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ABSTRACT
Advanced cyber attacks consist of multiple stages aimed at
being stealthy and elusive. Such attack patterns leave their
footprints spatio-temporally dispersed across many differ-
ent logs in victim machines. However, existing log-mining
intrusion analysis systems typically target only a single type
of log to discover evidence of an attack and therefore fail
to exploit fundamental inter-log connections. The output of
such single-log analysis can hardly reveal the complete attack
story for complex, multi-stage attacks. Additionally, some
existing approaches require heavyweight system instrumenta-
tion, which makes them impractical to deploy in real produc-
tion environments. To address these problems, we present
HERCULE, an automated multi-stage log-based intrusion
analysis system. Inspired by graph analytics research in
social network analysis, we model multi-stage intrusion anal-
ysis as a community discovery problem. HERCULE builds
multi-dimensional weighted graphs by correlating log entries
across multiple lightweight logs that are readily available on
commodity systems. From these, HERCULE discovers any
“attack communities” embedded within the graphs. Our eval-
uation with 15 well known APT attack families demonstrates
that HERCULE can reconstruct attack behaviors from a
spectrum of cyber attacks that involve multiple stages with
high accuracy and low false positive rates.

1. INTRODUCTION
Emerging cyber attack campaigns (e.g., enterprise-wide

APT) exhibit “low-and-slow” attack patterns: attackers con-
duct reconnaissance and move laterally within a network
via many stealthy multi-stage payloads. One annual report
published by FireEye [18] highlighted that attackers may
reside in a victim’s environment for up to 205 days before
being discovered. Importantly, the covert nature of these
attacks is derived from their deliberately small footprints on
each affected system.

Our analysis of the attacks spanning 15 well known cyber
attack families [3,8,9,12,21,24,28,47–50,61] (Section 4) shows
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that the stages within a single attack will often span many
users, processes, and systems. Typically, the initial stage
of a successful penetration is a social engineering campaign
(e.g., a phishing email [61]), watering-hole attack [3], or
trojaned software or unofficial patch containing malicious
payloads [9, 21,24,47–49,61]. After gaining a foothold in the
network, reconnaissance payloads will be deployed, include
Command and Control (C&C) channels, stealing passwords,
or exploiting vulnerabilities to escalate privilege. In later
stages, attackers slowly move throughout the network [8]
seeking opportunities to exfiltrate confidential information,
eavesdrop on communications, or interrupt critical services.

Unfortunately, any footprints left by such multi-stage at-
tack pattern are spatio-temporally dispersed across many
separate logs on different victims’ machines. For instance,
downloading a trojaned executable may leave evidence in
the web browser’s log, but accessing confidential files may
only be revealed in the system audit log. Further, fine-
grained on-host provenance logging systems [29,36,40] are
still rarely deployed on end-user systems. Therefore, piec-
ing together the contextual information of each malicious
footprint (scattered across many disconnected sources) still
demands significant effort from cyber investigators.

To date, most existing log-based intrusion analysis and
detection systems have the following three limitations: (1)
Lacking the panoramic view required to understand the wh-
ole attack trace due to their focus on only single log types.
For example, network intrusion analysis techniques [14,51]
leverage deep packet inspection or packet headers from a
single network log, such as a DNS log or an HTTP proxy log.
Other systems [29, 33, 34, 36, 40] perform host-based analysis
on a system’s audit log, such as a Windows event log. (2)
The log collection process relies on logging systems that re-
quire heavyweight instrumentation, which incurs non-trivial
performance overhead. For example, to achieve fine-grained
system call level traces of an attack, Gu et al. [27] perform
heavyweight event tracing for Windows (ETW) logging [15].
Yin et al. [64] use whole-system fine-grained tracking to
detect and analyze privacy-breaching malware. Other ap-
proaches [29,30,33,34,36,46] perform static/dynamic analysis
to obtain execution models or control flow graphs. While
shown to be fine-grained, their substantial overhead limits
their applicability to the real-world environment. (3) Too
many uncorrelated alerts may be either deemed false positives
or overlooked by system administrators [1]. They provide
neither much actionable intelligence nor enough attack evi-
dence. For instance, a single log entry of “user failed to login”
is a potential indicator of a compromise, but by correlating



Third Stage: Moving 

Laterally, Exfiltration 

Sensitive Data

Second Stage: 

Maintaining Persistence, 

Updates Codes and Tools

First Stage: 

Reconnaissance 

Launch the Attack and 

Infect Target Hosts

Multidimensional vector

d1 d2 d3 d4 … dn

1 0 1 0 … 0

Tainted Log Entry

Attack-related 

community

Figure 1: Attack stages and correlated log entries.

with other alerts, such as suspicious reverse TCP activity,
investigators can (manually) piece together an attacker’s
footprints.

In light of the above three limitations, we are motivated
to focus our detection on the abundance of light-weight logs,
which are more likely to be deployed in end-user systems. By
correlating the many disparate entries across these logs, we
aim to automatically reveal the attacker’s footprints, just as
an investigator would have done. We present HERCULE1,
an attack analysis framework that aims to automatically
reconstruct an attack’s stages and movement from multiple
lightweight system logs. HERCULE is based on the obser-
vation that the attack-related log entries, triggered by the
multistage payloads, have dense and heavy-weighted con-
nections within themselves, but sparse and light-weighted
connections with the benign log entries. In this way, the
weighted graphs built from system logs is similar to social
networks: people with similar interests, backgrounds, or
friend circles, have closer connections to each other.

Figure 1 gives an overview of many log entries dispersed
in different stages of the intrusion being correlated by mul-
tidimensional edges. The red nodes are real attack traces,
and yellow nodes are the suspicious log entries not belonging
to any real attacks. The white nodes represent benign log
entries. The tainted log entry is marked as “attack-related,”
which is used later to classify the attack-related community.
HERCULE is designed to discover the latent attack-related
community embedded in the graph (the extracted circle in
Figure 1), despite the benign and malicious log entries being
highly interleaved with each other.

