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Learning objectives
1. Appreciate how linear systems are closely

related to minimizing quadratic functions

2. Witness a computation of the gradient

for a multivariate function in matrix algebra

3. See a characterization of a quadratic

minimizer as the solution of a linear system

4. Generalize the algorithm to the steepest

descent algorithm for solving a linear system

1 linear systems and quadratic function
minimization

We are studying quadratic function minimization because this turns out to a good

way to understand how to solve Ax = b for symmetric positive definite matrices A. A
full understanding of this will involve some analysis of convex functions. This is all

straightforward for this case (if not simple), but it is an instance of a far more general

theory. Some of the notes will make references to more general results that could be proved

but are not relevant for the linear system case.

1.1 MOTIVATION FROM THE SCALAR CASE
Recall that a scalar quadratic function can be written:

f (x) = ax2 + bx + c.

These look like bowls or lines (when a = 0).
Consider the problem

minimize
x

ax2 + bx + c

The solution is undefined is a < 0 (or just∞). Otherwise, x = −b/(2a) is the point that
achieves the minimum. This can be found by looking for a point where the derivative is 0:

f ′(x) = 2ax + b = 0⇒ x = −b/(2a).

A multivariate quadratic looks very similar.

1.2 THE MULTIVARIATE QUADRATIC FOR AX = B
For Ax = b, it turns out that for any positive definite matrix A, that we can view it as

the solution of an optimization problem

minimize
x

1

2
xTAx − xTb.

This is because if A is positive semi-definite, then this problem is convex with a unique

global minimizer. A convex function is just one that always lies below any line connecting

two points. Formally, this is f (αx+(1−α)y) ≤ α f (x)+(1−α) f (y). A global minimizer

is any point x∗ where f (x∗) ≤ f (x) for any other point x. Note that if f (x) is convex and
if we have two global minimizers, then any point on the line connecting them must be a

minimizer by the property of convexity. There is a stronger result to prove here too.

THEOREM 1 Let f (x) = 1

2
xTAx−xTb. Then f (x) is convex if A is symmetric positive definite.

Proof From the definition

f (αx + (1 − α)y) = (αx + (1 − α)y)TA(αx + (1 − α)y) − (αx + (1 − α)y)Tb
= α(αxTAx − xTb + (1 − α)((1 − α)yTAy − yTy) + 2α(1 − α)xTAy
= α2xTAx + (1 − α)2yTAy + 2α(1 − α)yTAx − αxTb − (1 − α)yTb

Our goal is to show that this is ≤ αxTAx + (1 − α)yTAy − αxTb − (1 − α)yTb, and so the

idea is to show that

α2xTAx + (1 − α)2yTAy + 2α(1 − α)yTAx − αxTAx − (1 − α)yTAy ≤ 0.
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Note that we can simplify this to

(α(α − 1))(xTAx + yTAy − 2xTAy)

where we have (α(α − 1)) ≤ 0 and (xTAx + yTAy − 2xTAy) = (x − y)TA(x − y) ≥ 0.

Hence, the entire expression is ≤ 0, and we are done! ∎

1.3 THE GRADIENT

Last time we proved that f (x) = 1

2
xTAx − xTb was a convex function.

Let’s show that the gradient of f (x) is really the vector Ax − b.

EXAMPLE 2 Consider the function f (x) = 1

2
[ xy ]

T [ 3 −1
−1 4 ]−[

x
y ]

T [ 7
−6 ] = 3/2x2+2y2−xy−

7x + 6y. Then the gradient is the vector

[ ∂ f /∂x
∂ f /∂y ] = [

3x−y−7
4y−x+6 ] = [ 3 −1

−1 4 ] [
x
y ] − [ 7

−6 ] .

More generally,

f (x1 , . . . , xn) = 1/2∑
i j
A i jx ix j −∑

i
x ib i

We like thining of this in terms of the following table:

A11x21 A12x1x2 ⋯ A1nx1xn
A21x2x1 A22x22 ⋯ ⋮
⋮ ⋱ ⋱ ⋮
An1xnx1 ⋯ ⋯ Annx2n

Now we have terms involving x i in the ith row and ith column.

