
S IMPLE ALGORITHMS FOR L INEAR SYSTEMS AND LEAST
SQUARES

David F. Gleich
August 21, 2023

Learning objectives
1. A recap of what it means to solve a linear

system.
2. Why we only talk about solving full rank

systems.
3. The Neumann series algorithm for

solving some linear systems.
4. How to evaluate an approximate solu-

tion.
Note that this section could also come

after discussing vector and matrix norms,
as we will use those in our discussion of
approximate solutions.
We assume that you might already be

familiar with the Euclidean vector norm:
∥x∥ =

√

∑i x2i from past experiences.

We are going to look at a number of algorithms for solving linear systems of equations
and least squares problems. These are all going to be “simple” algorithms in that we are
going to derive them by using a few simple ideas that result from studying the equations
that define a linear system.

The algorithms we are going to study right now are all of the flavor:

start→ improve→ improve→ ⋯

or as I like to think of them

guess→ check→ correct→ check→ correct→ ⋯.

That is to say, these are going to be “iterative” algorithms. We will construct a sequence
of vectors that hopefully converges to the solution of the linear system of equations of least
squares problem.

1 review of linear systems of equations

Let’s start with some basic properties of linear systems of equations.1 A linear system 1 This section should be a review.

Ax = b
represents a set of equations

A1,1x1 + A1,2x2 + . . . + A1,nxn = b1
A2,1x1 + A2,2x2 + . . . + A2,nxn = b2

⋯Am ,1x1 + Am ,2x2 + . . . + Am ,nxn = bm .

This is a relationship described by m equations and n unknowns. These come from an
enormous diversity of scenarios as detailed in previous lectures and notes.

If there are fewer equations than unknowns (m < n), then the system is called under-
determined and it may have 0, 1, or an infinite set of solutions. If m = n, the system is
called square and the system can have 0, 1, or an infinite set of solutions. And if m > n,
the system is called over determined and it can have 0, 1, or an infinite set of solutions.

The above expressions are all 0, 1, or an infinite number. As a small consideration,
why can’t we have two solutions but not an infinite number? This is a property of a linear
set of equations that is part of what makes them special and easy to solve. Suppose we have
two solutions x and y

Ax = b Ay = b x /= y.
Then any combination of those solutions is also a solution, such as

A(γx + (1 − γ)y) = γAx + (1 − γ)Ay) = γb + (1 − γ)b = b

and we have this relationship for all γ. This is an infinite set of solutions.
How can we have zero solutions to an underdetermined system? This is because the

above characterization did not prescribe anything about the dependencies among solutions.
For instance, here are two equations

−x + y − z = 2
−x + y − z = 3.

1



Note that these are the same equation with a different value. There is no solution. As a
matrix A, this scenario is a 2 × 3 matrix with rank 1.

Here is a fun case to consider. Let A = yyT . When does Ax = b have a solution? When
does it have no solution? Describe a procedure to find the solution.

For this reason, typically people have chosen to discuss equations in terms of full rank
matrices. An m × n matrix is full rank if the rank is min(m, n). In this case, underdeter-
mined problems (m < n) always have an infinite number of solutions. Overdetermined
problems (m > n) have either 1 or 0 solutions. Square systems have only one unique
solution.

Unfortunately, all this flexibility in terms of the number of solutions makes it hard to
discuss algorithms. Consequently,

When we consider solving linear systems, we always focus on the square, full-rank case.

There are a large number of known ways to characterize when a square system of linear
equations is full rank.

· rank(A) is n (or m since m = n)

· A is invertible

· the columns of A are linearly independent

· the rows of A are linearly independent

· the determinant of A is one

· the eigenvalues of A are all non-zero

· the singular values of A are all non-zero.

When A is square and full rank, then there exists a matrix Y such that AY = I and
YA = I. This matrix Y is called the inverse and is usually written A−1.

Given a linear system Ax = b, then we can multiply both sides by Y and get YAx = Yb
where (YA) = I, so we get x = Yb or x = A−1b. There are many, many interpretations of
this statement.

2 a first method

This isn’t the order I’m hoping to do these in eventually, but because of the homework,
I want to go over this method.

Most people learn the following result somewhere in the educational background for
this class. Let x be a scalar, then

1 + x + x2 + x3 + . . . =
∞
∑
k=0

xk = 1
1 − x

when ∣x∣ < 1. That is, if xk → 0, then the infinite sequences converges to the value 1/(1−x),
which we are going to write as (1 − x)−1.

It turns out that this same result holds for matrices as well, with a few additional
conditions.

