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WarningWe will adopt slightly non-standard notation. �e quantity ∆ is a matrix, as are
any symbols pre�xed with δ, such as δL or δU . Upper tildes, like L̃ will denote quantities
represented on the computer.

Our goal is to show that Gaussian Elimination is a backwards stable algorithm. If
we show that Gaussian elimination is backwards stable, then we will show that we can
compute x̃ such that

(A+ ∆)x̃ = b.
In words, we compute the solution to a perturbed system where the perturbation is the
matrix ∆. If so, then, if Ax = b, we have:1 1 It’s a good exercise to stitch this bound

together from x̃ + A−1∆x̃ = x.
∥x − x̃∥
∥x∥ ≤ ρκ(A)

1 − ρκ(A)

where ρ = ∥∆∥/∥A∥.
�us, if we can show that ∥∆∥ is small, we will have a nice bound on the error of the

solution.

framework

�is is a complicated operation. When we solve Ax = b with Gaussian elimination, we
have three steps:

1. Factoring A = LU . We will show that we �nd: L̃Ũ = A+ E. We will assume that
partial pivoting is used, although, we will assume the permutation is known up
front.

2. Next we have to solve Ly = b, or on the computer,

(L̃ + δL) (y + δy)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=ỹ

= b.

In other words, we again solve a perturbed system exactly.

3. Finally, we have to solve Ux = y. But on the computer, this is now:

(Ũ + δU)(x + δx) = ỹ = y + δy.

Together, these results show that

b = (L̃ + δL)(Ũ + δU)(x + δx).

But, we have:

(L̃ + δL)(Ũ + δU) = L̃Ũ + δLŨ + L̃δU + δLδU = A+ E + δLŨ + L̃δU + δLδU .

�us,
(A+ ∆)(x + δx) = b

with ∆ = E + δLŨ + L̃δU + δLδU .
Now we go through and �nd bounds on all of these terms.
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errors in lu

Our goal now is to show that what we compute on the computer is: L̃Ũ = A+ E for
some E.

We’ll show this in two steps. In the �rst step, we’ll just introduce additive errors
into each of our operations. In the second step, we’ll use the properties of �oating point
arithmetic to bound those errors.

GAUSSIAN ELIMINATION WITH ERRORS
Suppose we are computing the LU factorization of A. We’ll represent this as a sequence

of changes to the matrix

A = A(1) zero 1st columnÐ→ A(2) zero 2st columnÐ→ A(3) → ⋯ → A(n−1) .

�us, A(k) is the matrix a�er k − 1 columns have been zeroed. To move to the k+1st step,
we compute:

A(k+1)i j = A(k)i j − L i kA
(k)
k j , L i k =

A(k)i k

A(k)kk

.

Let B(k) be thematrix a�er k−1 columns have been zeroed in �oating point arithmetic.
We have:

B(k+1)i j = B(k)i j − L̃ i kB
(k)
k j + µ

(k+1)
i , j , L̃ i k =

B(k)i k

B(k)kk

(1 + η i k).

In this expression, µ(k+1)i , j represents the �oating point error in computing B(k+1)i j from
the intermediate terms. For this expression, note that µ does not need to include the e�ect
from η because we are analyzing this expression with L̃ – the computed quantity, not the
exact quantity. For each element B i j there is a maximum k such that we will stop looking
at that element in the future.2 �us, when we stop looking at an element B i j there are 2 �is is a straightforward observation if you

look at LU in exact arithmetic:

A(k) = [U C
0 D] ,

where U is (k − 1)-by-(k − 1).

two reasons: 1) it’s in the upper triangle and i ≤ k, or 2) it’s zero in the lower-triangle with
j < k.

So we’ll divide our analysis into two cases that correspond to these two outcomes.
First, suppose we are in the upper-triangle, so j ≥ i. �en,

B(2)i j = B(1)i j − L̃ i ,1B
(1)
1, j + µ

(2)
i j

B(3)i j = B(2)i j − L̃ i ,2B
(2)
2, j + µ

(3)
i j

⋯
B(i)i j = B(i−1)i j − L̃ i , i−1B

(i−1)
i , j + µ(i)i j .

�e goal here is a relationship between B(1)i j and B(i)i j . If we sum up all of these
expressions, we have:

i

∑
k=2

B(k)i j =
i−1
∑
k=1

B(k)i j −
i−1
∑
k=1

L̃ i ,kB
(k)
k , j +

i

∑
k=2

µ(k)i j .

Note that this sum telescopes! In other words, we get massive cancellation of the B(k)i j
terms. A�er all of them are removed, we have:

B(i)i j = B(1)i j −
i−1
∑
k=1

L̃ i ,kB
(k)
k , j +

i

∑
k=2

µ(k)i j .

We can rearrange this to show that:

B(1)i j + E i j = B(i)i j +
i−1
∑
k=1

L̃ i ,kB
(k)
k , j
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where E i j = ∑i
k=2 µ

(k)
i j .

