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Consider a line search method on the unconstrained optimization problem:

minimize f (x)

where f ∶ Rn
→ R is twice continuously differentiable.

At a point x(k), a line search method proceeds by choosing

a search direction p and a step length α

such that
x(k+1) = x(k) + αp.

In this note, we’ll work through what we need to guarantee in a line search in order go
ensure convergence.

If p is a descent direction, then we showed that we can always choose α sufficiently
small such that fk+1 ≤ fk . So one thing we want to guarantee in a line search is that:

p is a descent direction, i.e. pTg < 0

and
fk+1 < fk

but we found that this wasn’t good enough via an example.

SUFFICIENT DECREASE
The problem we encountered there was that you might not have to reduce the function

by enough at each iteration. To combat this problem, we want to ensure you reduce the
function by some reasonable amount every step. This idea is formalized as follows:

you should decrease the function by at least as much as a linear function.

In this case, a picture makes the statement clear:

L(α)

α

f (x) + c1αgTp

Consider the function L(α) = f (x + αpTg) that describes the line search. Our first order
taylor approximation says that the behavior of L(α) should be described by the line:

L(α) ≈ f (x) + pTg.

We want to ensure that we take a step α, then we descend at least as much as some
“shallower” version of this line. So we use the upper-bound f (x) + c1αpTg, for some
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constant 0 < c1 < 1.1 Thus, we will reject any step that lies above this line! This ensures 1 Think c1 really small, around 10−4 . It’s just
really hard to draw a picture of this choice as
a line!

that we are taking a step reasonably well correlated with the Taylor approximations. For
instance, this criteria ensures that if you take a big step, you get a big reward! So this
breaks our example where we kept oscillating between the points ±1.

The condition
L(α) ≤ f (x) + c1αpTg

is called sufficient decrease or the Armijo condition. Note that we’ll satisfy fk+1 < fk with
any such step.

CURVATURE CONDITION
However, this example doesn’t prohibit another problem: we can always take a tiny

step and still lie below the line f (x) + c1αpTg. Thus, for the quadratic we could take
αk = 1/2k and never make any headway to our minimizer.

The real problem here is that we don’t want to take a step αk if we expect that increasing
αk will decrease the function further! Put another way, we want to ensure we decrease the
function as much as we can reasonably expect.

The picture that goes with this is that we want to move closer to a minimizer! A
minimizer has a gradient that is zero. So we are going to require our gradient to get just a
tiny bit flatter after the line-search.

THE WOLFE CONDITIONS
These two conditions define the Wolfe conditions:

DEFINITION 1 (Wolfe conditions) Let f (x) be continuously differentiable. We say that a line
search step αk satisfies the Wolfe conditions if:

f (xk + αpk) ≤ f (xk) + αc1pT
k gk

g(xk + αpk)
Tp ≥ c2gTk pk

with c1 ≤ c2 ≤ 1.

THEOREM 2 Let f be continuously differentiable. Let pk be a descent direction and let L(α) =
f (xk + αpk). Suppose that L(α) is bounded from below. Then there exists αk that satisfies
the strong Wolfe conditions.

Proof This is a perfect proof by picture case. ∎

The picture here is the following. We draw the line for the linear upper-linear bound
that is more shallow than the gradient. The function must start off below this line. Because
the function is bounded below. There must exist a point where the function intersects the
line. This gives us α1 > 0 where the f (xk + α1pk) = f (xk) + α1c1pT

k gk .
Now, to get to the gradient, note that by the mean-value theorem – at some point, the

derivative of the line must have been equal to α1. Call this point α2. So this means the
gradient is a continuous function that attained a value of gTk pk when α = 0 and then there
was a point 0 ≤ α2 ≤ α1 where the gradient had a slope of αc1pT

k gk at α2 But the gradient
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is a continuous function, so there must have been a point between [0, α2 where it had the
desired condition on the gradient!
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