THEOREM 1 (The Neumann Series) If that Ak → 0, then

∞
∑
k=0

Ak = (I − A)−1

2



Proof Our proof proceeds just by showing that a partial infinite sum becomes a better
approximation to the inverse. Let Sℓ = ∑ℓ

k=0 A
k and consider

Sℓ(I − A) =
ℓ

∑
k=0

Ak = (I − A) + (A− A2) + (A2 − A3) + . . . = I − Aℓ+1 .

Consequently,
lim
ℓ→∞

Sℓ(I − A) = lim
ℓ→∞

I − Aℓ+1 = I

and we have finished the proof as this is an explicit form for the inverse. ∎

3 overview

Over the next few classes, we are going to see a bunch of different persepctives on this
same algorithm.

4 checking a possible solution

One great aspect about solving linear equations is that “guestimates” are easy to check.
Let Ax = b be the system we are trying to solve and let y be a potential solution. Then

the following quantities all deal with how good y is:

error = y − x
error = ∥y − x∥

relative error = ∥y − x∥/∥x∥

residual = b − Ay
residual = Ay − b
residual = ∥Ay − b∥

relative residual = ∥Ay − b∥/∥b∥

Note that there are terms that may refer to multiple quantities. These are often used
interchangably where the definition is clear from context.

The error measures are the most useful quantities, however, they are not easily com-
putable as they require knowing the solution x. However, we can bound the error in terms
of the residual.

THEOREM 2 Let y be any vector, then the error e = y − x and residual r = Ax − b are related
as follows:

Ae = r.

Proof By definition:
Ae = Ay − Ax = Ay − b

because Ax = b. ∎

This results in the following bound.

COROLLARY 3 Using the notation fromTheorem 2, let ∥ ⋅ ∥ be a sub-multiplicative norm.2 2 Not all matrix norms are sub-multiplicative,
see the discussion of Matrix and Vector
Norms.

Then
∥e∥ ≤ ∥A−1∥∥r∥ .

The proof follows from e = A−1r and using
∥A−1r∥ ≤ ∥A∥−1∥r∥ for a sub-multiplicative
norm.

What this means is that if we want the error to be small, then we want the residual to
be small. And the residual is easy to compute!

3



5 our first method revisited

On reflection, there is a better way to introduce the algorithm involving the Neumann
series of a matrix. This has to do with how we might check the solution of a linear system
of equation.

Given some initial guess at a solution x0, then we are going to compute the residual:
r0 = b − Ax0. If we are close to a solution, this will be small. So let’s just correct by the
amount we need:

x1 = x0 + r0 .
Now, if we just repeatedly do this, then

xk+1 = xk + rk = xk + b − Axk = (I − A)xk + b.

Quiz. Let x0 = b. Show that xk will converge to the solution x as k → ∞. State
conditions if necessary for this to converge.

Solution. By definition, x1 = (I − A)b + b and x2 = (I − A)2b + (I − A)b + b. By
induction, we have: xk = ∑k

ℓ=0(I − A)ℓb and as k → ∞, then xk → (I − H)−1b where
H = I − A. But using that definition gives (I − H)−1 = A−1. Hence this algorithm will
converge if ρ(I − A) < 1 and it just corresponds to using the Neumann series itself.

5.1 AN EXAMPLE WITH OUR SIMPLE RANDOM WALK BETWEEN −4 AND 6 .
Recall our linear system that modeled how long it took a random walk to exit through

−4 and +6. This was the linear system of equations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
− 1

2 1 − 1
2 0 0 0 0 0 0 0 0

0 − 1
2 1 − 1

2 0 0 0 0 0 0 0
0 0 − 1

2 1 − 1
2 0 0 0 0 0 0

0 0 0 − 1
2 1 − 1

2 0 0 0 0 0
0 0 0 0 − 1

2 1 − 1
2 0 0 0 0

0 0 0 0 0 − 1
2 1 − 1

2 0 0 0
0 0 0 0 0 0 − 1

2 1 − 1
2 0 0

0 0 0 0 0 0 0 − 1
2 1 − 1

2 0
0 0 0 0 0 0 0 0 − 1

2 1 − 1
2

0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x{−4}
x{−3}
x{−2}
x{−1}
x{0}
x{+1}
x{+2}
x{+3}
x{+4}
x{+5}
x{+6}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
1
1
1
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When we apply this method here starting from x(1) = 0 (the all zeros vector), we get a
sequence of iterates x(k) along with residuals r(k). After a few hundred iterations, these
have largely converged.