Based on causality analysis, HERCULE extracts various
types of the correlations and construct a uniform vector
representation of the connections between the log entries
(Section 3.1). For example, the blue (vertical) edges in
Figure 1 illustrate the multi-dimensional network edges which
HERCULE assigns different feature weights, revealing the
densely connected communities. We provide several versions
of weight assignment in Section 3.2, which helps to increase
the system performance by supervised learning and quadratic
programming.

HERCULE then applies a community detection algorithm
to the global graph and generates a series of community
cliques. With the tainted attack-related log entry (e.g., via
malware binary analysis [35,53] or website blacklisting), HER-

1
HERCULE stands for Harmful Episode Reconstruction by

Correlating Unsuspicious Logged Events, also as a tribute to Her-
cule Poirot, one of the most celebrated fictional detectives

CULE reveals the attack-related communities and their inter-
connections based on their relationship to any tainted entries
(Section 3.4).

Our work in this paper makes the following contributions:

• We propose a novel technique to model the relation-
ship between multiple logs in the system by leverag-
ing causality analysis without heavyweight logging or
program instrumentation. HERCULE automatically
generates a multi-dimensional weighted graph with po-
tentially valuable information embedded within. Our
proposed graph based representation provides a “pano-
ramic view” of the logs generated by different system
components.

• We leverage social network analysis and adapt the
community detection algorithm in our weighted graph
settings. We also propose several learning techniques
to optimize weight assignment and increase the system
performance. To the best of our knowledge, no such
techniques have been adopted to date in log-based
attack analysis.

• We conduct an extensive evaluation of HERCULE for
the analysis of attack scenarios based on 15 real-world
APT reports with diverse combinations of applications,
malicious payloads, and attack methods, demonstrating
the effectiveness of HERCULE.

2. SYSTEM OVERVIEW
Figure 2 shows a simplified attack scenario that leaves

malicious footprints across different logs. In the first stage,
the user V is tempted to download a trojaned version of
Notepad++.exe from Gmail in Firefox with a malicious pay-
load embedded. There are three actions in the second stage:
(1) V initiates the trojaned Notepad++.exe installation pro-
cess. This causes the embedded malicious payload to open a
reverse TCP connection to a remote C&C server. (2) After
establishing the C&C channel, the C&C server sends the
command to search for a private file plan.docx, attempt-
ing to collect the competitor’s business plan. (3) The C&C
server sends the instruction to download the NESSUS.exe [45]
vulnerability scanner from the C&C server through FTP.
In the third stage, the C&C client receives instructions to
run NESSUS.exe to scan within the subnet and exfiltrate
plan.docx through FTP back to the C&C server.

Figure 2 shows the connections of the attack traces across
five different logs (those connections that investigators must
manually recover). Further, besides the attack-related entries
shown in Figure 2, numerous benign entries and suspicious
entries (i.e., truly benign but still requiring investigation)
are also recorded in the logs. The goal for HERCULE is
to automatically extract and present investigators with the
three attack phases and their interconnection from the many
disparate log entries.

Workflow of HERCULE. Figure 3 presents the key
phases and operations of HERCULE. The input to HER-
CULE is multiple raw logs from both network (e.g., DNS,
WFP, HTTP) and system activity (e.g., Process creation,
File access, Authentication). HERCULE’s detection logic
is specifically designed to be log-format agnostic and thus
HERCULE can handle any input log file given that a parser
for its format can be supplied as a plugin. Notice that in-
vestigators would need to understand (and therefore parse)
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Figure 2: Parsed attack-related log entries in different types of logs (marked in blue), and the key observation
to correlate the log entries (marked in red). For clarity, some log entries are slightly different from the real
parsed log entries in our experiment. We also delete some edges for illustrating clear graph.
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Figure 3: Workflow of HERCULE.

the format of these logs anyway during their investigation.
Thus requiring such a parsing plugin is not a significant ad-
ditional overhead. Further, parsing plugins are reusable in
any future investigations of those log types. The remainder
of HERCULE’s operation is fully automated.

Phase I. The Raw Log Parser processes each input log
entry via its parsing plugin to extract a set of predefined
fields (refereed to as a data entity). Each data entity is
given as input to the Log Correlation Module (Phase II) and
the Tainting Module. The Tainting Module scans the data
entities and (1) analyzes any suspicious executable binary
appeared in the log entries that is not in a whitelist by
leveraging popular malware/virus analysis platform [60,62]
or (2) scans for known malicious website accesses based on
a URL blacklist to identify initial attack-related log entries.
These initial attack-related log entries will subsequently be
processed by the Post Processing Module.

Phase II. The Log Correlation Module consists of two sub-
modules: Connection Generation and Weight Assignment.
(1) Connection Generation connects any two log entries (via
an unweighted multi-dimensional edge) if there exist one
or more types of correlation between them (this process is
detailed in Section 3.1). For example, in Figure 1, if the two
nodes connected by the blue edge have the same timestamp
(denoted by d1) or share the same process ID (denoted by
d3), then these entries should be correlated. (2) Weight
Assignment assigns weight on each edge. Note that there are
multiple ways to assign weights to multi-dimensional edges,
in which one of the supervised learning techniques has proven
to achieve the best result. We present the details of weight
assignment in Section 3.2.

Phase III. The Community Detection Module takes the
correlated weighted graph as input and outputs all detected
communities to the Post Processing Module. Starting from

any log entries tainted in Phase I, the Post Processing Module
classifies the communities that contain tainted entries as
malicious and the others as benign. It then outputs the
reconstructed attach phases (temporally ordered actions or
communities) and their interconnection from the attack-
related community. Section 3.4 presents the detailed design
of HERCULE’s community detection.

