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This is a summary of Theorem 11.7 from Griva, Nash, and Sofer.

ASSUMPTIONS
f ∶ Rn ↦ R

x0 is given

xk+1 = xk + αkpk is the iteration

each αk > 0 is chosen by backtracking line search for a sufficient decrease condition, i.e.

f (xk + αkpk) ≤ f (xk) + µαkpT
k g(xk) µ < 1

and αk is the first element of the sequence 1, 1/2, 1/4, ... to satisfy this bound

the set S = {x ∶ f (x) ≤ f (x0)} is bounded

g(x) is Lipschitz continuous, i.e.

∥g(y) − g(x)∥ ≤ L∥y − x∥ L < ∞

the search directions pk satisfy sufficient descent, i.e.

−
pT
k g(x)

∥pk∥∥g(xk)∥
≥ ε > 0

the search directions are gradient related and bounded, i.e.

∥pk∥ ≥ m∥g(xk)∥ and ∥pk∥ ≤ M

each scalar m,M , µ is fixed.

CONCLUSION

lim
k→∞
∥g(xk)∥ = 0

PROOF
There are five steps to the proof.

1. Show that f is bounded below. (i.e. Won’t run forever ... )

2. Show that limk→∞ f (xk) exists (i.e. we converge in one sense ... )

3. Show that
lim
k→∞

αk∥g(xk)∥2 = 0

4. Show that αk < 1 implies αk ≥ γ∥g(xk)∥2 (i.e. that small steps aren’t too small...)

5. Finally, we conclude
lim
k→∞
∥g(xk)∥ = 0
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Step 1 We know that f is continuous, so the set S is closed. Because we assume that S is
bounded, then a closed bounded set must take on a minimum somewhere. Hence,

f (x) ≥ C .

Step 2 At each step f (xk+1) < f (xk) and we have that f is bounded from below, so
limk→∞ f (xk)must converge (but may not be a minimizer.) Let f̄ be the limit.

Step 3 Things get a little tricker here. Note that

f (x0) − f̄ =
∞

∑
k=0
[ f (xk) − f (xk+1)]

by a telescoping series.
Let’s use our conditions.

By the line search, f (xk) − f (xk+1) ≥ −µαkpT
k g(xk).

By sufficient descent, pT
k g(xk) ≥ −ε∥pk∥∥g(xk)∥.

By gradient relatedness, ∥pk∥ ≥ m∥gk∥.
Thus

f (x0) − f̄ ≥
∞

∑
k=0

µαkεm∥g(xk)∥2 .

Because f (x0) − f̄ ≤ f (x0) − C < ∞, this sum must converge, and thus

lim
k→∞

αk∥g(xk)∥2 = 0

(All the other terms in the limit were positive constants.)

Step 4 At this point, we haven’t used the “backtracking” piece of the line-search algorithm
yet. So we’ll see that here to show that small steps aren’t too small.

If αk < 1, then we know that 2αk violated sufficient decrease:

f (xk + 2αkpk) − f (xk) > 2µαkpT
k g(x).

By a theorem about Lipschitz functions, Here’s the result, if f has Lipschitz gradi-
ents, with constant L, then ∣ f (y) − f (x) −
g(x)T(y − x)∣ ≤ 1/2L∥y − x∥2 . You can
prove this using a Taylor series and Cauchy
Schwartz without the extra factor of 1/2,
but to get that factor, you need to do a path-
integral of the gradient from x → y.

f (xk + 2αkpk) − f (xk) − 2αkpT
k g(x) ≤

1
2
L∥2αkpk∥

2 .

By rearrangement, we have:

f (xk) − f (xk + 2αkpk) ≥ −2αkpT
k g(x) − 2L∥αkpk∥

2 .

If we add this to our starting inequality:

f (xk + 2αkpk) − f (xk) > 2µαkpT
k g(x)

then the left hand side cancels and

0 ≥ −2αkpT
k g(x) − 2L∥αkpk∥

2 + 2µαkpT
k g(x)

or
αkL∥pk∥

2 ≥ −(1 − µ)pT
k g(k).

Sufficient descent and gradient relatedness let us play the same tricks with pT
k g(k), so

we have
αkL∥pk∥

2 ≥ (1 − µ)εm∥g(xk)∥2 .
Consequently,

αk ≥ γ∥g(xk)∥2 γ = (1 − µ)εm
M2L

> 0.

Step 5 Because limk→∞ αk∥g(xk)∥2 = 0 and αk doesn’t get too small, i.e.

αk ≥ min(1, γ∥g(xk)∥2).
then the norm must go to zero for this limit to exist.
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