Value of iterate vector x(k) when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 500

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.5 2.0 2.4 2.8 3.1 3.4 3.6 3.9 5.9 7.1 7.9 8.3 8.6 8.8 8.8 8.9 8.9 9.0 9.0 9.0 9.0
0.0 1.0 2.0 2.8 3.5 4.1 4.8 5.3 5.8 6.3 10.0 12.0 14.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
0.0 1.0 2.0 3.0 3.9 4.8 5.5 6.3 7.0 7.7 13.0 16.0 18.0 19.0 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
0.0 1.0 2.0 3.0 4.0 4.9 5.9 6.7 7.6 8.4 15.0 18.0 21.0 22.0 23.0 23.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
0.0 1.0 2.0 3.0 4.0 5.0 5.9 6.9 7.7 8.6 15.0 19.0 21.0 23.0 24.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
0.0 1.0 2.0 3.0 4.0 4.9 5.9 6.7 7.6 8.4 15.0 18.0 21.0 22.0 23.0 23.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
0.0 1.0 2.0 3.0 3.9 4.8 5.5 6.3 7.0 7.7 13.0 16.0 18.0 19.0 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0
0.0 1.0 2.0 2.8 3.5 4.1 4.8 5.3 5.8 6.3 10.0 12.0 14.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
0.0 1.0 1.5 2.0 2.4 2.8 3.1 3.4 3.6 3.9 5.9 7.1 7.9 8.3 8.6 8.8 8.8 8.9 8.9 9.0 9.0 9.0 9.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4



Value of residual vector r(k) when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 400 500

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1e0 5e−1 5e−1 4e−1 4e−1 3e−1 3e−1 3e−1 3e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 4e−3 3e−3 2e−5 1e−7 8e−105e−12
1e0 1e0 8e−1 8e−1 6e−1 6e−1 5e−1 5e−1 5e−1 5e−1 3e−1 2e−1 1e−1 7e−2 4e−2 2e−2 1e−2 9e−3 5e−3 4e−5 2e−7 2e−9 1e−11
1e0 1e0 1e0 9e−1 9e−1 8e−1 8e−1 7e−1 7e−1 6e−1 4e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 5e−5 3e−7 2e−9 1e−11
1e0 1e0 1e0 1e0 9e−1 9e−1 9e−1 9e−1 8e−1 8e−1 5e−1 3e−1 2e−1 1e−1 6e−2 4e−2 2e−2 1e−2 9e−3 6e−5 4e−7 2e−9 2e−11
1e0 1e0 1e0 1e0 1e0 9e−1 9e−1 9e−1 9e−1 8e−1 5e−1 3e−1 2e−1 1e−1 6e−2 4e−2 2e−2 1e−2 9e−3 6e−5 4e−7 2e−9 2e−11
1e0 1e0 1e0 1e0 9e−1 9e−1 9e−1 9e−1 8e−1 8e−1 5e−1 3e−1 2e−1 1e−1 6e−2 4e−2 2e−2 1e−2 9e−3 6e−5 4e−7 2e−9 2e−11
1e0 1e0 1e0 9e−1 9e−1 8e−1 8e−1 7e−1 7e−1 6e−1 4e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 5e−5 3e−7 2e−9 1e−11
1e0 1e0 8e−1 8e−1 6e−1 6e−1 5e−1 5e−1 5e−1 5e−1 3e−1 2e−1 1e−1 7e−2 4e−2 2e−2 1e−2 9e−3 5e−3 4e−5 2e−7 2e−9 1e−11
1e0 5e−1 5e−1 4e−1 4e−1 3e−1 3e−1 3e−1 3e−1 2e−1 1e−1 9e−2 5e−2 3e−2 2e−2 1e−2 7e−3 4e−3 3e−3 2e−5 1e−7 8e−105e−12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.2 AN EXAMPLE WITH OUR LEAST-SQUARES PROBLEM
Recall the quadratic fitting problem from “What is a matrix.” 3 This is reproduced at 3 TODO, Add real reference.

right.

0 1 2 3 4 5
x

0.0

2.5

5.0

7.5

10.0

y
FIGURE 1 –We get a least squares problem to
find a quadratic fit to this data c3x2 + c2x+ c1 .
This gives a 3 × 3 linear system via the normal
equations.

Consider the normal equations method of solving the least squares problem for the
quadratic fit:

⎡⎢⎢⎢⎢⎢⎣

50.0 162.63 616.468
162.63 616.468 2574.99
616.468 2574.99 11432.9

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

c1
c2
c3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

450.45
1329.6726
4549.258906

⎤⎥⎥⎥⎥⎥⎦

When we apply this method here starting from c(1) = 0 (the all zeros vector), we get a
sequence of iterates c(k) along with residuals r(k). After less than one hundred iterations,
this has produced NaN on the computer – a hallmark that the algorithm cannot converge
on the problem.

