
 1

Process synchronization using semaphores: The “Cavemen” problem A pre-historic

cave with magnificent wall paintings has a very narrow entrance that can only let one visitor

in/out at a time. Complete the following pseudo-code to ensure that there will never be more than

fifteen (15) people in the cave. The code is executed by each cave visitor process. Filling in the

boxes with either semaphore initial values or semaphore calls (wait() or signal()).

semaphore s1 = ;

semaphore s2 =

Cave_exploration () {

 // this box may contain one or two calls

 Enter_the_cave ();

 // this box may contain one or two calls

 Look_at_the_paintings ();

 // this box may contain one or two calls

 Exit_the_cave ();

 // this box may contain one or two calls

}

Thread synchronization using semaphores: The Reader-Writer Problem Consider
the following one-writer many-readers problem:

“There is one writer thread and multiple reader threads accessing the same file. When a
reader is reading, other readers are allowed to proceed directly while the writer must wait.
When the writer is writing, no reader can access the file”

An implementation using semaphores is given below:

int readcount; // shared and initialized to 0
sema_t mutex, wrt; // both initialized to 1

// For the writer // For each reader
wait(wrt); wait(mutex);
write the file; readcount ++;
signal(wrt); if (readcount == 1)

wait(wrt);
signal(mutex);
read the file;
wait(mutex);
readcount --;
if (readcount == 0)

 signal(wrt);
signal(mutex);

(1) Does the above implementation realize mutual exclusion between reader and writer?

(2) There is a possibility that the above implementation leads to starvation (i.e., thread
waiting indefinitely within semaphore)? Describe a specific situation in which starvation
will occur.

 1

Thread synchronization using semaphores: The “H2O” problem: You’ve been hired
by Mother Nature to help with the chemical reaction to form water, which she doesn’t
seem to be able to get right due to synchronization problems. The trick is to get two H
atoms and one O atom all together at the same time. The atoms are threads. Each H atom
thread executes a procedure hReady() when it is ready to react; and each O atom
thread invokes a procedure oReady() when it is ready.

Your job is to write the code for hReady() and oReady(). The procedures must delay
until there are at least two H atoms and one O atom present, and then one of the
procedures must call the procedure makeWater(). After the makeWater() call, two
instances of hReady() and one instance of oReady() should return.

Your solution should avoid starvation and busy-waiting. You may assume that the
semaphore implementation enforces the FIFO policy for thread wake-ups – the thread
waiting the longest in wait() always grabs the semaphore after a signal().

(1) Consider the following implementation. Does it work? Briefly explain your answer. If
it doesn’t work, show how to fix it.

 int numHydrogen = 0;
 sema_t pairOfHydrogen = 0;
 sema_t oxygen = 0;

 void hReady() {
 numHydrogen ++;
 if ((numHydrogen % 2) == 0) {
 signal(pairOfHydrogen);
 }
 wait(oxygen);
 }

 void oReady() {
 wait(pairOfHydrogen);
 makeWater();
 signal(oxygen);
 signal(oxygen);
 }

 2

(2) Now consider a different implementation below. Does it work? Briefly explain.

 sema_t hPresent = 0;
 sema_t waitForWater = 0;

 void hReady() {
 signal(hPresent);
 wait(waitForWater);
 }

 void oReady() {
 wait(hPresent);
 wait(hPresent);
 makeWater();
 signal(waitForWater);
 signal(waitForWater);
 }

(3) Suppose the OS wakes up the thread that stays the shortest time in the semaphore
queue (namely last-in-first-out or LIFO) upon signal(), will the implementation in (2)
still work?

 3

