# Standard stuff to get started
using Plots, LinearAlgebra, Statistics, Random, Printf
# Write a function to generate the sequence
""" This function generates the first n terms
of the sequence
xk = [cos(2*pi*k/10 + 2^{-k}); sin(2*pi*k/10 + 2^{-k})]
"""
function seqvals(n)
X = zeros(n,2) # allocate a n-by-2 array
for k=1:n
X[k,1] = cos(2*pi*k/10 + 2.0^(-k))
X[k,2] = sin(2*pi*k/10 + 2.0^(-k))
end
return X
end
seqvals(5)
5×2 Matrix{Float64}: 0.42818 0.903693 0.0641153 0.997943 -0.425179 0.905109 -0.84415 0.536107 -0.999512 -0.0312449
X = seqvals(1000); scatter(X[:,1],X[:,2])
n = 1000
subset = 1:10:n
X = seqvals(n)
scatter(X[subset,:]) # show the columns independently
X[subset,:]
100×2 Matrix{Float64}: 0.42818 0.903693 0.80873 0.58818 0.809017 0.587786 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 ⋮ 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785 0.809017 0.587785
# Write a function to generate the sequence
""" This function generates the first n terms
of the sequence
xk = [cos(2*pi*k/10 + 2^{-k}); sin(2*pi*k/10 + 2^{-k})]
"""
function seqvals(n)
X = zeros(n,2) # allocate a n-by-2 array
for k=1:n
X[k,1] = cos(2*pi*k/10 - 1/sqrt(k))
X[k,2] = sin(2*pi*k/10 - 1/sqrt(k))
end
return X
end
seqvals(5)
5×2 Matrix{Float64}: 0.931718 -0.363183 0.85277 0.522287 0.260163 0.965565 -0.42818 0.903693 -0.901656 0.432455
X = seqvals(1000); scatter(X[:,1],X[:,2])
n = 1000
subset = 1:10:n
X = seqvals(n)
scatter(X[subset,:]) # show the columns independently