using Optim, OptimTestProblems
OptimTestProblems.UnconstrainedProblems.examples["Rosenbrock"]
# These codes turn f and g into one function ...
function opt_combine(x, f, g!)
g = Array{Float64,1}(undef,length(x))
g!(g,x)
return (f(x), g)
end
function opt_problem(p::OptimTestProblems.UnconstrainedProblems.OptimizationProblem)
return x -> opt_combine(x, p.f, p.g!)
end
# this just makes it easy to use
opt_problem(s::AbstractString) = opt_problem(
OptimTestProblems.UnconstrainedProblems.examples[s])
# Here's an example
fg = opt_problem("Himmelblau")
f, g = fg([0.0,0.0]) # show the function and gradient
(170.0, [-14.0, -22.0])
problems = keys(OptimTestProblems.UnconstrainedProblems.examples)
using Pkg; Pkg.add(["IterTools"])
using Plots, LinearAlgebra, IterTools
"""
Make a line search plot that shows what the function
looks like in a direction p, with regions for the
strong Wolfe conditions satisfied.
"""
function line_search_plot(fg, x, p; amax=1.0, c2 = 0.90, c1 = 0.1, npts=1000, strong=false)
agrid = range(0,stop=amax,length=npts)
fvals = map(a -> fg(x + a*p)[1], agrid) # generate function values
plt = plot(agrid, fvals, label="f")
g0 = dot(fg(x)[2],p)
f0 = fg(x)[1]
plot!([agrid[1], agrid[end]],[f0,f0+c1*g0*agrid[end]],label="c1")
gvals = map(a -> abs(dot(fg(x+a*p)[2],p)), agrid)
if strong
validwolfe = a -> (abs(dot(fg(x+a*p)[2],p)) <= c2*abs(g0)) *
(fg(x + a*p)[1] <= f0+c1*g0*a)
else
validwolfe = a -> (dot(fg(x+a*p)[2],p) >= c2*g0) *
(fg(x + a*p)[1] <= f0+c1*g0*a)
end
regions = groupby(validwolfe, agrid)
for r in regions
r1 = r[1]
@show r1, r[end]
if validwolfe(r1)
plot!([r[1],r[end]], [f0, f0],fill=(0,:green,0.5),line=(0),label="c2")
end
end
return plt
end
fg = opt_problem("Rosenbrock")
x = [0.0,0.0]
p = [0.3,0.0]
line_search_plot(fg, x, p; strong=false)
(r1, r[end]) = (0.0, 0.1961961961961962) (r1, r[end]) = (0.1971971971971972, 0.8308308308308309) (r1, r[end]) = (0.8318318318318318, 1.0)
fg = opt_problem("Rosenbrock")
x = [0.0,0.0]
p = [0.3,0.0]
line_search_plot(fg, x, p; strong=false, c1 = 0.001, c2 = 0.999)
(r1, r[end]) = (0.0, 0.003003003003003003) (r1, r[end]) = (0.004004004004004004, 0.8628628628628628) (r1, r[end]) = (0.8638638638638638, 1.0)
fg = opt_problem("Himmelblau")
x = [0.0,0.0]
p = [6.0,0.0]
line_search_plot(fg, x, p; strong=true, amax=1)
(r1, r[end]) = (0.0, 0.5425425425425425) (r1, r[end]) = (0.5435435435435435, 0.5865865865865866) (r1, r[end]) = (0.5875875875875876, 1.0)
fg = opt_problem("Himmelblau")
x = [0.0,0.0]
p = [6.0,0.0]
line_search_plot(fg, x, p; strong=true, amax=1, c1=0.0001, c2=0.999)
(r1, r[end]) = (0.0, 0.5395395395395396) (r1, r[end]) = (0.5405405405405406, 0.5885885885885885) (r1, r[end]) = (0.5895895895895896, 1.0)
fg = opt_problem("Himmelblau")
x = [0.0,0.0]
p = - fg(x)[2]
line_search_plot(fg, x, p; strong=true, amax=0.5)
(r1, r[end]) = (0.0, 0.11261261261261261) (r1, r[end]) = (0.11311311311311312, 0.13813813813813813) (r1, r[end]) = (0.13863863863863865, 0.5)
fg = opt_problem("Himmelblau")
x = [0.0,0.0]
p = [1.0,0.0]
line_search_plot(fg, x, p; strong=true, amax=6, c1=0.2, c2=0.8)
(r1, r[end]) = (0.0, 3.2672672672672673) (r1, r[end]) = (3.2732732732732734, 3.5015015015015014) (r1, r[end]) = (3.5075075075075075, 6.0)
using Plots
ezcontour(x, y, f) = begin
X = repeat(x', length(y), 1)
Y = repeat(y, 1, length(x))
# Evaluate each f(x, y)
Z = map((x,y) -> log(f([x,y])), X, Y)
plot(x, y, Z, st=:contour)
end
function line_search_contour(fg, x, y, xk, p; amax=1.0)
ezcontour(x, y, z -> fg(z)[1])
scatter!([xk[1]],[xk[2]],label="")
plot!([xk[1], xk[1] + amax*p[1]], [xk[2], xk[2] + amax*p[2]], label="")
end
line_search_contour(fg, -6:0.05:6, -6:0.05:6, x, p; amax=6.0)
# TODO - make an interact module that allows you to vary distances in a 2d region and look at line searches!