3. SYSTEM DESIGN
Log parsing is an essential step to transform the raw data

into data entities before applying any learning model. Thus
far, we have implemented log parsing plugins for the logs
shown Table 1. To capture attack footprints projected across
various logs, we select different sets of logs based on the host
OS platforms. For example, on Linux, we choose the Syslogd
authentication log, while on Windows we make use of the
Windows filtering platform (WFP) log which records the
inbound and outbound network connections the processes
makes. For each log, raw log parser extracts pre-defined
fields that capture representative information of each log
entry. We summarize these in Table 2.

3.1 Connection Generation
The input to the Connection Generation sub-module is

the parsed data entities. The output is the unweighted, undi-
rected, and multi-dimensional graph which is built from the
intra-log and inter-log correlation. Analogous to a social
network, we treat each log entry as an individual and each
edge dimension as one type of relationship between two indi-
viduals. Formally, in the unweighted n-dimensional network
G = (V,E,D) where V is a set of nodes, E is a set of edges
and D is a set of dimensions, G forms a |V | × |V | × |D|
3-dimensional boolean matrix M . Mi,j,k = 1 indicates there
exists a correlation dimension k between log entry node i



Table 1: Logs used in
Section 4.
# Logs Provider

L1 DNS Tshark

L2 WFP connect Auditd

L3 HTTP Firefox

L4 Process create Auditd

L5 Object access Auditd

L6 Authentication Syslogd

Table 2: Fields Correlated Across Logs.

Field Logs Description

timestamp L1-L6 event timestamp

q domain L1 DNS quiered domain name

r ip L1 DNS resolved ip address

pid L2, L4, L5 base-16 process id

ppid L4 base-16 parent process id

pname L2, L4, L5, L6 process name

h ip L2 host IP address

h port L2 host port number

d ip L2 destination IP address

d port L2 destination port number

type L3 request/response

get q L3 absolute path of GET

post q L3 absolute path of POST

res code L3 response code

h domain L3 host domain name

referer L3 referer of requested URI

res loc L3 location to redirect

acct L5 principle of this access

objname L5 object name

info L6 Authentication information

Table 3: Features Described by
Each Edge.
D Feature
d1 ∆(u.timestamp, v.timestamp)<t
d2 u.pid=v.pid
d3 u.d ip=v.d ip
d4 u.d port=v.d port
d5 u.referer=v.referer
d6 u.host=v.host
d7 u.referer=v.host
d8 u.host=v.referer
d9 u.ppid=v.ppid
d10 u.ppid=v.pid
d11 u.pid=v.ppid
d12 u.objname=v.objname
d13 u.pname=v.pname
d14 u.r ip=v.d ip
d15 u.d ip=v.r ip
d16 u.q domain=v.h domain
d17 u.h domain=v.q domain
d18 u.q domain=v.referer
d19 u.referer=v.q domain
d20 u.q domain=v.res loc
d21 u.res loc=v.q domain
d22 u.get q=v.pname
d23 u.pname=v.get q
d24 u.get q=v.objname
d25 u.objname=v.get q
d26 u.pname=v.objname
d27 u.objname=v.pname
d28 u.r ip=v.h ip
d29 u.h ip=v.r ip

and log entry node j, otherwise Mi,j,k = 0. Each e ∈ E
consists of (n+2)-tuples (i, j, d1, d2, · · · , dn) with i, j ∈ V
and d1, · · · , dn ∈ D.

Feature Selection. In HERCULE, for each pair of log en-
tries, denoted as nodes u and v, which have one or more types
of relationships, we connect them with multi-dimensional
edge e. The dimensions of the edge is denoted as a uniform
29-feature vector ~v = [d1 d2 · · · d29]T , in which the binary
value of each dimension dk represents the existence of the k-
th type of relationship between u, v. If u, v can be correlated
by k-th relationship, dk = 1, otherwise dk = 0.

The intuition behind each of the 29 features to capture
potential causally-related log entries (summarized in Table 3)
is as follows. For two log entries u and v:

• d1 models the time difference between u and v. The
user can customize the threshold t (between two times-
tamps of u and v) to determine whether two log entries
are temporal correlated. We show the detection perfor-
mance result of choosing different t in Section 4.

• d2 and d13 captures the relationship if u, v share the
same process id or process name. This feature is in-
tended to capture the explicit/implicit correlations from
process creation and process operations.

• d3 and d4 demonstrate whether u and v share the
same destination IP or port when they make outbound
connection requests. The intuition is based on the
observation that u and v (two network requests) are
highly correlated if they communicate to the same IP
address.

• d5 to d8 belong to the features that capture the corre-
lation of u and v within HTTP log. They model the
causality relations of web page browsing events. Several
attack reports in Section 4 show that the initial stage of

an attack often involves a sequence of URL redirection.
Thus, we aim to recover a complete browsing traces
that are related to the attack story.

• d9 to d11 model the process creation correlations. For
instance, we observe that many malicious operations
are done by a shell process so that we need to trace
back the parent or predecessor process of that shell to
recover more attack traces.

• d12 checks if u and v access to the same object. It is
based on the observation that some malicious process
creates the malicious executable (logged in u), and
another process executes the executable (logged in v).
u and v belong to the same attack traces and hence
d12 = 1 denotes that u and v are causally related.

• d14, d15, d28, and d29 model how outbound/inbound
network requests correlate to DNS queries. The intu-
ition is based on the fact that most C&C client/server
communications leverage DNS service to resolve dy-
namically changing server IP addresses [51].

• d16 to d21 capture the correlation between DNS query
behavior and web page browsing behavior by examining
the equality of several related fields. We seek to include
in the attack story of DNS resolving query and the
corresponding browsing events on websites.

• d22 to d27 model how web browsing behaviors reflected
in HTTP log correlate to system-level behaviors, e.g., a
user may download a malicious executable from the web
and execute it locally. It can also spawn new processes,
access objects and make network connections.

It is possible that there exist more features beyond those
in Table 3. HERCULE is extensible in that users can add or
remove features to customize the system.