We are half done with showing the error in the LU factorization. At this point, we’ve
shown that the upper-triangular piece of our factorization is correct for a matrix A+ E,
with a precise accounting of where the errors occur. Now, we just have to show that same
thing holds in the lower-triangular region.

If i > j, then
B(2)i j = B(1)i j − L̃ i ,1B

(1)
1, j + µ

(2)
i j

B(3)i j = B(2)i j − L̃ i ,2B
(2)
2, j + µ

(3)
i j

⋯
B( j)i j = B( j−1)i j − L̃ i , j−1B

( j−1)
j−1, j + µ

( j)
i j .

�is is, of course, the same.3 But we also have: 3 I think there might be an index mistake in
here, be wary.

0 = B( j)i j − L̃ i , jB
( j)
j j + µ

( j+1)
i j

because B i j becomes 0 in the ( j + 1)st step. A�er a similar cancellation of terms, we get:

B(1)i j = 0 +
j

∑
k=1

L̃ i ,kB
(k)
k , j + E i j

where E i j = ∑ j+1
k=2 µ

(k)
i j .

�us, what we compute on the computer is:

L̃Ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L̃2,1 1
L̃3,1 L̃3,2 1
⋮ ⋮ ⋱

L̃n ,1 L̃n ,2 ⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(1)1,1 B(1)1,2 B(1)1,3 ⋯ B(1)1,n
B(2)2,2 B(2)2,3 ⋯ B(2)2,n

B(3)3,3 ⋮
⋱ ⋮

B(n)n ,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using our equations that we derived, we can show:

L̃Ũ = B(1) + E = A+ E .

BOUNDING THE ERRORS
Now, we need to bound each element in E. We have:

L̃ i ,k = � (B(k)i k /B
(k)
kk ) = (B

(k)
i k /B

(k)
kk )(1 + η i k)

and
� (L̃ i ,kB

(k)
k , j ) = (L̃ i ,kB

(k)
k , j )(1 + θ(k)i j ),

so that:

B(k+1)i j = � (B(k)i j − (L̃ i ,kB
(k)
k , j )(1 + θ(k)i j )) = (B

(k)
i j − (L̃ i ,kB

(k)
k , j )(1 + θ(k)i j )) (1 + ϕ

(k)
i j ).

�e quantities η, θ , and ϕ all obey ∣ ⋅ ∣ ≤ u, the machine round-o� error. By reworking this
bound for a while, we get:

µ(k+1)i j = B(k+1)i j

⎛
⎜
⎝

ϕ(k)i j

1 + ϕ(k)i j

⎞
⎟
⎠
− L̃ i ,kB

(k)
k , j θ(k)i j .

Using the bound ∣L̃ i j ∣ ≤ 1 from using partial pivoting, we �nd:

∣µ(k+1)i j ∣ ≤ ∣B(k+1)i j ∣ u
1 − u + ∣B

(k)
k j ∣u.
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We are getting close to a bound. We now need to understand how big elements in B
can get! Here, we’ll use exact computation again. Let ∣A i j ∣ ≤ a for all i , j. Using

A(k+1)i j = A(k)i j − L i kA
(k)
k j , L i k =

A(k)i k

A(k)kk

we �nd
∣A(2)i j ∣ ≤ ∣A

(1)
i j ∣ + ∣A

(1)
k j ∣ ≤ 2a

∣A(3)i j ∣ ≤ ∣A
(2)
i j ∣ + ∣A

(2)
k j ∣ ≤ 4a

⋮
∣A(n)i j ∣ ≤ 2n−1a.

We’ll return to this bound in a second. It’s pretty absurd.
Instead, let’s bound ∣B(k)i j ∣ ≤ Ga where G is called the growth factor. �e result above

suggests that the growth factor is 2n−1. But let’s just go ahead and use G. In that case, we
get: 4 4 Recall that 1

1−u = 1 + u + u2 + . . ..

∣µ(k+1)i j ∣ ≤ Ga
u

1 − u +Gau = Ga(2u − u2)(1 + u + u2 + . . .) ≈ 2uGa + O(u2).

�is is, �nally, some progress. We now have a bound on all the terms µ i j in the summation
formulas that de�ne the matrix E. Recall that

E i j =
i

∑
k=2

µ(k)i j

if j ≥ i. �us,
∣E i j ∣ ≤ (i − 1)2uGa

for any element in the upper triangular region. For elements in the lower-triangular region

∣E i j ∣ =
RRRRRRRRRRR

j+1

∑
k=2

µ(k)i j

RRRRRRRRRRR
≤ j2uGa.

We can summarize this analysis via a matrix equation:

∣E∣ ≤ 2uGa

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ ⋯ 0
1 1 1 ⋯ ⋯ 1
1 2 2 ⋯ ⋯ 2
⋮ ⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮ n − 2 n − 2
1 2 3 ⋯ n − 1 n − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ O(u2).

