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Warning We will adopt slightly non-standard notation. The quantity A is a matrix, as are
any symbols prefixed with &, such as L or §U. Upper tildes, like L will denote quantities
represented on the computer.

Our goal is to show that Gaussian Elimination is a backwards stable algorithm. If
we show that Gaussian elimination is backwards stable, then we will show that we can
compute X such that

(A+A)x=b.

In words, we compute the solution to a perturbed system where the perturbation is the
matrix A. If so, then, if Ax = b, we have:!
Ix-x| __p(a)
Ix| -~ 1-px(A)

where p = |A[[ /[ A
Thus, if we can show that ||A| is small, we will have a nice bound on the error of the
solution.

FRAMEWORK

This is a complicated operation. When we solve Ax = b with Gaussian elimination, we
have three steps:

1. Factoring A = LU. We will show that we find: LU = A + E. We will assume that
partial pivoting is used, although, we will assume the permutation is known up
front.

2. Next we have to solve Ly = b, or on the computer,

(L+6L) (y+dy) =b.
———
=y
In other words, we again solve a perturbed system exactly.

3. Finally, we have to solve Ux = y. But on the computer, this is now:

(U +08U)(x+6x) =7 =y + dy.

Together, these results show that
b= (L+68L)(U+8U)(x+dx).
But, we have:
(L+08L)(U+68U)=LU+6LU + L6U + SLSU = A+ E + LU + LoU + SLSU.

Thus,
(A+A)(x+6x)=b

with A = E+ 6LU + LéU + 6LSU.
Now we go through and find bounds on all of these terms.
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' It’s a good exercise to stitch this bound
together from  + A"!Ax = x.



ERRORS IN LU

Our goal now is to show that what we compute on the computer is: LU = A + E for
some E.

Well show this in two steps. In the first step, we'll just introduce additive errors
into each of our operations. In the second step, we'll use the properties of floating point
arithmetic to bound those errors.

GAUSSIAN ELIMINATION WITH ERRORS
Suppose we are computing the LU factorization of A. We'll represent this as a sequence
of changes to the matrix

zero 1st column (2) zero 2st column
— A —

A=AM AG®) L 4 A

Thus, A% is the matrix after k — 1 columns have been zeroed. To move to the k+1st step,
we compute:

(k+1) _ 4 (k) (k) A
Aij :Aij _LikAkj > Lk = RON
kk

Let B¥) be the matrix after k— 1 columns have been zeroed in floating point arithmetic.

We have:
. B . BW
BS]{wl) _ B[(j’f) _LikB]((I;) +#§,j+1)’ L= t(’;) (1+ 7).
Bkk

In this expression, ‘u(];”

: ) represents the floating point error in computing BEJI.CH) from
the intermediate terms. For this expression, note that ¢ does not need to include the effect
from 7 because we are analyzing this expression with L — the computed quantity, not the
exact quantity. For each element B;; there is a maximum k such that we will stop looking
at that element in the future.> Thus, when we stop looking at an element B;; there are
two reasons: 1) it’s in the upper triangle and i < k, or 2) it’s zero in the lower-triangle with
j<k.

So we'll divide our analysis into two cases that correspond to these two outcomes.
First, suppose we are in the upper-triangle, so j > i. Then,

@ _ g _j g, ,@
B =B{) — L, By + ]
() _g@ _j @, ,®
B =B - L, ,B5") + uj;
() _gt-D _j gl ()
B =BV - L, BT ).

The goal here is a relationship between Bf}) and BE;). If we sum up all of these
expressions, we have:

i i-1 i-1 i

k k 2 k k
Y B =Y B - Y LBl + Y up.
k=2 k=1 k=1 k=2

Note that this sum telescopes! In other words, we get massive cancellation of the Bl(]].()
terms. After all of them are removed, we have:

i—1 i
M _g)_¥j gk (k)
B;;' =B}’ - ZLi,kBk,j + 2 i
k=1 k=2
We can rearrange this to show that:

i—1
) o), 7 R
B;;’ +Eij=Bj +kZLi,kBk)j
=1

> This is a straightforward observation if you
look at LU in exact arithmetic:

w _|U C
A _[0 D],

where U is (k — 1)-by-(k — 1).



(k)
where E;; = il QM
We are half done with showing the error in the LU factorization. At this point, we've

shown that the upper-triangular piece of our factorization is correct for a matrix A + E,

with a precise accounting of where the errors occur. Now, we just have to show that same
thing holds in the lower-triangular region.
If i > j, then

BY =B - L, B +u
(3) (2) : (z) )
J 11 Li,ZBZ/ Tl

() _ pG-1) _ 7 = 1) 6)]
Bij _Bij Li;- 1B; 1,j THij-

This is, of course, the same.3 But we also have:
_p() _7 () (+1)
O_Bi,‘ —L,-,ij +A“1]

because B;; becomes o in the (j + 1)st step. After a similar cancellation of terms, we get:

j
k
(l) Z ()+E’J
_ it (k)
where Ej = 3, ;-
Thus, what we compute on the computer is:

1) p)  p(1) 1)

1 By Bl,22 Bza Bl,zn

I NI B) By - Bf,

LU = L3,1 L3’2 1 Bgi”) .

Lyyw Ly, - 1 B%

Using our equations that we derived, we can show:

LU=-BY +E-A+E.

BOUNDING THE ERRORS
Now, we need to bound each element in E. We have:

Lo = (B /BG ) = (B /BE) (1 + 1)

and i
ﬂ(Li,kB,E’j]?) (LixB{ )1+ 00,

so that:

B <A1 (B - (LikB{))(1+605)) = (B - (LixB{) (1+680)) (1+ 91).