Also, note that these features can lead to false-positive
connections in our graphs. This is because any local noise in
these features will be discarded during community detection,
which focuses exclusively on global patterns (communities)
within the resulting global graph.

With defined features on each edge, we build the connec-
tions for each log entry from all the input logs. The input to
the connection generation algorithm are the features selected
in Table 3 and all parsed structured logs. The algorithm only
generates edges with at least one feature vector value being
non-zero. The algorithm iterates all possible log pairs that
capture both intra-log correlations and inter-log correlations.

3.2 Weight Assignment
Once the correlated log graph has been constructed, we

use a community detection algorithm to detect communities.
Formally, given two community clusters of nodes A and B in
an unweighted multi-dimensional graph G where A denotes
attack-related log entries and B represents benign entries:
optimally, we expect to get |eA| � |eAB| and |eB | � |eAB |
where |eA|, |eB |, and |eAB| denote the number of edges in
cluster A, B, and between A and B, respectively. Note that
these notations are valid throughout all this section.

However, it is observed that in the unweighted multi-
dimensional graph generated in Section 3.1, there exist cases
of log entries that belong to the attack but have numerous
connections with benign entries (|eA| < |eAB|). This case
significantly reduces the effectiveness of any community de-
tection algorithm that aims to maximize the intra-cluster
density |eA|, |eB | and minimizes inter-cluster density |eAB |
(we present the details of the algorithm in Section 3.4). On
the other hand, we make the observation that the values
of the feature dimensions between ~eAB and ~eA, ~eB ( ~eA, ~eB
and ~eAB denote the edge vector of eA, eB and eAB , respec-
tively) are significantly different. This implies that we can
distinguish eA, eB from eAB by their feature vector.

Inspired by this observations, weight assignment algorithm
is therefore proposed to deal with the above circumstances.
Generally, the algorithm tries to assign different weights to
edges that have different edge feature values so that the
inequality still holds wA · |eA| > wAB · |eAB| (wA is weight
assigned for edges in eA and wAB is weight assigned for
edges in eAB). More specially, the algorithm tries to “learn”
a global weight vector ~α that can be applied on each edge.
Thus, the following equation still holds:

∑
e∈eA

k∑
i=1

αi · ei >
∑

e∈eAB

k∑
i=1

αi · ei

∑
e∈eB

k∑
i=1

αi · ei >
∑

e∈eAB

k∑
i=1

αi · ei

(1)

where k is the number of dimensions of edge vector and ei is
the i-th value of edge vector ~e.

Intuitively, we can assign the dot product of the weight
vector and edge vector w =

∑k
i=1 αiei as the weight on each

edge to construct a weighted graph. However, most of the
learning algorithms that we apply in weight assignment out-
put ~α such that the dot product has no bound on the value
(w =

∑k
i=1 αiei) ∈ R, which might generate negative weight

w < 0 and violate the requirement of input for the weighted
graph community detection algorithm. Consequently, we
leverage a sigmoid function S to map the dot product to

bounded real number range [0, 1] as our finalized weight as-

signment on each edge: w = S(
∑k
i=1 αi ·ei) = 1

1+e
−

∑k
i=1

αi·ei

We then transform the graph into a weighted graph WG.
For evaluation of the weight assignment algorithm, we define
our training phase and testing phase as following: Given n
unweighted graphs G1, G2, · · · , Gn, for each l (l ∈ [1, n]), (1)
the training phase of the weight assignment looks for a best
assignment weight vector ~αk for G1, · · · , Gl−1, Gl+1, · · · ,
Gn; (2) the testing phase takes the dot product of weight
vector ~αl and all edge vectors ~e to generate a weighted graph
WGl. Then, the Community Detection Module takes WGl as
input and outputs communities for Post Processing Module.
Essentially, this training/testing process adopts the leave-
one-out strategy.

We have also built different algorithms for weight assign-
ment for comparison. The first does not use any learning
algorithm, the second and third leverage existing supervised
learning techniques that outperform the first, and the fourth
is based on quadratic optimization that has the best perfor-
mance results. We use the quadratic optimization algorithm
as our finalized version of weight assignment in HERCULE,
and compare their results quantitatively in Section 4.

Feature Weight Summation. As a baseline solution,
this algorithm treats each feature of an edge with the same
“importance”: αi = 1, i ∈ [1, k] where k denotes the number
of features. To hold Equation 1, this algorithm depends on
the assumption that edges in A or B have more correlation
types than edges between A and B. More specifically, this
algorithm assumes the edge vectors of ~eA and ~eB has more
1’s than edge vectors of ~eAB . From the results presented in
Section 4, we find that the performance is not ideal. The
reason is that there exist cases when two edge vectors, one
from eA, eB and the other from eAB , (1) are not distinguish-
able by their number of 1’s of their vector values, but differ
in type of features where the 1 reside, such as two vectors
[1 0 1] and [0 1 1], or even worse, (2) the edge vector in eA
or eB has less 1’s in the vector values than those in eAB .

Motivated by the discussed limitations, we adapt two
learning approaches (Logistic regression and SVM), which
assign different “importance” on the edge features.

Logistic Regression. Logistic regression [44] can be
applied in our weight assignment as we abstract the weight
assignment as a classification problem. We want to learn the
global weight ~α that helps to classify edge vectors into one
class eA, eB and another class eAB . Suppose there are m
training edges, denoted E = xi, yi, i ∈ [1,m] where xi is i-th
edge vector ~ei, yi = 1 if ei ∈ eAB and yi = 0 if ei ∈ eA or ei ∈
eB . In training, we construct a prediction function, which
leverages logistic function g: h~α(xi) = g(αTxi) = 1

1+e−~αxi

where h~α(x) denotes the probability that ei ∈ eAB (yi = 1):
P (yi = 1|xi, ~α) = h~α(xi) and P (yi = 0|xi, ~α) = 1− h~α(xi).
Then we should minimize the cost function in log likelihood

format: − 1
m

[
m∑
i=1

yi log h~α(xi) +
m∑
i=1

(1 − yi) log(1 − h~α(xi))].

