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There are many common types of matrix and vector structure.

Specific matrices and vectors
The n× n identity matrix is written:

I =


1 0 · · · 0

0 1 · · ·
...

... · · ·
. . . 0

0 · · · 0 1


This matrix is rarely written with it’s explicit dimension as that can almost always
be inferred by context. That is to say, the dimension of the identity matrix is
whatever it needs to be such that the matrix equation makes sense. For clarity,
we might sometimes write:

In

to denote the n× n matrix explicitly. Thus,

I3 =

1 0 0
0 1 0
0 0 1

 .

The identity matrix has the property that AI = A for any matrix A. It’s like
multiplying by 1.

We denote the ith column of the identity matrix by ei:

ei =



0
...
1 ith position
0
...
0


.

For instance,
e2 =

[
0 1 0

]T
.

Using these vectors, we can write the ith column of any matrix as

Aei.

It is, perhaps, alarming that ei is frequently used without specifying its dimension.
However, just like the identity matrix above, it is almost always possible to work
out the dimension. If we believe it is helpful to specify it, we’ll use e(n)

i .

Finally, the vector e will be used to denote the vector of all ones:

e =


1
1
...
1

 .
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Except sometimes it will be used as an error vector for a problem.

Some people use the matrix J to represent the matrix of all ones:

J =
[
e e · · · e

]
.

I don’t think we’ll need that in this class, however.

Elemental structures
Throughout these examples, the matrix is A, and it’s elements are Ai,j .

Diagonal We call a matrix diagonal if all of the non-zero entries are those Ai,j

where i = j, that is, on the “diagonal” of the matrix.

Examples A =

1 0 0
0 2 0
0 0 −1

 . The identity matrix is another diagonal matrix.

Operationally We use the operator diag to extract the diagonal from a matrix. For
instance, e = diag(I). This can also be used to “create” a matrix: D = diag(d)
has Di,i = di. So the diag operation gets a bit overloaded.

Triangular We call a matrix upper triangular if all of the non-zero entries are
those Ai,j where j ≥ i. That is, if it looks like an upper triangle. A matrix is
lower triangular if all of the non-zero entries are those Ai,j where i ≥ j. A matrix
is triangular if it’s either upper or lower triangular.

Examples A =

1 2 3
0 −2 −3
0 0 1

 is upper triangular. A =

 1 0 0
−1 2 0
1 0 1

 is lower

triangular.

Operationally The operators triu and tril are sometimes used to denote the upper
and lower triangular part of a matrix. They are implemented in Matlab, which is
useful!

Symmetric We call a matrix symmetric if Ai,j = Aj,i or equivalently, A = AT .

Examples A =
[
1 2
2 1

]
.

Notes

• The generalization of symmetric to complex-valued matrices is called Hermi-
tian. A matrix is Hermitian if A = A∗ for the complex adjoint or Hermitian
operator, that is, Ai,j = Aj,i for the complex conjugate “bar”.

• Any real-valued matrix A can be written as: A = S + K where S is
symmetric and K is skew-symmetric. A matrix is skew-symmetric if K =
−KT . In this case, S = (A + AT )/2 and K = (A − AT )/2. If A is
symmetric, then S = A and K = 0.

Orthogonal A matrix is orthogonal if AT A = I. We’ll get into why orthogonal
matrices are special soon.

Examples The identity matrix I is orthogonal. We’ll see more about orthogonal
matrices soon – it’s a very special structure!

Permutation A permutation matrix “shuffles” elements of a vector. Each column
of a permutation matrix is a vector ei and a permutation matrix must also be
orthogonal.
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Examples A =

0 1 0
0 0 1
1 0 0

. This matrix expresses the permutation 2 → 1, 3 →

2, 1→ 3. We can see this by: A

 0.5
−0.5

1

 =

−0.5
1

0.5

.
Sparse matrices
Sparse matrices are those where the vast majority of the elements in the matrix
are zero. For instance:

A =

0 2 0
0 0 0
1 0 0

 .

Of the 9 entries in the matrix, there are only two non-zeros. Later in the class,
we’ll see how to take advantage of this structure.
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