The quantities #, 6, and ¢ all obey | - | < u, the machine round-off error. By reworking this
bound for a while, we get:

oy _ ey [ 94 (k) (k)
+1) _ p(k+l z

S o)
Using the bound |I:,» j| < 1 from using partial pivoting, we find:

|M k+l)| < |B(k+l)| u |B(k)|u

31 think there might be an index mistake in
here, be wary.



We are getting close to a bound. We now need to understand how big elements in B
can get! Here, we'll use exact computation again. Let |A;j| < a for all i, j. Using

(k+1) _ 4 (k) (k) A
Aij :Aij _LikAkj > Lik:W
kk

we find

2 1 1
AD <[4+ 1A < 24

3 2 2
AP < AP +140)] < 40
AP <2 a,
We'll return to this bound in a second. It’s pretty absurd.
Instead, let’s bound |Bl(]k)| < Ga where G is called the growth factor. The result above
suggests that the growth factor is 2"~!. But let’s just go ahead and use G. In that case, we
get: 4

u
1-u

(k
|.“ij

| < Ga +Gau=Ga(u-u?)(1+u+u*+...) ~2uGa+ O(u?).

This is, finally, some progress. We now have a bound on all the terms y;; in the summation
formulas that define the matrix E. Recall that

0
Eij=7), Hij
k=2

if j > i. Thus,
|El]| < (1 - I)ZMGCZ

for any element in the upper triangular region. For elements in the lower-triangular region

j+l f
Byl = |3 ui))| < j2uGa.
k=2

We can summarize this analysis via a matrix equation:

0 0 O 0
1 1 1 1
: : n-2 n-2
1 2 3 -+ n-1 n-1

Thus, A+ E = LU.
And we're done with part 1.

GROWTH FACTORS
What we showed is that |E;;| < 2uGa where G < 2"~'. That is not exactly small. And
it can occur! The matrix

1 0 0 0 1
-1 1 0 0 1
A=|-1 -1 1 0 1
-1 -1 -1 1 1
-1 -1 -1 -1 1

has an LU factorization with U,, , = 2""!. This is entirely general.

While this exponential explosion in the growth factor can occur. It never seems
to occur naturally. It only arises in a few examples that are designed to elicit it. This
has provoked much study of why this occurs.

4

4Recallthatﬁ:1+u+uz+....



Sankar, Spielman, and Teng recently took up this issue. Their paper “Smoothed
Analysis of the Condition Numbers and Growth Factors of Matrices” (SIMAX 2006)
shows some remarkable new results about the growth factor of a random perturbation of

a matrix. Here’s the abstract.

Let A be an arbitrary matrix and let A be a slight random perturbation of
A. We prove that it is unlikely that A has a large condition number. Using
this result, we prove that it is unlikely that A has large growth factor under
Gaussian elimination without pivoting. By combining these results, we
show that the smoothed precision necessary to solve Ax = b, for any b,
using Gaussian elimination without pivoting is logarithmic. Moreover,
when A is an all-zero square matrix, our results significantly improve the
average-case analysis of Gaussian elimination without pivoting performed
by Yeung and Chan (SIAM J. Matrix Anal. Appl., 18 (1997), pp. 499-517).

ERRORS IN FORWARD-AND-BACK-SUBSTITUTION
Here, we'll consider the problem: 3

Tv=h

where T is lower-triangular, # x n, non-singular. Element-wise, we find:

T Vi hy
Tnl Tnn Vi hn
Thus, we get the forward substitution procedure:
vi=h /Ty
Vi = h = Tiivi = Tiova =+ = Tik-1Vi

Tk
Let 7, be the computed value in floating point. In floating point, this gives us:

) ((hk - T T (1+ wii) ) (1+ @)

Vi =
Tk

)(1+Tk)

_ - S T (1 + wi)
Tk)k/(l +0(k)(1 + Tk)

With some more coffee-shop manipulations, we arrive at:

k
D Teivi(1+ Agi) = hi

i=1

or
AT
TV + /\2,1 T2,1 Az)l Tz,l v=h.
Equivalently,6
(T+6T)v=h

where

| T1,1]

| T2,1 2[To,|

|6T| <u 2|T3)1| |T3,2| 3|T3,3| + O(uz)
(n—1)|T, |Ton-1| 1| Tl

Thus, for solving a triangular system, we have errors:

(T +8T)v = h where |8T;;| < nut + O(u*) and | T;;| < t.

5 'm slightly less confident in the notes
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ated.



OVERALL ERRORS
In our framework, the solution X = x + dx satisfies:

(A+A)x=b

where A = E + LU + LOU + 8LSU. Let’s look at the maximum errors in each of these
terms: ;
max|8L;| < nu + O(u?)
ij

mizjix\éU,ﬂ < nuGa + O(u?).
This tells us:
rr?x\Delta,ﬂ < rria}lx|Ei]v| + rni;lx|(6Ll~J),-j| + miz];x|(I:6U),-j| + r%?x|(6L5U)ij|
<2uGan + n*Gau + n*Gau + O(u?).

Thus,
|A|, <2n*(n+1)uGa.

This merits a theorem.

THEOREM 1 Gaussian Elimination is Backwards Stable!

A

Now, we can go even further, and bound the error in the solution as well. Let p = Tar

Then
p22n*(n+1)G

because ||Al|, > a. Going back to the beginning, we now have:

[x - x| P px(A) _ 2n*(n+1)Gx(A)
Ix| ~ 1-px(A) 1-2n2(n+1)Gk(A)