The minimization problem can be solved by using gradient
descent. Please refer to [44] for more details of the algorithm.

SVM. Another classification solution for learning the wei-
ght vector α is an SVM [19]. Suppose there are m training
edges, denoted E = xi, yi, i ∈ [1,m] where xi is i-th edge
vector ~ei, yi = 1 if ei ∈ eAB and yi = −1 if ei ∈ eA or
ei ∈ eB . The purpose of the SVM is to learn a weight vector
~α, which can accurately distinguish eAB from eA, eB. We



use the soft margin version; the detailed formulation can be
found in [19].

Quadratic Programming. The above two classification
learning algorithms look for a decision boundary that clas-
sifies edges into two types (eA, eB vs. eAB). However their
output weight vectors are not the global optimum, which are
not guaranteed to maximize the weight assigned to edge eA
and eB , and minimize the weight assigned to edge eAB .

Therefore, we design and develop a new solution, which
transforms the weight assignment as a quadratic optimization
problem. Adapted from Equation 1, our target function is:

max
~α

∑
e∈eA

k∑
i=1

αi · ei +
∑

e∈eB

k∑
i=1

αi · ei

−λ
∑

e∈eAB

k∑
i=1

αi · ei −
1

2
~αT · ~α

s.t. 0 ≤ ~αT e ≤ 1

(2)

λ is the trade-off parameter to balance between the first two
terms and the third term in the target function. 1

2
~αT · ~α is

the regularizer to avoid the overfitting problem. The target
function is convex and the output weight vector ~α is theoret-
ically global optimum. As we constrained the optimization
by 0 ≤ ~αT e ≤ 1, we do not leverage a sigmoid function for
this algorithm to map the dot product ~αT e to [0, 1] again.

3.3 DFS Propagation
Prior to coming up with the community detection approach,

we designed a heuristic algorithm that neither uses any learn-
ing techniques nor community detection, which we term
“DFS propagation”. We note that without the knowledge
of any low-level program execution analysis or fine-grained
log analysis, we cannot capture the accurate causality re-
lationship between log entries. Thus in this algorithm, we
conservatively treat any log entry t as malicious if there exists
a path from a tainted attack-related start point s to t, which
we define s can propagate to t. The input to this algorithm
is the tainted entry point v and the graph generated from
Log Correlation Module. It then uses Depth-First-Search
(DFS) to recover all log entries that can be propagated from
v. From the results shown in the Section 4, we found the
performance of DFS Propagation is not ideal. Therefore, we
propose a more robust method using community detection
in the following section.

3.4 Community Detection
Considering the large number of nodes in the graph, we

need to select a time-efficient community detection algorithm
to extract communities from the large weighted correlated-log
graph. There are multiple unsupervised learning techniques
for community detection. We choose to use the Louvain
method considering its efficient handling of large networks
[13].

At the beginning of this algorithm, each node in our
weighted graph represents a community. We denote Av,w as
the weight between node v and node w, kv =

∑
w Av,w as

the sum of the weights connected to the node w, cv as the
community to which the node v is assigned, the δ-function
δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise. Modularity is

defined as:

Q =
1

2m

∑
v,w

[
Av,w −

kikj

2m

]
δ(cv , cw)

where m =
1

2

∑
v,w

Av,w

(3)

Modularity has a value between−1 and 1, which measures the
degree of the density of the connections within communities
compared to connections between communities in the graph.

After the initialization of communities, we repeat the Lou-
vain method in two phases to greedily optimize the local
modularity as the algorithm progresses. For each node v, the
algorithm removes v from its own community and moves it
into the community C of each neighbor w of v. Then the
algorithm evaluates changes in modularity and places v in
the community that has the largest modularity gain. If the
largest gain is negative, the node v is not moved and placed
in its original community. The modularity gain is calculated:

∆Q =

[∑
in +kv,in

2m
−
(∑

tot +kv

2m

)2
]

−
[∑

in

2m
−
(∑

tot

2m

)2

−
(
kv

2m

)2
] (4)

∑
in is the sum of the weights of the edges inside C where the

v is moved to, kv =
∑
w Av,w denotes the sum of the weights

connected to the node w,
∑
tot is the sum of the weights of

the connections to all the nodes in the community C, kv,in is
the sum of the weights of the links to node v in community C
and m is the total weights of all the edges in the graph. This
process is the first phase, and it is applied repeatedly and
sequentially to all nodes until no modularity increase occurs.
Then the second phase begins once the algorithm reaches
the local optimum of modularity. In the second phase, the
algorithm aggregates all of the nodes in the same community
into one node and builds a new network. The links between
nodes within the same community are then represented by
self-linked edges on the new community node. The second
phase ends once the network reconstruction finishes, and
the first phase then starts the next iteration on the new
network.

4. EVALUATION
Implementation. We have implemented HERCULE in

Python and use Matlab for the learning algorithms. We
leverage Python’s implementation of the Louvain method
package python-louvain [39] for community detection. The
weight assignment algorithms are implemented using Matlab
quadprog [43] for quadratic programming, LIBSVM [38] for soft
margin SVM and Matlab glmfit [42] for logistic regression.

Our evaluation environment consists of: (1) A Windows
victim system running on a machine with an Intel Core i5-
3570 3.40 GHz CPU, 4GB RAM and Windows 7 Ultimate
Service Pack 1 64-bit operating system. (2) A Linux victim
system runs on the machine with Intel Core i5-4200M 2.50
GHz CPU, 4GB RAM and Ubuntu 14.04.1 LTS 64-bit op-
erating system. (3) The attacker runs on a machine with
Intel Core i5-4200M 2.50 GHz CPU, 4GB RAM and the Kali
Linux 64-bit operating system. The attacker’s machine also
serves different roles, such as the C&C server, the FTP server
for downloading attack tools, the samba server for sharing
files, and Apache server for hosting malicious websites.
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Figure 4: DFS Propagation vs Different Weight Assignment Algorithms with Community Detection.

