
JACOBI AND GAUSS - SE IDEL

David F. Gleich
August 21, 2023

Learning objectives
1. Viewing linear equations as a set of

equations where we can solve for any term
2. Realize that Gauss-Seidel is just a "bug" in
Jacobi

Now let’s see another set of methods that can apply to solving Ax = b.
These, again, follow from different perspectives on what these equations mean. Con-

sider that a system of linear equations represents a simultaneous solution of n individual
equations

Ax = b ⇔
⎛
⎜⎜⎜
⎝

aT1 x = b1
aT2 x = b2
⋯

aTn x = bn

⎞
⎟⎟⎟
⎠

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aT1
aT2
⋯
aTn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is the matrix with a vector for each row. We can use each of these equations to solve for
any particular variable given the others. For example, given a possible solution x, then

aT1 x = b1⇔∑
j
A1 jx j = b1

and if A1k /= 0, then we must have

xk =
1
A1k
(b1 −∑

j/=k
A1 jx j)

at a solution.1 1 There must always exist such a k otherwise
the system is singular!Then one strategy to improve an in-accurate solution to Ax = b is to pick out a set of

entries that can all be updated simultaneously and to do so.

1 a simple two variable example

Let’s see an example. Suppose that

A = [1 2
−2 1] , b = [

2
1]

and we have a current guess x = [1
1/2]. Then for row 1, we have our choice of index k to

update, 1 or 2. For the sake of example, let’s use row 1 to update x2 and then we’ll use row
2 to update x1. The update looks like:

xnew1 = 1
−2(1 − x

old
2)

xnew2 = 1
2
(2 − xold1)

For the guess x = [1
1/2]

xnew = [−1/41/2] .

If we repeatedly use this formula, then we converge to the solution x = [01] after a few
iterations.

1

2 the general example and the jacobi iteration

If we think about running this on a general system, then we’ll need to figure out which
equation we use to update which variable. This is tricky, however, because the update to x2
based on row 1 used an entry A12 that was non-zero. In general, this means that we cannot
update x2 from any of the other rows from 2 to n. In an ideal world (like the example
above), we’d like to update x1 , . . . , xn all at once.2 That means that we need a distinct row 2 There are some really interesting and useful

extensions that relax this assumption.i for each j such that A i j /= 0. We can encode this map in a matrix M. Let M be an n × n
matrix where:

M(i , j) =
⎧⎪⎪⎨⎪⎪⎩

1 row j is used to update x i
0 otherwise.

Then note that we must have exactly 1 entry in each row and column of M.3 We can use 3 Technically, and looking ahead just a few
paragraphs, the matrix M is a permutation
matrix, we will use this insight in a moment!

any matrix M where
M i , j /= 0 if and only if A i , j /= 0.

In general these are not-so-easy to find. We’ll return to this point in a moment. LetM i = j
for convinience of notation. The iteration is thus:

xnew1 = 1
AM1 ,1

(bM1 −∑
j/=1

AM1 , jx j)

⋮

xnewi = 1
AM i , i

(bM i −∑
j/=i

AM i , jx j)

⋮

xnewn = 1
AMn ,n

(bMn −∑
j/=n

AM i , jx j)

x i

row j

FIGURE 1 – A general setup for the equations
described by rows of a system. We need
A j , i ≠ 0 to update x i based on equation
j. We also cannot use equation j to update
any other variables, nor can we use other
equations to update x i . The map matrix M
encodes the set of updates.

We can state this using a set of matrices with some slight additional notation. Let DM
be the diagonalmatrix where [DM]i , i = AM i , i . The idea with DM is that we can write

xnew = D−1M some vector

where entries of that vector correspond to bM i −∑ j/=i AM i , jx j). Consequently, let bM be
the vector [bM]i = bM i . Also, let NM be the matrix with entries:

[NM]i , j =
⎧⎪⎪⎨⎪⎪⎩

0 i = j
AM i , j i /= j.

xnew = D−1M (bM − NMxold .

