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This is a summary of Theorem 11.7 from Griva, Nash, and Sofer.

ASSUMPTIONS
f:R"—=R

X is given
Xk11 = Xk + kP is the iteration
each ay > 0 is chosen by backtracking line search for a sufficient decrease condition, i.e.
S(xi+awpy) < f(xi) + porpig(xi)  p<1
and «ay, is the first element of the sequence 1,1/2,1/4, ... to satisfy this bound
theset S = {x: f(x) < f(x0)} is bounded

g(x) is Lipschitz continuous, i.e.
I&(y) —g(®)| < Lly-x|  L<eo
the search directions p, satisfy sufficient descent, i.e.
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the search directions are gradient related and bounded, i.e.
Ipill > mlg(xc)| and [p,[ < M

each scalar m, M, p is fixed.

CONCLUSION
Jlim [[g(xi)] =0

PROOF
There are five steps to the proof.

1. Show that f is bounded below. (i.e. Won't run forever ... )
2. Show that limj_,, f(Xx) exists (i.e. we converge in one sense ... )
3. Show that
. 2
lim apg(xe)[" =0
4. Show that oy < 1 implies ot > y|g(xx )| (i.e. that small steps aren’t too small...)

5. Finally, we conclude
Jim {[g(xi)] =0



Step1  We know that f is continuous, so the set S is closed. Because we assume that S is
bounded, then a closed bounded set must take on a minimum somewhere. Hence,

f(x)=C.

Step 2 At each step f(xx41) < f(xx) and we have that f is bounded from below, so
limy_, oo f(xx) must converge (but may not be a minimizer.) Let f be the limit.

Step 3 Things get a little tricker here. Note that
f(x0) = f = 3 1f(xk) = f(xks1)]
k=0

by a telescoping series.
Let’s use our conditions.

By the line search, f(xx) — f(Xk+1) > —paxp; g(xx).
By sufficient descent, p; g(xx) > —¢|p. | |g(xx)|-

By gradient relatedness, ||p,| > m|g,|.

Thus

f) = 2 3 pasemlg(xo)
Because f(xo) - f < f(x9) — C < oo, this sum must converge, and thus
lim ayg(xe)|* = 0
(All the other terms in the limit were positive constants.)
Step4  Atthis point, we haven’t used the “backtracking” piece of the line-search algorithm

yet. So we'll see that here to show that small steps aren’t too small.
If o) < 1, then we know that 2« violated sufficient decrease:

f(xk +2aupy) = f(x) > 2paypy g(x).

By a theorem about Lipschitz functions,

1 2
S+ 204p) = (%) — 20p 8(%) < S L2k |
By rearrangement, we have:

Fxk) = f(x+ 2a4p) > ~2a0py 8(x) — 2L| axpy |-

If we add this to our starting inequality:

F(xk +20xp;) — f(x) > 2pacp; 8(x)
then the left hand side cancels and

0> —2a;p; g(x) - 2L|axpy|* + 2pakp; g(x)
or
2
arL|pel” > =(1 - u)pj g(k).

Sufficient descent and gradient relatedness let us play the same tricks with p; g(k), so
we have

aeLpy* 2 (1= wem|g(x)[*.
Consequently,
(1-p)em

> 0.
M2L

a2 ylgx)? =

Steps Because limy_,o, a]g(xx)|” = 0 and a; doesn’t get too small, i.e.

ar > min(1L, y[g(xe) ).

then the norm must go to zero for this limit to exist.

Here’s the result, if f has Lipschitz gradi-
ents, with constant L, then |f(y) - f(x) -
g(x)"(y - x)| < 1/2L|y - x|*. You can
prove this using a Taylor series and Cauchy
Schwartz without the extra factor of 1/2,
but to get that factor, you need to do a path-
integral of the gradient from x — y.