Table 4: Log Size.
Log Size (KB) # Entries

DNS 60 450

WFP 16,723 662

HTTP 150,650 3,016

Process 5,886 233

Object 5268 247

ETW 2,926,425 1,462,526

Table 5: Two-Week
Log Size.

Log Size (MB)

DNS 7.0875

WFP 1933.9

HTTP 17795.5

Process 695

Object 622.2

4.1 Logging Overhead
Table 4 (left) shows a summary of the logging overhead

of different logging providers. The logging process records
the log entry while the user is routinely working on the
computer, without knowing that some of his/her operations
have already triggered the malicious activity. We obtain these
results by logging for 10000 seconds, and each time we launch
a particular attack (Table 6) we roll back using a previously
saved image of the virtual machine. Then we average the
result of the 15 test cases. Compared with ETW logging
with stack-walk mode turned on (shown in the last gray row
of Table 4), the logs we use in HERCULE (the other rows
in Table 4) are more lightweight in all measurements. This
motivates the need for HERCULE’s community detection
based only on the abundance of light-weight logs (as heavy-
weight logging is seldom deployed on end-user systems).

4.2 Weight Assignment
Figure 4 shows the detection performance of DFS propaga-

tion (blue) and the combinations of different weight assign-
ment algorithms together with Louvain community detection
(other colors), in which (1) the purple line denotes quadratic
programming, (2) the yellow line denotes SVM (support
vector machine), (3) the green line represents logistic regres-

sion, (4) the red line stands for feature vector summation
algorithm, and (5) the blue line denotes DFS propagation.

Instead of utilizing accuracy, we quantify the performance
of classifiers using F1 score (y-axis). Let the number of true
positives, false positives, true negatives, and false negatives
be tp, fp, tn, and fn, respectively, w.r.t, a classifier. Precision
is defined to measure the portion of actual attack-related en-
tries in all predicted attack-related entries (identified attack-
related community). precision = tp

tp+fp
. Recall measures the

number of attack-related entries that are correctly classified
as attack-related out of the total number of actual attack-
related entries. recall = tp

tp+fn
. F1 score is the harmonic

mean of precision and recall F1 = 2 · precision·recall
precision+recall

. An
ideal classifier has F1 metric close to 1 which implies that
both precision and recall are close to 1.

As discussed in Section 3.2, we adopt “leave-one-out” in
the training/testing process of weight assignment. After
the log entries have been generated, we obtain the labels
of the log entries by manually comparing with the attack
activity2. The x-axis in Figure 4 includes choices of different
timestamp delta threshold t in constructing the temporal cor-
relation. Figure 4 demonstrates the average outperformance
of Quadratic programming pair with community detection
(purple line) over other algorithms. This motivates our deci-
sion to use quadratic programming as our weight assignment
algorithm. The results in Table 6 are based on the weight
assignment algorithm that uses quadratic programming.

4.3 Attack Story Reconstruction
Emulated Attacks. We recreated 15 real world APT

attacks [3,9,12,21,24,28,47–50,61] which feature a variety of

2Note that HERCULE did not have access to this ground
truth for its detection. We obtained it manually for evalua-
tion of HERCULE’s accuracy.



Table 6: Evaluation Results on Attacks.
APT Keyword Initial Tactics CVE Post Exploitation Target Acc FP

Black Vine 1 Watering hole 2012-4792 Keylogger Win 0.846 0.0012

Black Vine 2 Email attachment 2014-0322 Exfiltrate files Win 0.834 0.0023

Attack on Aerospace Watering hole 2015-5122 Network sweeping Win 0.810 0.0018

Tibetan and HK Email google drive links 2014-4114 Exfiltrate files Win 0.886 0.0013

Op-DeputyDog iframe background running 2013-3893 Escalate privilege Win 0.877 0.0024

Russian Campaign Controlled Website 2015-3043 Download backdoor Win 0.833 0.0023

Op-Clandestine Fox Email compromised website 2014-1776 Rename payload Win 0.857 0.0026

Cylance SPEAR Team Email attachment 2012-0158 Browsing files Win 0.826 0.0016

APT on Taiwan Email attachment N/A Rename payload Win 0.819 0.0010

Op-Tropic Trooper Email attachment 2010-3333 Download tools Win 0.812 0.0006

Op-Tropic Trooper Email attachment 2012-0158 Keylogger Win 0.863 0.0090

Hacking Team Email with file link 2015-5119 Download backdoor Win 0.859 0.0058

Russian Campaign Email attachment 2008-5499 Download backdoor Linux 0.850 0.0017

Op-DeputyDog Email compromised website N/A Brute force Login Linux 0.899 0.0060

SeaDuke Email trojaned-ware N/A Add bad user Linux 0.874 0.0012

Two weeks Tibetan and HK, APT on Taiwan, and Cylance SPEAR Win 0.736 0.0126

initial compromise tactics, types of CVE exploited, malicious
payloads, and post exploitation activities to evaluate our
approach (Table 6). Note that in our emulated environment,
we also include a dedicated user to perform regular (benign)
activities, such as browsing websites or playing music. To
demonstrate that HERCULE’s scalability, we also conducted
a two-week-long experiment that contains mostly normal
user activities, which are generated by the dedicated user,
mixed with three APT attacks (Tibetan and HK, APT on
Taiwan, and Cylance SPEAR Team listed in the gray row of
Table 6). The dedicated user performs normal behavior such
as browsing website, watching videos, and downloads and ex-
ecutes files without adequate awareness of the suspiciousness.
and execute The logs sizes from this two-week experiment
are summarized in Table 4 (right). As some reports do not
disclose a complete attack trace, we recreate any missing at-
tack stages (not discussed in the APT reports) with modern
attack approaches borrowed from similar stages discussed in
the other APT reports. Hence the emulated attacks, though
based on the APT reports, leverage the mixed strategy that
are thus not restricted to any specific attack vectors, but
provide general test cases on which HERCULE can evaluate.

