
QR FACTORIZATION

David F. Gleich
August 21, 2023

1 least squares via qr factorization and
orthogonalization

Learning objectives

1. Target pieces of a matrix for an opera-

tion with pieces of the identity matrix.

There is another approach to solving the least squares problems

minimize ∥b − Ax∥

besides the variable elimination procedure we saw in previous classes. I don’t yet have a

natural derivation of this particular idea, but I believe it originates around the following

set of ideas.

· The geometry of the least squares problems involves working with the span of A’s
columns, or the range of A. In particular, we want to find a point in the range that

is as close as possible to b.
· Since this involves workingwith the range ofA, it is “natural’ ’ to seek an orthogonal
basis for it.

And this is what the QR factorization of a matrix encodes: an orthogonal basis for the

columns of A.
More formally, the QR factorization of a tall m × n matrix A (with m ≥ n) is a pair of

matrices Q and R such that:

· A = QR
· Q is square m ×m and orthogonal

· R will also be upper-triangular and m × n, but let’s see where that comes from!

The upper-triangular structure appears to arise from early work by Schmidt on orthog-

onalizing a set of vectors. This is often called the “Gram-Schmidt process” and functions

by successive orthogonalization.1 1 I am looking into ways of re-deriving these

ideas where the upper-triangular structure

is one of a few possible natural choices

depending on the ideas involved, but so far I

haven’t hit on anything easy.

1.1 REVIEW OF GRAM-SCHMIDT

This review is meant to remind you of stuff

you hopefully learned in previous linear

algebra classes.

That is, if we are given a set of three vectors x, y, z then the Gram-Schmidt process

builds an orthonormal basis for their span, which is equivalent to building an orthogonal

matrix Q such that

[x y z] = QC

for some non-singular, square matrix C. The Gram-Schmidt process begins with the first

vector x and sets the first column of Q to be x/∥x∥. Then we project-out any component of

x on the other vectors. The matrix P(x) = I − xxT
xTx is a projector

2 to the space orthogonal 2 A projector matrix projects vectors to
a subspace S. Because the output from a

projector is a new vector in a subspace S, it
must be the case that projecting to S again
will leave the result unchanged. Hence,

P2
= P for any projector matrix!

to the vector x. That is, xTP(x)y = xTy − xTx
xTxx

Ty = 0. Hence, we compute y
1
= P(x)y,

z1 = P(x)z. The next vector q2 = y1/∥y1∥. and we project z2 via P(y1). This gives us three

vectors:

Q = [x/∥x∥ y
1
/∥y

1
∥ z2/∥z2∥]

where y
1
= P(x)y and z2 = P(y1)P(x)z. We can write this as a matrix equation as follows:

A = [x y z] = [x/∥x∥ y
1
/∥y

1
∥ z2/∥z2∥]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∥x∥ C1,2 C1,3

0 ∥y
1
∥ C2,3

0 0 ∥z2∥

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1

where C i , j arises from the projection operations. Consider C1,2, which we get from

y
1
= P(x)y = y − xT y

xTxx, we can write this to get C i , j for each.

Notice the similarity between this procedure and the successive elimination procedure

we had in the previous class. I think this can be turned into a fairly natural derivation, but

it requires a little more work.

The point of these derivations is that the Gram-Schmidt process produces an orthogo-

nal basis for the columns of A via successive orthogonalization, which can be written:

A = QR

for an m × n matrix Q and a square upper-triangular matrix n × n matrix R. This is often

called a “thin’ ’ QR factorization because the matrix Q isn’t square but is tall instead.

1.2 GENERALIZ ING TO QR
The idea with the full QR factorization is that we can extend a “thin” QR factorization

to a square matrix Q because there are n orthogonal vectors in an n-dimensional space.

Given any set of m orthogonal vector (say via Gram-Schmidt), then there exist another

m − n vectors that are mutually orthgonal as well. Of course, because these are orthogonal,

we don’t need to use them to write the matrix A, so the “tail’ ’ of R becomes zero.

1.3 USING QR TO SOLVE LEAST SQUARES
Now, let’s show that we can use any QR factorization to compute a solution to the least

squares problem. Note that ∥x∥ = ∥Qx∥ = ∥QTx∥ for any square orthogonal matrix Q.

Hence, let A = QR be any full QR factorization with a square matrix Q, then

∥b − Ax∥ = ∥QTb − QTAx∥ = ∥b̂ − Rx∥ = ∥ [b̂1b̂2
] − [

R1

0
] x∥ .

Here, we used R = [R1

0
] where R1 is the first set of n rows of R. Because R is upper-

triangular, the other elements are always zero.

Note that this form helps us greatly! Note that no matter how we change x, we cannot
elminate b̂2 from the difference between b and Ax. Hence, the best we can do to minimize

the expression is to set x so that b̂1 = R1x.
Consequently, we can use any method to produce a QR factorization to solve a least

squares problem via the following algorithm:

Compute a full or thin QR factorization.

Compute b̂1 = first n rows of Qb when Q is full,

or b̂1 = QTb when Q is m × n.
Solve R1x = b̂1.
Return x

1.4 A GIVENS ROTATIONS AND QR FOR A SMALL VECTOR.
Consider the problem of computing a QR factorization for a 2× 1 vector v. Recall that

an orthogonal matrix is a generalization of a rotation, so we can write it as:

Q = [cos θ sin θ
− sin θ cos θ] .

Let’s see how to pick Q for v.
An obvious way is to try and compute θ in the above expression such that

Q(θ)v = γe1
for some γ.

2

However, there is a better way to do this! Note that Q(θ) only has two unknowns,

c = cos θ and s = sin θ. To compute Q, we just need these two values! Let’s write out the

equations:

[
c s
−s c] [

v1
v2
] = [

γ
0
]

This gives two equations and two unknowns.

v1c + v2s = γ and v2c − v1s = 0.

We can solve these to get3 Some discussion of how this impacts numerical software is } 3 The solution here is not unique. Note that

we can negate these values as well as they

are also a solution. See more discussion

in https://netlib.org/lapack/lawnspdf/

lawn148.pdf

c = v1/γ and s = v2/γ.

Because the matrix is orthgonal, we must have γ =
√

v21 + v22 or γ = −
√

v21 + v22 so that the
length of v doesn’t change.

This 2 × 2 matrix Q(θ) is called a Givens rotation.

1.5 THE QR FACTORIZATION FOR A 3X1 VECTOR.
Suppose v is 3 × 1. Then we could seek to build a 2d rotation matrix and solve for

the coefficients. However, there is an alternative mechanism where we can use matrix

structure. Let v = [v1 v2 v3]
T
. Let $

1.6 GIVENS ROTATIONS IN JULIA
We can compute Givens rotations in J

1.7 COMPUTING QR FOR A COLUMN
Consider computing a QR factorization for a n × 1 vector v now. By the definition, we

have:

Qv = γe1 .

where γ = ±∥v∥.

3

https://netlib.org/lapack/lawnspdf/lawn148.pdf
https://netlib.org/lapack/lawnspdf/lawn148.pdf

	Least squares via QR factorization and orthogonalization
	Review of Gram-Schmidt
	Generalizing to QR
	Using QR to solve least squares
	A Givens Rotations and QR for a small vector.
	The QR factorization for a 3x1 vector.
	Givens rotations in Julia
	Computing QR for a column