This iteration is called the Jacobimethod for solving a linear system of equations.

3 implementations of jacobi

1 """

2 jacobi_iteration_map_!(y,A,x,M) sets y to be the next Jacobi iteration from x with map M

3 """

4 function jacobi_iteration(y,A,x,M=1:length(x)))

5 for i=1:length(x)

6 y[i] -= (b[M[i] - A[M[i],:]’*x - A[M[i],i]*x[i]) / A[M[i],i]

7 end

8 end

4 a 3x3 example with a permutation instead of the
map

Most derivations of the Jacobi iteration assume that D is formed from the non-zero
diagonal of the linear system of equations, but there is no such restriction in the derivation

2

of the method. This is simply a notational convenience. All we need is a permutation
matrix P such that P ⊙ A is non-singular to build the matrix M for the above iteration to
work.4 4 Here ⊙ is the element-wise, or Hadamard,

products.Consider the following linear system

⎡⎢⎢⎢⎢⎢⎣

1 0 −3
0 −3 1
−3 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
. (1)

Then if we run the Jacobi update with

M1 = 3 M2 = 2 M3 = 1 and x(0) = [1 1 1]T

We have

xnew1 = 1
A3,1 = −3

(1 − (A3,2 = 0) ⋅ x2 − (A3,3 = 1) ⋅ x3) = 0

xnew2 = 1
(A2,2 = −3)

(1 − (A2,1 = 0) ⋅ x1 − (A2,3 = 1) ⋅ x3) = 0

xnew3 = 1
(A1,3 = −3)

(1 − (A1,1 = 1) ⋅ x1 − (A1,2 = 0) ⋅ x2) = 0.

If we write this as a matrix update, we have:

x(k+1) =
⎡⎢⎢⎢⎢⎢⎣

−3
−3

−3

⎤⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

−3
−3

−3

⎤⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
x(k) .

To avoid the details with M, let us simply permute the three rows of A so that row
3 comes first, then row 2, then row 1. Note that we simply reordered the rows, not the
variables. ⎡⎢⎢⎢⎢⎢⎣

−3 0 1
0 −3 1
1 0 −3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
.

In this case, we can simply split the matrix into it’s two pieces:

D = diagonal =
⎡⎢⎢⎢⎢⎢⎣

−3
−3

−3

⎤⎥⎥⎥⎥⎥⎦
N =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦

With this setup, we can easily write the iteration

x(k+1) = D−1b − Nx(k) .

5 jacobi with a permutation matrix

Let us derive the same update as above, using the permutation to show how it gen-
eralizes the previous algorithm. That’s because the matrix M really is a permutation! A
permutation matrix is just a way to reorder the rows or columns of a matrix. It reorders
the rows if we multiply on the left.

For a permutation matrix P, we have Pi , j = 1 if y = Px has y i = x j . That is, Pi , j if i in
the output was j in the input. So we can write:

bM = Pb where Pi , j =
⎧⎪⎪⎨⎪⎪⎩

1 j = M i

0 otherwise.

3

We can also apply the same permutation to A as in

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aT1
aT2
⋮
aTn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

then PA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aTM1

aTM2

⋮
aTMn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This corresponds with solving a linear system

PAx = Px
or really, just re-ordering the equations we were given. Now note that

DM = diagonal elements of PAin a diagonal matrix.

Then also,
NM = PA− DM .

This is why most textbooks do not describe the setup with using an equation to solve
for an unknown, it’s entirely equivalent to the following setup that is much closer to a
typical description of Jacobi

1. Pick a permutation matrix P such that PA has non-zero diagonal elements.
2. Let D be the diagonal elements of PA.
3. Let N be the matrix PA− D

Then the Jacobi method implements the iteration:

x(k+1) = D−1(Pb − Nx(k)).