The detection performance of all 16 attack scenarios is
shown in the last two columns in Table 6. We classify the log
entries within any identified community as malicious and the
remainders as benign. We manually obtained and inspected
the ground truth from the APT reports when emulating
the attacks. The accuracy is the portion of the true results
(correctly classified as benign or malicious) in the total test
samples. The false positive rate measures the number of
entries that are incorrectly classified as attack-related out of
total actual benign entries. We note that the false negative
rate is not negligible given the high accuracy and extremely
low false positive rate. Since our work focuses on reducing
the false positive rate by correlating PIOC (Section 1) and
reconstruct the attack-related as complete as possible, we
give more tolerance on false negatives and leave the task of
reducing false negative in our future work.

We also visualize the community detection output in Fig-
ure 5 (the two-week experiment graph is too dense to be
shown). The community marked in red in each network
denotes the identified group of malicious log entries, and we
randomly mark the other communities with different colors.
We assign one community with only one color. From these
figures, we can see that the community identified as attack-

related is well-clustered, which has dense connections within
themselves but sparse connections with other communities.
Note that the edge weights are not explicitly reflected in
the figures. There are some red nodes that are not densely
connected to the major red node community. However, this
problem are dealt with, as discussed in Section 3.2, by train-
ing a larger weight assignment between this sparsely con-
nected red nodes such that they can be still grouped into the
same community.

In the remainder of this section, we present two illustrative
case studies on the attack stories and their related log entries.
Admittedly, there still remains certain amount of manual
analysis to reconstruct attack story from the extracted com-
munity. However, the amount of work is greatly reduced for
cyber investigator as the suspicious log entries are narrowed
and grouped together. Furthermore, some key fields within
the attack-related log entries, such as time stamp, are fairly
useful indicator of the temporal attack sequence.

Story 1: Tibetan and HK. These attacks targeted
Tibetan and Hong Kong Groups and leveraged CVE-2014-
4114, a vulnerability in the OLE package manager. The
attacker can leverage this vulnerability to create a PowerPoint
presentation in which the OLE package manager loads (1) a
malicious payload/executable camouflaged as a “.gif” file and
(2) a malicious .inf file that renames the“.gif” to“.gif.exe”and
runs the executable. We use MS14-060 Microsoft Windows
OLE Package Manager Code Execution in Metasploit to
generate the malicious ppsx file. For crafting the spear-
phishing email, we utilize Social-Engineer Toolkit (SET).

In the first stage, the attacker crafts a simple message in
the spear-phishing email urging the targeted recipient V to
download a file from Google Drive. The google drive link
points to biography.ppsx which is a PowerPoint view-only
slideshow. The file does not display properly on Google Drive.
Therefore, the victim may want to download and open the file
on his/her computer. The use of Google Docs is potentially
evidence of attackers’ evolving tactics in reaction to the
increasing number of users’ checking the integrity of email
attachments. In the second stage, once double-clicked in
the host system, the slide show is played by victim without
crashing the program or producing any other signs that
something is wrong with the file. At the same time, the OLE
package manager automatically copies two files, gzrs.gif
and JPih.inf from the attacker’s Samba share folder. The
JPih.inf is then accessed by OLE package manager. Based
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Figure 5: Community Distribution (The Red Nodes Denote the Malicious Community).

on the instructions in JPih.inf, the GzRs.gif is renamed to
GzRs.gif.exe and executed. In the third stage, the process
GzRs.gif.exe makes a reverse TCP connection to the C&C
server’s IP address 192.168.2.15. The attacker gains the
reverse shell on the victim system and subsequently browses
different folders and files. After a while, the attacker locates
the plan.txt and initiates the FTP client in command line
to upload plan.txt to the IP address 192.168.2.15.

We extract the latent correlations of the log entries gen-
erated from the attack flow via HERCULE with accuracy
88.6% and false positive rate 0.0013 (Table 6). Figure 5d
shows the attack-related well-clustered entries that have a
few links with other benign entries. This case reflects the
difficulty of reconstructing these APT attack traces when
relying only on analysis of individual, separate logs. For
instance, in single log analysis using only WFP connection
log, we can identify a continuous suspicious C&C-like commu-
nication from GzRs.gif.exe to the IP address, which relates
to a sequence of commands to browse the files. However, we
know neither how the malicious backdoor is delivered nor
what this backdoor does in the background.

Story 2: Operation DeputyDog on Linux host. The
initial compromise tactic in this attack leverages an iframe
by adding it into a website’s HTML code that automatically
loads the attacker’s page and prompt for a Firefox update.
We adapt this strategy to infect the Linux host by creating
a trojaned executable in ELF format with a reverse HTTPS
payload embedded. We leverage Msfvenom to generate and
encode different types of shellcode in the Metasploit frame-
work to create the trojaned Firefox-update ELF file. We use
the encoding scheme shikata ga nai (a polymorphic XOR
additive feedback encoder) to encode the reverse HTTPS
payload 21 times to achieve obfuscation. We do not use
any CVE in the infection. We also use SET to generate
the spear-phishing email. For reproducing the iframe-loaded
page, we leverage the BeEF framework to hook the browser

by launching an XSS attack through a malicious web page.
When the victim opens the malicious page in the browser, the
attacker can inject an iframe to prompt users for updating
the Firefox.

