1||y 6 a variable x;, we needed to use an equation
o 1llx = 5 that used the variable x;.
After which we have

X+y=6—->x=6-y

y=3
which we can quickly solve.
Computers need more structure in order to realize these same things. Pivoting is the
idea they use to reorder the equations.

DEFINITION 1 (Pivoting) Pivoting reorders the equations (rows) of A in a linear system so that
we can compute an LU-decomposition for any non-singular system.

We can always use pivoting to find a variable to eliminate.

THEOREM 2 If A is non-singular, then at each step of an LU factorization, there must be a
variable and equation pair that we can eliminate.

Proof Assume by way of contradiction that we cannot find an equation (row) to eliminate
a variable (column) in the kth step of an LU factorization. After k — 1 steps of an LU
factorization we have

d
dy
Ly 1Ly p-L1AUUp--Ugy =
di-1
R

By our assumption, we are in the scenario where there is no equation (row) of R to
eliminate the kth variable. The kth variable is involved in the first column of R. This
means that the first column of R is entirely zero. This implies that R is singular because it
has a column that is entirely zero.

Now, A is non-singular, as are the products

Lk—lLk—Z"'Ll and Ul U2"'Uk_1.

Consequently, the left-hand side is non-singular, which means the right hand side must
be as well. However, our assumption implied that R was singular, which is how we arise at
the contradiction. -

This gives rise to the following algorithm for solving a system of linear equations.

1 function solvel pivot!(A::Matrix, b::Vector)

2 m,n = size(A)

3 @assert(m==n, "the system is not square")

4 @assert(n==length(b), "vector b has the wrong length")
5 if n==1

6 return [b[1]/A[1]]

7 else

8 # let’'s make sure we have an equation

9 # that we can eliminate!

10 alpha = A[1,1]

11 newrow = 1

12 if alpha ==

13 for j=2:n

14 if A[j,1] !'=0

15 newrow = j

16 break

17 end

18 end

19 if newrow == 1

20 error("the system is singular")
21 end

22 end

23 # swap rows 1, and newrow

24 if newrow !=1

25 tmp = A[1,:]

26 A[l,:]1 .= A[lnewrow,:]

27 Alnewrow,:] .= tmp

28 b[1], b[newrow] = b[newrow], b[1]
29 end

30 D = A[2:end,2:end]

31 c = A[1,2:end]

32 d = A[2:end,1]

33 alpha = A[1,1]

34 y = solvel_pivot!(D-dxc’/alpha, b[2:end]-b[1l]/alphax*d)
35 gamma = (b[1] - c’xy)/alpha

36 return pushfirst!(y,gamma)

37 end

38 end

1.3 ON SYMMETRIC MATRICES
Suppose we are able to run the LU decomposition of a matrix with no pivoting. In
other words, suppose that « = A[i,1i] is non-zero at each step. In this case, we produce:

A=LDU.

Now, because A is symmetric, we have

A=AT=(LDU)" =U"DL".

This strongly hints that L = U™ This result is indeed correct, as can be verified by looking
at the each step of the algorithm on a symmetric A and noting that we preserve symmetry
at each step as shown above. However, in general, we cannot assume that any symmetric
matrix can be decomposed like this without pivoting.

4here is a more general LDL” factorization that can be computed in such cases.

A simple counter exampleis: A=[91].

1.4 THE CHOLESKY DECOMPOSITION

The Cholesky decomposition is the LU decomposition, without pivoting, applied to
symmetric positive definite matrix. For a symmetric positive definite matrix, we can show
that pivoting is not required. This is actually a corollary of one of the definitions of what it
means to be a positive definite matrix.

Consequently, for a symmetric positive definite matrix we always have

A=LDL".

Moreover, because A is positive definite, we have D; ; > 0. This happens because after each
step of the reduction, the reduced matrix is also positive definite. The diagonal entries of a
positive definite matrix are always positive, and these determine the entries of the diagonal
D. As shown above, after each elimination step, the matrix remains positive definite as
well.

Because D is strictly positive, we can take the square root of each entry and compute

A=LDY*(D'L)" = FF" or F'F.
This gives the Cholesky routine

""" Compute the Cholesky factorization A = FF’ and return F """
function (A::Matrix)
A = copy(A) # save a copy
n = size(A,1)
Matrix(1.0I,n,n)
zeros(n)
for i=1:n-1
alpha = A[i,1i]
d[i] = sqrt(alpha)
Fli+l:end,i] = A[i+1l:end,i]/alpha
Al[i+l:end,i+l:end] -= A[i+l:end,i]*A[1i,i+1:end]’/alpha
end
d[n] = sqrt(A[n,n])
return F«Diagonal(d), d

o
o

end

PD = A’*A

F,d = myreduce_all_cholesky(PD)
FxF’ - A

Compare with the previous LU code to see the subtle differences.

What happens if your matrix is not symmetric positive definite? Then at some point
in the decomposition, you will have a < 0. This is actually one of the fastest ways to test if
a matrix is symmetric positive definite as it avoid all eigenvalue computations.

1.5 A MORE GENERAL PERSPECTIVE ON THIS IDEA.
— TODO - Finish
There is no restriction that the regions have no overlap when we split into two pieces.

Consider:
Ax =D

where x = Cy + Dz for a n x n — 2 full-rank matrix C and a n x n — 1 full-rank matrix D.
We require the matrices C and D be able to express any vector x. °

5 This can be formalized, but the exact prop-
erty escapes me as 'm writing these notes.

	Elimination methods for linear systems
	Variable elimination
	Variable elimination as a matrix expression
	On symmetric matrices
	The Cholesky decomposition
	A more general perspective on this idea.

