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Learning objectives
1. Realize the difference between a table of

data and a matrix.
2. Translate simple problems into matrix

equations (such as least squares).
3. Review our notation for matrices, vec-

tors, scalars, etc.

Let’s start with the elephant in the room.
What is a matrix?
What are the things that we are going to learn to compute with in this class. Presumably

you are taking it because you have some type of interest in using matrices.
Ask any American someone on the street of about the same age as I am “What is a

matrix” and they are likely to look just a bit confused. They are probably thinking you
meant to ask “What is The Matrix”, in reference to the 1999-ish movie staring Keanu
Reeves.

Now, ask someone in Purdue’s college of engineering or science “What is a matrix’ ’
and you’ll probably get some of the answers that we’ll discuss below.

· A matrix is a 2-dimensional array, or table, of numbers.
· A matrix is a linear transformation.
· A matrix is a coordinate representation of a linear transformation between vector
spaces.

· A matrix is an element of Rm ,n or Cm ,n , or some other field such as F2, which
arises frequently in cryptography.

· It’s a table of numbers where linear algebraic manipulations make sense.
· I know it when I see it.
· a matrix stores vectors
· something used to simplify mathematical calculations

1 a starting example

Is the following a matrix?

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 9 6 0 4 5 3
4 9 4 1 9 9 7
4 9 4 6 0 1 0
4 9 6 1 7 6 1
4 9 4 8 7 9 8
4 9 6 2 3 9 9
4 9 4 6 0 1 3
4 9 6 9 4 3 2
4 9 4 9 0 2 5
4 9 4 6 0 0 5
4 9 4 6 0 0 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

No! This is a table of telephone numbers, expanded by digit into columns, not a matrix.

2 an example

Let’s try and answer this question a different perspective and see a few places where
matrices arise. This will also help introduce us to our notation in class.

Suppose we have some data and we’d like to fit a linear model to it.
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The data for our problem are pairs: (y1 , x1), ..., (yN , xN).1 We can assemble them

1

x y

1.06 3.26
1.17 10.59
1.12 8.15
1.21 7.92
1.32 8.93
1.4 10.35
1.46 8.78
1.56 8.57
1.71 10.57
1.92 13.51
1.94 6.19
2.02 10.93
2.05 12.9
2.28 15.82
2.22 8.79
2.41 17.44
2.48 16.24
2.63 14.21
2.75 15.97
2.8 13.07
2.83 18.11
2.84 15.26
2.99 14.87
3.17 16.64
3.11 12.23
3.25 17.05
3.3 17.18
3.41 17.57
3.59 20.39
3.59 20.64
3.82 16.05
3.93 25.14
3.9 23.25
4.08 18.17
4.05 17.05
4.27 24.17
4.37 27.14
4.31 27.28
4.49 24.97
4.66 25.27
4.76 24.59
4.83 20.78
4.78 24.61
4.87 24.17
4.96 30.57
5.19 24.11
5.15 30.38
5.38 23.55
5.34 29.7
5.46 31.8

into a first matrix:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1 x1
y2 x2
⋮
yN xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

or X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1
x2 y2
⋮
xN yN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

or X = [x1 x2 . . . xN
y1 y2 . . . yN

] or . . .

Are these matrices? Let’s keep going before answering this!
Our goal is to find coefficients (c1 , c2) such that y = c2x + c1 is a good fit to the data.

There are a few ways that we could measure fit. We will be expendient and insist that for
each data point, we want:

(y i − (c2x i + c1))2

to be as small as possible for all datapoints.2 This gives us a way to measure how good

2 This is a general instances of a squared loss
approximation. If we want two values such
that a ≈ b then with squared loss, we want
(a − b)2 . These loss functions are often
illustrated with a plot:

c1 , c2 are. Our goal is now to minimize the function:

f (c1 , c2) =
N

∑
i=1
(y i − (c2x i + c1))2 .

Let us translate this problem with notation to eliminate the indices.
Let x, y, and c be the vectors:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
⋮
yN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

c = [c1c2
]

then
f (c) = ∥y − xc2 − ec1∥2 .

Here, the vector e is just a vector of all ones, and ∥ ⋅ ∥ is the 2-norm, or Euclidean norm, of
a vector:

∥z∥ =
¿
ÁÁÀ

n

∑
i=1
∣z i ∣2 .

Now, let A be the matrix:

A = [e x] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1
1 x2
⋮
1 xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we can write our function f as:

f (c) = ∥y − Ac∥2 .

This type of problem is an instance of what is called a least squares problem. The data
to the problem are encoded into a matrix A and the goal is to produce coefficients c that
constitute a linear relationship.
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EXAMPLE 1 Hint that there is a matrix. Note that we can reparameterize the line as:

y = d2(x − 1) + d1

in which case we have
c2 = d2 , c1 = d1 − d2

or

c = [1 −1
0 1 ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=T

d

which where T is definitely a matrix! In this case, we’d have:

∥y − ATd∥

if we wanted to parameterize in terms of T .