�us, A+ E = L̃Ũ .
And we’re done with part 1.

GROWTH FACTORS
What we showed is that ∣E i j ∣ ≤ 2uGa where G ≤ 2n−1. �at is not exactly small. And

it can occur! �e matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has an LU factorization with Un ,n = 2n−1. �is is entirely general.
While this exponential explosion in the growth factor can occur. It never seems

to occur naturally. It only arises in a few examples that are designed to elicit it. �is
has provoked much study of why this occurs.
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Sankar, Spielman, and Teng recently took up this issue. �eir paper “Smoothed
Analysis of the Condition Numbers and Growth Factors of Matrices” (SIMAX 2006)
shows some remarkable new results about the growth factor of a random perturbation of
a matrix. Here’s the abstract.

Let Â be an arbitrary matrix and let A be a slight random perturbation of
Â. We prove that it is unlikely that A has a large condition number. Using
this result, we prove that it is unlikely that A has large growth factor under
Gaussian elimination without pivoting. By combining these results, we
show that the smoothed precision necessary to solve Ax = b, for any b,
using Gaussian elimination without pivoting is logarithmic. Moreover,
when Â is an all-zero square matrix, our results signi�cantly improve the
average-case analysis of Gaussian elimination without pivoting performed
by Yeung and Chan (SIAM J. Matrix Anal. Appl., 18 (1997), pp. 499-517).

ERRORS IN FORWARD-AND-BACK-SUBSTITUTION
Here, we’ll consider the problem: 5 5 I’m slightly less con�dent in the notes

for this section, reader beware; Trefethen,
Lecture 17 and Golub and van Loan Section
3.1 have this analysis.

Tv = h
where T is lower-triangular, n × n, non-singular. Element-wise, we �nd:

⎡⎢⎢⎢⎢⎢⎣

T11
⋮ ⋱

Tn1 ⋯ Tnn

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

v1
⋮
vn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

h1
⋮
hn

⎤⎥⎥⎥⎥⎥⎦
.

�us, we get the forward substitution procedure:

v1 = h1/T11

⋮

vk =
hk − Tk ,1v1 − Tk ,2v2 −⋯ − Tk ,k−1vk−1

Tkk
.

Let ṽk be the computed value in �oating point. In �oating point, this gives us:

ṽk =
⎛
⎝
(hk −∑k−1

i=1 Tk , i ṽ i(1 + ωk , i))(1 + αk)
Tk ,k

⎞
⎠
(1 + τk)

= hk −∑k−1
i=1 Tk , i ṽ i(1 + ωk , i)

Tk ,k/(1 + αk)(1 + τk)
.

With some more co�ee-shop manipulations, we arrive at:
k

∑
i=1

Tk , i ṽ i(1 + λk , i) = hk

or

T ṽ +
⎡⎢⎢⎢⎢⎢⎣

λ1,1T1,1
λ2,1T2,1 λ2,1T2,1
⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎦
ṽ = h.

Equivalently,6 6 �is matrix can take a few di�erent forms
depending on how the summation is evalu-
ated.

(T + δT)v = h
where

∣δT ∣ ≤ u

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣T1,1∣
∣T2,1∣ 2∣T2,2∣
2∣T3,1∣ ∣T3,2∣ 3∣T3,3∣
⋮ ⋮ ⋱

(n − 1)∣Tn ,1∣ ⋯ ⋯ ∣Tn ,n−1∣ n∣Tn ,n ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ O(u2)

�us, for solving a triangular system, we have errors:

(T + δT)v = h where ∣δTi j ∣ ≤ nut + O(u2) and ∣Ti j ∣ ≤ t.
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OVERALL ERRORS
In our framework, the solution x̃ = x + δx satis�es:

(A+ ∆)x = b

where ∆ = E + δLŨ + L̃δU + δLδU . Let’s look at the maximum errors in each of these
terms:

max
i j
∣δL̃ i j ∣ ≤ nu + O(u2)

max
i j
∣δŨ i j ∣ ≤ nuGa + O(u2).

�is tells us:

max
i j
∣Delta i j ∣ ≤ max

i j
∣E i j ∣ +max

i j
∣(δLŨ)i j ∣ +max

i j
∣(L̃δU)i j ∣ +max

i j
∣(δLδU)i j ∣

≤ 2uGan + n2Gau + n2Gau + O(u2).

�us,
∥∆∥

∞
≤ 2n2(n + 1)uGa.

�is merits a theorem.

THEOREM 1 Gaussian Elimination is Backwards Stable!

Now, we can go even further, and bound the error in the solution as well. Let ρ = ∥∆∥
∥A∥ .

�en
ρ ≥ 2n2(n + 1)G

because ∥A∥
∞
≥ a. Going back to the beginning, we now have:

∥x − x̃∥
∥x∥ ≤ ρκ(A)

1 − ρκ(A) =
2n2(n + 1)Gκ(A)

1 − 2n2(n + 1)Gκ(A)
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