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The Matrix Powers Subspace, aka the Krylov Subspace

1 MOTIVATION

Recall the first method we saw to solve a linear system of equations:

Ax=Db

where we conceptually multiplied by the inverse
(A 'wI+(T-A)+(I-A)+...
to get the algorithm:
k
x(0) = Z(I—A)]b.

=0
Let’s call this the Neumann-series algorithm for linear systems.

This converged as long as p(I — A) < 1. We could modify it so that it would work
for any symmetric positive definite problem by incorporating a scaling that gave us the
Richardson method.

The inspiration for our next set of methods arises from a set of subtle insights about
this original method. This will yield a set of new perspectives that we will use to generate
a family of solvers for linear systems called Krylov methods. In keeping with the idea
of introducing names that refer to ideas instead of people, we also call this the power

subspace methods.!

First, note that:
xX® =[b (1-A4)b (I-A)b]e.

That is, we can represent the kth iteration as a (simple!) linear combination of the basis
vectors
(b,(I-A)b,...,(I-A)D.
This means that, for some vector ¢, we can write:
xM=[b 4ab 4’ ...A'B]c
Let’s work this out, which will give us a lead on our next perspective.

LEMMA 1 Consider the kth iteration from a Neumann-series based approach, where x(%) =
Z;(:o(l — A)’b. Then we can write x(*) = Z]k-:() c;A’b for some coefficients c, ..., ci.

Proof The proof follows from the binomial expansion:
k k )
(1-4)b=3(")-ay.
j=0 \J

But a more useful realization is as follows:
(I - A)*b = polynomial(A)b.

In which case, the theorem is just giving a change of basis between polynomials in powers
of (1-x)and x.” .

Just to be clear, let’s state the other result as well.

COROLLARY 2 Consider the kth iteration from a Neumann-series based approch, where
x(F) = Z;‘:O(I— A)7b, then x(¥) = p(A)b for some polynomial p(x) = Z;LO cjxl,

Learning objectives

leftmirgin=* Recognize that the Neu-
mann method for solving
Ax = b can be explained
in terms of subspaces and
polynomials.

leftmiirgiin=* Understand that the
Krylov subspace is a sub-
space of matrix powers:
span(b, Ab, A%b, .. .)

leftmiiirgiiin=* Recognize that this view
suggests a more powerful
approach to approximately
solve a linear system of
equations by searching
the entire matrix power
subspace

The following derivations are largely pro-
cedural. Essentially, we are seeking to find
generalizations of some easy ideas that per-
mit us to find new perspectives. We will
then be able to use these new perspectives
to identify particular methods. To study the
methods, then, we'll take advantage of the
perspective we used to derive it! This type
of analysis can be subtle. So please do ask
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time by both Krylov and Lanczos.

* See the discussion sec:poly-basis-intro.



1.1 THE BASIS FOR A POLYNOMIAL
What is a polynomial?? In our setting, we are only concerned with univariate polyno-
mials. Consequently, a polynomial is any function of the form

p(x) : R > Rwhere p(x) = co + c1x + c3x% + ---cpx”.

The degree of the polynomial is the highest power. So p(x) = 5 + 2x + 3x? is a degree 3
polynomial. The basis for a polynomial has to do with how we represent p(x) as a sum of
functions of x. For instance, we can introduce

folx) =1, fi(x) = (1= x), folx) = (1 - %)
p(x) =3f2(x) = 8f1(x) + 0o (x).

The set of functions we use to write a polynomial is called the polynomial basis. Note that

the actual function p(x) is independent of the basis in which we write the functions.
Hence, what the previous lemma shows is simply that

k k
p(x) =} fi(x) =X s5;9i(x).
70— 70—
=(1-x)J =(x1)
In this case, we need to produce coefficients s; that correspond with the power, or mono-

mial basis, g;(x) = x/.

1.2 SUBSPACES AND POLYNOMIALS
Consider x* from the Neumann series

Subspaces Polynomials
The subspace view is that The polynomial view is that
x®=[b 4ab 4% - AF'b]c x®) =b+ (I- A)b+
p— 2 cee
to indicate that x(¥) is a specific linear (I A)kb T
combination of the basis vectors from the (I-4)<"p
matrix powers subspace = poly(A)b
[b Ab A’d - A*'b]. where poly(A) ~ A~

s
The key thing in both perspectives is that we can choose ¢ to find a different element of
the matrix power subspace or a different polynomial to find a better approximation of A™'.
And also that these are the same idea!
The goal of our next set of methods, the

Krylov subspace methods
is to seek better vectors in these subspaces than the choice of the Neumann series. Equiva-

lently, we can think of these as finding a better polynomial to represent A™".

2 THE MATRIX POWERS SUBSPACE

The matrix powers subspace is the set of vectors
Ky (A,b) = span(b, Ab, A’b, ... A*b).

This is typically called the Krylov subspace. Hence, the Neumann method just uses a
specific element of Ky (A, b) to approximation the solution of the linear system.

There is nothing “magic’” about the Krylov subspace. Although, it does arise surpris-
ingly often and in a number of forms.

Let’s start with a simple theorem (with a slightly magic proof).

* Much more on polynomials will be dis-
cussed in a future chapter on Orthogonal
Polynomials, chap:orthopoly. Read more
there now if you wish.



THEOREM 3 Let A be full rank. Suppose that A*b € Ki_, (A, b). Then the solution of Ax = b
is contained within Ky_; (A, b) as well.

Proof Let X be any basis for K;_; (A, b). Then we have that A*b = Xy for some vector Vi
Consequently, we also have that A**'b = Xy, Hence, for any set of powers beyond k,
they exist in the basis X. The simplest way to prove this is to appeal to a slightly fancy result
involving the Cayley-Hamilton theorem. 4 Note that, by the Cayley-Hamilton theorem,
there is a degree n polynomial p(A) such that p(A) = A™'. Hence, we by the assumptions
of the theorem, we have that p(A)b is in the subspace too. a

The reason this theorem is nice is because is says we never need to be concerned about
singular X. If X is singular, then we have solved our linear system!

21 THE PROBLEM WITH THE KRYLOV SUBSPACE
When we want to work with the Krylov subspace, we need a basis for it. The simple
choice is
X=[b Ab A’ ...A'D]

as that is how the subspace is defined. The problem with this basis, however, is that X
becomes very ill-conditioned as k gets large.
Let’s see this for a diagonal linear system! Suppose that

1
1/2
A, = 1/4
1/8

where A, is n-by-n.
Then suppose that b = e, so we get the vector of all ones. We have that

1 1 1
xo|! 1/2 1/4 1/(2%)
! 1/4 1/16 1/(4%)
-1 1/(2"-1) 1/(2" -1)? 1/(2" - 1)k

Note that A*"'b ~ A*b and so the matrix is almost singular.
A good way to characterize this is via the ill-conditioning of the matrix.
Let X be the

A BETTER BASIS FOR THE SUBSPACE

What wed ideally like is an orthogonal basis for Ky (A,b). We can get this via the
Arnoldi process.

— TODO - Derive Arnoldi as: AVk = Vk+1 Tk+1

— TODO - Proof that the Vk spans KK

* The Cayley-Hamilton Theorem states

that there is a degree n polynomial g(x)
such that g(A) = 0. (And also that

q(x) =TT, (x — A;) where A; are the eigen-
values, but that isn’t relevant.) Consider that
q(A)A™! = 0 too, but g(A) = c, A" +...col
50 q(A)A™! = ¢, A" + ¢pA™! = 0, which
we can solve for A7! to get a degree n — 1
polynomial for the inverse.