Value of solution vector c(k) = [c1 c2 c3] when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80

0 4e2 −3e6 4e10 −4e145e18 −6e228e26 −9e301e35 7e75 5e1163e1572e1981e2398e279NaN
0 1e3 −1e7 2e11 −2e152e19 −3e233e27 −4e315e35 3e76 2e1171e1588e1985e2393e280NaN
0 4e3 −6e7 7e11 −8e151e20 −1e241e28 −2e322e36 1e77 8e1175e1584e1992e2402e281NaN
The residuals show the same behavior and quickly grow to∞.

Value of residual vector r(k) when k =
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80

5e2 −3e6 4e10 −4e145e18 −6e228e26 −9e301e35 −1e39−9e79−6e120−4e161−2e202−1e243−1e284NaN
1e3 −1e7 2e11 −2e152e19 −3e233e27 −4e315e35 −6e39−4e80−2e121−1e162−1e203−6e243−4e284NaN
5e3 −6e7 7e11 −8e151e20 −1e241e28 −2e322e36 −2e40−2e81−1e122−7e162−4e203−3e244−2e285NaN
In this case, we can compute ρ(I − A) = 12047.41494842964, so the spectral radius is

much larger than 1 and we would not expect the method to work.

6 what if this algorithm doesn’t work?

Suppose that ρ(I − A) > 1. Are we out of luck with using this method? Not entirely!
Consider that we can transform the linear system into an equivalent system of equations:

Ax = b ⇔ αAx = αb

Then the iteration is:

xk+1 = (I − αA)xk + αb =
k

∑
ℓ=0
(I − αA)ℓ(αb) → (αA)−1αb.

5



This method is called the Richardson method for solving a linear system of equations. It is
credited to Lewis Fry Richardson. Among other things, Richardson decided to spend his
time in the trenches during World War I dreaming up better uses for the people fighting
the war. His solution was to have them forecast the weather and he came up with this
method.

When will this method converge?
Based on our analysis of the Neumann series, this will converge if ρ(I − αA) < 1. Let

λ be an eigenvalue of A. This means we need that ∣1 − αλ∣ < 1 for all eigenvalues of A.
This means we can always make this algorithm work for a symmetric positive definite

matrix A because all of the eigenvalues are positive.

7 another derivation of the same algorithm

7.1 NOTES 1
Let’s see yet another way to get at the same algorithm. This will involve some analysis

of convex function.
Recall that a scalar quadratic function can be written:

f (x) = ax2 + bx + c.

These look like bowls or lines (when a = 0).
Consider the problem

minimize
x

ax2 + bx + c

The solution is undefined is a < 0 (or just∞). Otherwise, x = −b/(2a) is the point that
achieves the minimum. This can be found by looking for a point where the derivative is 0:

f ′(x) = 2ax + b = 0⇒ x = −b/(2a).

A multivariate quadratic looks very similar.

7.2 NOTES 2
Gradient Descent for Ax = b.
It turns out that for any positive definite matrix A, that we can view it as the solution

of an optimization problem

minimize
x

1
2x

TAx − xTb.

This is because if A is positive semi-definite, then this problem is convex with a unique
global minimizer. A convex function is just one that always lies below any line connecting
two points. Formally, this is f (αx+(1−α)y) ≤ α f (x)+(1−α) f (y). A global minimizer
is any point x∗ where f (x∗) ≤ f (x) for any other point x. Note that if f (x) is convex and
if we have two global minimizers, then any point on the line connecting them must be a
minimizer by the property of convexity. There is a stronger result to prove here too.

THEOREM 4 Let f (x) = 1
2x

TAx−xTx. Then f (x) is convex if A is symmetric positive definite.

Proof From the definition

f (αx + (1 − α)y) = (αx + (1 − α)y)TA(αx + (1 − α)y) − (αx + (1 − α)y)Tb
= α(αxTAx − xTb + (1 − α)((1 − α)yTAy − yTy) + 2α(1 − α)xTAy = ...

∎

6


	Review of linear systems of equations
	A first method
	Overview
	Checking a possible solution
	Our first method revisited
	An example with our simple random walk between -4 and 6.
	An example with our least-squares problem

	What if this algorithm doesn't work?
	Another derivation of the same algorithm
	Notes 1
	Notes 2