Suppose instead we had the data in the following picture:
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Here, the data are.
x y

1.06 8.57
1.17 10.23
1.12 9.66
1.21 9.76
1.32 10.12
1.4 10.51
1.46 10.27
1.56 10.32
1.71 10.83
1.92 11.5
1.94 10.03
2.02 10.99
2.05 11.38
2.28 11.89
2.22 10.51
2.41 12.12
2.48 11.82
2.63 11.24
2.75 11.43
2.8 10.77
2.83 11.73
2.84 11.15
2.99 10.79
3.17 10.76
3.11 10.01
3.25 10.65
3.3 10.55
3.41 10.33
3.59 10.35
3.59 10.4
3.82 8.7
3.93 10.1
3.9 9.84
4.08 8.11
4.05 8.01
4.27 8.48
4.37 8.61
4.31 8.92
4.49 7.59
4.66 6.78
4.76 6.1
4.83 4.95
4.78 5.99
4.87 5.4
4.96 6.15
5.19 3.45
5.15 4.95
5.38 2.09
5.34 3.58
5.46 3.19

Then it’s clear from the picture that a linear model isn’t appropriate. We can still solve
the problem we just posed, but there may be other models of our data that are appropriate.
Such as a quadratic:

c3x2 + c2x + c1 .
By going through the same type of steps, we can write the resulting problem in terms of
the matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x21
1 x2 x22
⋮
1 xN x2N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The final problem is then to find c to minimize:

f (c) = ∥y − Ac∥2 .

3 summary of least squares examples

In this case, we’ve translated two distinct problems into the same general form:

find c to make ∥y − Ac∥2 as small as possible.

This idea underlies our class. There are a great many problems in science, engineering,
biology, and everywhere that can be turned into common matrix problems.
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4 common matrix problems

The three canonical and most common matrix problems are:

· Linear systems of equations: find x such that Ax = b
· Least squares problems: find x to minimize ∥Ax − b∥2
· Eigenvalue problems: find x, λ such that Ax = λx

These problems have deep relationships.

4.1 SOLVING LEAST SQUARES VIA A LINEAR SYSTEM.
We can turn the least squares problem

find x to minimize ∥Ax − b∥2

into a related linear system.3 3 This is not necessarily the best way to solve
a least squares problem. We’ll see better ways
in the future!

The first thing we need to do is understand how to find the minimum point of the
least squares problem. There are a few ways to do this. One of the easiest is to think back
to calculus class and about how we can find the extreme points of a simple quadratic
function. Let s(x) = 1/2ax2 + b ∗ x + c be a simple quadratic. This function only has a
single extreme point when s(x) is a minimum. Then, via calculus, we can find the extreme
points by finding places where the derivative is zero. Here, s′(x) = ax + b = 0 gives the
minimum point x = −b/a.

For least squares, we have :

f (x) = ∥Ax − b∥2 = (Ax − b)T(Ax − b)

This idea that we can find the extreme points by looking for points where the derivative
is zero generalizes to multivariate functions such as our f (x) for least squares. This is
because f (x) for least squares is a smooth, convex functions. That means that f (αx+(1−
α)y) ≤ α f (x) + (1 − α) f (y) when 0 ≤ α ≤ 1.

EXAMPLE 2 Showing that this property f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y) is a good
exercise in working with vectors. The key step is to show:

α2xTATAx + 2α(1 − α)xTATAy + (1 − α)2yTATAy ≤ αxTATAx + (1 − α)yTATAy

This can be done via by showing that difference is less than 0.

LHS − RHS = α(α − 1)xTATAx + α(α − 1)yTATAy − 2α(α − 1)xTATAy
= α(α − 1)(x − y)TATA(x − y)
= α(α − 1)∥A(x − y)∥
≤ 0.

The derivate or gradient of f (x) is

f ′(x) = 2ATAx − 2ATb.

This is zero when
mATAx = ATb.

The result is a linear system of equations that solve a least squares problem.

4.2 FROM AN EIGENVECTOR PROBLEM TO A LINEAR SYSTEM
Suppose that we know that λ is an eigenvalue of x, that means, we may want to find

the eigenvector. This can be done by solving the linear systems of equations:

(A− λI)x = 0.

This isn’t the standard type of linear system of equations, but it is a valid problem!
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So to get back to the starting question: what is a matrix?
For our purposes:

a matrix is a table of 2d numbers where linear algebraic operations make sense on the
rows or columns

So solving a least-squares problem with phone numbers doesn’t make any sense. But
solving this where the data come from experiments makes a good deal of sense.

The reason that we study the subject of matrix computations, and indeed, the reason
that this subject continues to be interesting is that our goal is to use the structure of the
problem in order to solve the underlying problem better.

In this case, better may mean any of these:

{faster,more accurately,more reliably, . . . .}

We will see this soon!
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