This makes it much simplier to do the analysis below when we are interested in issues
of convergence: permute the matrix, then look at the diagonal entries and t

EXAMPLE 1 Show that the linear system (1) will not converge using Jacobi with the standard
permutation P = I.

EXAMPLE 2 Note that the 3x3 least squares problem for our quadratic fitting example will not
converge with Jacobi for any iteration.

5.1 INTERESTING TANGENT
Of course, this begs the question, why do we need a single permutation matrix P?

Why can’t we get away with using a sequence of iterations where we just ensure that each
element is updated every so-often. I’m almost sure this has been studied, but don’t know
the reference off the top of my head. Or even a random pair at each step.

6 the convergence of the jacobi method

It’s easy to determine the convergence of the Jacobi matrix with our knowledge of the
spectral-radius of a matrix. Let’s look at the error in the kth-step of the method:

x(k+1) − x = D−1M (b − NMx(k)) − x.

But note that we designed this so that x is a fixed point of the update, so x = D−1M (b−NMx)
as well. This means that

x(k+1) − x = D−1M (b − NMx(k) − b + NMx) = −D−1M NM(x(k) − x).

Consequently,
x(k+1) = (−D−1M NM)k+1(x(0) − x).

This converges, for all starting points x(0) if and only if ρ(−D−1M NM) < 1.

4

7 a mistake in an implementation of the jacobi
method

If we are solving large linear systems of equations, then we may have vectors with
billions of entries! This means that storing another vector xnew may be expensive itself. In
this case, I hope you can agree that it may occur to someone to try and save memory as
follows:

just update the solution to x with only a single set of memory!
For instance, consider the following implementation of the Jacobi iteration
1 """

2 jacobi_iteration!(y,A,x,M) updates x "like" Jacobi, but in-place, with map M

3 """

4 function jacobi_iteration!(A,b,x,M=1:length(x))

5 for i=1:length(x)

6 x[i] -= (b[M[i]] - A[M[i],:]’*x - A[M[i],i]*x[i]) / A[M[i],i]

7 end

8 end

This is wrong if the objective is to implement the Jacobi iteration. However, it turns
out that this idea gives rise to a method called the Gauss-Seidel method.

x1 =
1

AM1 ,1
(bM1 − ∑

j/=M1

AM1 , jx j)

⋯

xnewi = 1
AM i ,1

(bM i − ∑
j/=M i

AM i , jx j)

⋯

8 analyzing gauss-seidel

9 the gauss-seidel and steepest descent method

Note, you can show that Gauss-Seidel converges on any symmetric positive definite
matrix using the matrix M = I.

We can derive the Gauss-Seidel method as a mistake in Jacobi. Let’s now consider
what happens on a symmetric matrix Awith unit diagonals. We have:

xnew1 = (b1 −∑
j>1

A1, jxoldj)

⋯
xnewi = (b i −∑

j<i
xnewj −∑

j>i
A1, jxoldj)

Recall the iteration for coordinate descent:

x(k+1) = x(k) + γkei where γk = −[Ax − b]i/A i , i

Written in terms of our problem

xnewi = x i −∑
j=1

A i jxold + b i = b i −∑
j/=i

A i , jxoldj .

This shows that if we update the ith variable, then we are doing a closely related update to
Gauss-Seidel. To see that they are the same, remember how we arrived at Gauss-Seidel,
we simply did the Jacobi update but forgot to allocate new memory. This means that, in
the program, we have:

xnewi = (b i −∑
j<i

xcurj −∑
j>i

A1, jxcurj)

And now we can see that, expressed this way, Gauss-Seidel update is exactly the same as
steepest descent.

5

	A Simple Two Variable Example
	The general example and the Jacobi iteration
	Implementations of Jacobi
	A 3x3 Example with a permutation instead of the map
	Jacobi with a permutation matrix
	Interesting tangent

	The convergence of the Jacobi method
	A mistake in an implementation of the Jacobi method
	Analyzing Gauss-Seidel
	The Gauss-Seidel and Steepest Descent method