∂ f /∂x i = 1/2∑
j/=i

A i jx i + A i ix i + 1/2∑
j/=i

A jix i − b i = ith row of ATx − b i

1.4 THE MINIMIZER
The minimizer of a function is any point that is the lowest in some neighborhood.

Formally, a point x∗ is a local minimizer if f (x∗) ≤ f (x) for all x where ∥x − x∗∥ ≤ ε for
some positive value of ε. This just means that this is the lowest point in a neighborhood

around the current point. The global minimizer x∗ of a function is a point which is lower

than everywhere else: f (x∗) ≤ f (x) for all x.1 1 For functions that aren’t defined every-

where, this would be restricted to whereever

the function is defined.
Convex functions are awesome because any local minimizer is a

global minimizer!
This is easy to prove for continuous functions like the f (x) that solves linear systems.

Consider a point x and y where x is a local minizer and y is a global minimizer. Then

along the line αx + (1− α)y we must have that the function is bounded below by α f (x) +
(1 − α) f (y). Because x isn’t a global min, we know that f (y) < f (x). Hence, that we
must reduce the value of the function for all positive α compared with f (x). This means

that f (x) couldn’t have been a local minimizer. Hence, any local minimizer is a global

minimizer of a continuous convex function.

1.5 CHARACTERIZ ING THE MINIMIZER
Any point where the gradient is zero is a global minimizer for a

continuous convex function.
This is true generally, but it’s super easy to show for our function for linear systems.

THEOREM 3 2 Let f (x) = 1

2
xTAx − xTb where A is symmetric, positive definite. Then the 2 This theorem generalizes to any function

with a positive definite Hessian, but that’s for

an optimization class.
vector of partial derivatives is g(x) = Ax − b. Let y be a point where Ax − b = 0. Then
f (x) ≥ f (y).
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Proof Let x = y + αz . Then:

f (x) = 1

2
(y + αz)TA(y + αz) − (y + αz)Tb = 1

2
yTAy + 1

2
α2zTAz+ αzTAy − yTb− αzTb.

Now, recall that Ay = b because the gradient is zero. Then we have:

f (x) = 1

2
yTAy + 1

2
α2zTAz + αzTb − yTb − αzTb = f (y) + 1

2
α2zTAz ≥ f (y).

∎

1.6 F INDING THE MINIMIZER
If the gradient is not zero, then we can always reduce the function

by moving a sufficiently along the negative gradient.
In general, this is just an application of Taylor’s theorem for multivariate function, but

we can again proof this easily for us, and get a cool result along the way!

Suppose g(x) = Ax − b /= 0.3 Then consider 3 For the moment, we’ll let g = g(x) = Ax − b
for a fixed x.

f (x−αg) = 1

2
xTAx+ 1

2
α2gTAg−αgTAx−xTb+αgTb = f (x)+ 1

2
α2gTAg−αgTAx+αgTb = f (x)+α(α/2gTAg+αgTg).

So if this result is going to be true, we need (α/2gTAg + αgTg) for α small enough. Let

ρ = maximize xTAx
xTx

subject to x /= 0
then ρ ≥ gTAg

gTg
for any vector g.

Hence, α/2gTAg ≤ ρα/2gTg. Thus, if ρα/2 ≤ 1 or α ≤ 2/ρ we have

f (x − αg) = f (x) − α (α/2gTAg + αgTg)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

≤ f (x).

Note this is exactly the same bound we got out of the Richardson method too!

2 the steepest descent algorithm for solving
linear systems

We now need to turn these insights into an algorithm for solving a linear system of

equations. The idea in steepest descent is that we use the insight from the last section: we

are trying to minimize f (x) and we can make f (x) smaller by taking a step along the

gradient д(x).

2.1 FROM RICHARDSON TO STEEPEST DESCENT

Steepest descent on f (x) = 1

2
xTAx − xTb is just a generalization of Richardson’s

iteration:

Richardson x(k+1) = x(k) + α (b − Ax(k))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

residual

Steepest Descent x(k) = x(k) − α g(x)
´¸¶
gradient

= x(k) − α(Ax − b).

This means that if 0 < α < 2/ρ then the steepest descent method will converge.

2.2 PICKING A BETTER VALUE OF α
The idea with the steepest descent method is that we can pick α at each step and use

f (x) to inform this choice. This method arose from a completely different place from

Richardson’s method for solving Ax = b (which was based on the Neumann series).

\begin{definition}[Steepest Descent Algorithm] Let Ax = b be a symmetric, positive

definite linear system of equeations.
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2.3 A COORDINATE-WISE STRATEGY.
3 exercises

1. (I’m not sure if this is true). Let Ax = b be a diagonally dominant M matrix, but

where A is not symmetric. This means that A−1 ≥ 0. Suppose also that b ≥ 0.

Develop an algorithm akin to steepest descent for this problem. Ideas include

looking at functions like $f(x) = eˆT Ax-
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