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This material comes from Nocedal &Wright,
page 42; Griva, Sofer & Nash, page 405; and
some old notes from Juan Meza (former
location: http://hpcrd.lbl.gov/~meza/
papers/Steepest%20Descent.pdf) which
seem to be in a Wiley paper http://dx.doi.
org/10.1002/wics.117.

We’ll study the steepest descent method, also known as the gradient descent method,
on a simple quadratic objective with exact line search. The point here is to show that,
even in a simple case, this method converges slowly. (In this class, that means linear
convergence.) Whether or not this slow convergence affects your problem is a judgement
call that you’ll have to make for yourself.

1 the problem
This is a strongly convex problem with a
unique solution – just about as easy as things
get.

We’ll consider the optimization problem

minimize 1
2x

TQx

where Q is symmetric, positive definite.
The solution of this problem is x = 0. We’ll show that it takes us a while to find this

solution using steepest descent!

2 the method

Steepest descent begins with some prescribed point x0. At each step, it considers a
linear approximation of f (x) in the direction of the negative gradient. Formally,

xk+1 = xk − αkgk

where gk = g(xk) is the gradient evaluated at xk . The negative gradient search direction is
optimal for the model objective, f (x) ≈
f (xk + p) ≈ f (xk) + pTg(xk), in the sense
that −g(xk) is the solution of

minimize pT gk
∥p∥∥gk∥ .

The key decision in the method is how to choose αk , what is called the step-length.
An idealized choice of αk is as the global solution of:

minimize
α

f (xk − αgk)
subject to α > 0

.

For reasons that we’ll see soon, this is called exact line search. Usually, performing an exact
line search is impossible, but for quadratic objectives of the form:

f (x) = 1
2
xTQx − βxTc

we can derived a closed form solution for α.

3 exact line search for quadratics

Let’s do so for the simple objective f (x) = 1
2x

TQx. First, we need the gradient. For
this function g(x) = Qx if Q is symmetric, and ( 12Q +

1
2Q

T)x if Q is non-symmetric.
We’ll only consider the symmetric case where Q is also positive definite.

At a point xk , then, our goal is to pick αk to minimize

ℓ(α) = f (xk − αgk) = 1
2 (xk − αgk)

TQ(xk − αgk) = 1
2x

T
kQxk − αgTkQxk + 1

2α
2gTkQgk .

The derivative with respect to α is:

ℓ′(α) = αgTkQgk − g
T
kQxk = αgTkQgk − g

T
k gk .
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The only stationary point is where ℓ′(α) = 0, or

α =
∥gk∥

2

gTkQgk
.

Because of the norms, this ratio must be positive (unless gk = 0, in which case we are
already at a stationary point). Thus, the solution is feasible and hence, optimal.

4 decrease in the function

Our goal is to understand the convergence properties of the steepest descent method.
Now that we have fully specified the method by deriving the form of α at each step, we
can study the decrease in the objective function from f (xk) to f (xk+1). Substituting
αk =

∥gk∥
2

gTk Qgk
into f (xk − αgk) we have:

f (xk+1) = f (xk) − α∥g∥2 + 1
2α

2gTkQgk = f (xk) − 1
2 ∥gk∥

4/(gTkQgk).
From this form, it seems like we might have algebraic convergence! However, note that

f (xk) = 1
2x

T
kQxk = 1

2g
T
kQ
−1gk .

Thus, we can rewrite the decrease as follows:

f (xk+1) = f (xk)
⎡⎢⎢⎢⎢⎣
1 −

∥gk∥
4

(gTkQgk)(gTkQ
−1gk)

⎤⎥⎥⎥⎥⎦
.

If we can bound ∥gk∥
4

(gTk Qgk)(g
T
k Q
−1gk)

by a constant, then we will have proved linear conver-
gence.

5 the kantorovich inequality

There is indeed such a bound, known as the Kantorovich inequality.

LEMMA 1 Let A be a symmetric, positive definite matrix. Let x be a vector with xTx = 1. Then

(xTAx)(xTA−1x) ≤ (λ1 + λn)
2

4λ1λn
where λ1 and λn are the smallest and largest eigenvalues of A.

This proof due to P. Henrici, Mathematical
Notes, 1961.Proof First, we transform the problem into eigenvalue space with A = VΛV T . This results

in
(xTAx)(xTA−1x) = (yTΛy)(yTΛ−1y) = (

n

∑
i=1

y2i λ i)(
n

∑
i=1

y2i λ
−1
i ) .

Note that∑i y2i = 1. The key idea is to write λ i = p iλ1 + q iλn and λ−1i = p iλ−11 + q iλ−1n .
Thus, p i ≥ 0 and q i ≥ 0, and

λ iλ−1i = 1 = (p i + q i)2 + p iq i(λ1 − λn)2/(λ1λn).
Let p = ∑i y2i p i and q = ∑i y2i q i , then p + q ≤ 1.

(xTAx)(xTA−1x) = (λ1p + λnq)(λ−11 p + λ−1n q) ≤ (p + q)2 (λ1 + λn)
2

4λ1λn
≤ (λ1 + λn)

2

4λ1λn
after a few more steps of algebra involving geometry mean inequalities. ∎

6 tying up loose ends

We are basically done. We use the Kantorovich inequality to bound the decrease. A bit
more algebra yields the identity:

f (xk+1)
f (xk)

≤ ( λn − λ1
λn + λ1

)
2

= (κ(Q) − 1
κ(Q) + 1)

2

.
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