The campaign starts with a phishing email including a
link shortened by Bitly, a URL shortening service, pointing
to a web page with the malicious iframe loaded. In this
case, the victim is tempted to browse the web page in the
phishing email and download and run the trojaned executable
firefoxupdate prompted from the webpage. The payload
embedded in firefoxupdate creates a reverse HTTPS backdoor
connecting to the C&C server. The C&C server then sends
a command to launch a dictionary attack. By brute-force
“sudo”, the attacker attempts to gain root privilege. After
failing for a few times, the attacker changes strategies: he/she
sends instructions to the victim to start an FTP client and
download the keylogger shell script, which leverages the
xmodmap in Linux, from the FTP server hosted on the same
IP address. At the same time, the attacker also dumps the
hash file from /etc/passwd to crack the password offline. In
case that either key logging or the offline cracking succeeds
to gain the password of the root, the attacker can “sudo -i”
to root right away. Then a new user with the name “bad” is
added with root privilege, the malicious payload is renamed
and is set to start automatically whenever system boot up.

Table 6 shows the accuracy 87.7% and false positive rate
0.0024. From Figure 5n, we can easily identify the well-
clustered attack-related community.

5. DISCUSSION
Logging Process. As discussed in Section 4, currently we
capture the logs at different levels on a single host. However
in a large-scale enterprise network, it is possible to obtain
logs from different hosts. In the future, we could extend
HERCULE to build a larger (i.e., cross-domain) weighted
graph by creating connections of logs from different machines.



We could thus gain a deeper understanding of the attack
propagation behaviors by reconstructing more sophisticated
stories.

Log Correlation. Though shown to be lightweight accord-
ing to the size of log files (Table 4), our Log Correlation
Module is restricted by the coarse-grained 29 correlation
rules. There are log entries that are inherently related, but
too implicit to be connected by our temporal and semantic
causal analysis. We intend to add more implicit causal re-
lations between the log events by combining the dynamic
analysis of the program behavior with the learning module,
to perform finer-grained attack analysis.

6. RELATED WORK
Log-Based Attack Analysis. Log analysis techniques

have been investigated for many years. Assuming that at-
tackers unintentionally leave footprints in the host system,
defenders can discover evidence of the attack by interpreting
and analyzing logs.

A large number of attack detection approaches are based
on analyzing network logs to detect anomalous network be-
haviors. DNS log data is widely used for detecting malicious
domain names (e.g., Kopis [6], Antonakakis et al. [7]). Oprea
et al. [51] apply a belief propagation algorithm to DNS log
data or web proxy data to identify suspicious domains. Bailey
et al. [10] use raw event logs to extract higher-level malware
behavior — via state changes rather than system calls —
and use hierarchical clustering to group malware that have
similar classes of behaviors. Gu et al. [26] leverage network
traffic to identify the coordination dialog that occurs during a
malware infection. HERCULE also employs network logs to
detect and track attacks, but unlike these works, HERCULE
focuses on correlating the multiple stages of an attack across
network and system layer logs.

Many attack analysis techniques handle system activity
logs. For instance, system audit logs have been used by
several research efforts (e.g., Kim et al. [32], Goel et al. [25],
King et al. [34], Kim et al. [33], and Newsome et al. [46]).
These approaches adopt backward and forward tracking to
find the entry point of an attack and determine the dam-
ages inflicted to the victim systems, but they still focus on
individual logs and thus might not be able to detect attack
stages which occur in logs outside of their scope.

To obtain system-call granularity logging of an attack’s
execution, LEAPS [27] performed heavyweight event log-
ging via Event Tracing for Windows (ETW) [15]. Behavior-
based detections, using higher-level abstractions of malicious
logic, also rely on logging system calls or fine-grained pro-
gram/kernel execution to capture intrinsic malicious behav-
iors [16,20]. Dolan-Gavitt et al. [23] leverages the hypervisor
to log all virtual address accessing for the signature gener-
ation that can be applied to analyze/detect malware. Lee
et al. [36] perform static and dynamic analysis on applica-
tions to identify unit level execution instrumentation points.
While such approaches allow for fine-grained causal analysis
of attacks, their substantial runtime overhead limits their
applicability to the real-world environment. HERCULE
leverages lightweight logs, extracted from generally available
logging mechanisms, to reveal an attack’s phases.

Statistical-based Intrusion Analysis. Bilge et al. pro-
pose Disclosure [11], which identifies several groups of fea-
tures from NetFlow records (a single log type) to distinguish

C&C channels from benign traffic using a Random Forest
algorithm. Rossow et al. develop PROVEX [58], which lever-
ages network-based statistical learning methods to detect
bots in encrypted C&C channels. West et al. [63] combine
blacklist histories with spatial context and trained an SVM
learning model to classify spam emails. Peisert et al. [52]
employ instance-based learning to conduct forensic analysis
of function call sequences. Abad et al. [2] introduce the idea
multiple log correlation for intrusion detection. However,
they only test the log correlation with rule-based approaches,
of which the performance is not ideal on the large number of
audit log entries. Cipriano et al. [17] develop Nexat, which
includes its own designed supervised machine learning algo-
rithm to learn from attackers’ past behavior and predict the
future actions of the attacker. Kapravelos et al. [31] leverages
different dimension reduction and clustering algorithm to
perform the efficient code similarity matching to detect eva-
sion attempts of malicious JavaScript. Perl et al. [55] propose
VCCFinder that trains an SVM classifier on C/C++ code
databases to detect vulnerabilities based on features from
GitHub metadata. piro2006detecting et al. [56] detect Sybil
Attack in Mobile Ad hoc Networks, which applies several
learning algorithms to analyze the relationship between the
radio-equipped nodes. Lee et al. [37] develop WARNING-
BIRD, which leverages logistic regression with support vector
classification (SVC), to detect suspicious URLs in Twitter
stream. Maggi et al. [41] models applies the “special form of
Hidden Markov Model” to detect intrusions using the system
calls sequences. Oprea et al. [51] adapt belief propagation
on large-scale DNS logs to detect malicious domains related
to the C&C activity. Zhang et al. [65, 66] predicts triggering
relationships between network events to classify and pinpoint
the malicious network event based on the validity of the
triggering relations. HERCULE combines unsupervised com-
munity detection to extract highly correlated attack-related
communities with supervised learning for edge weight opti-
mization that both isolates malicious/benign events and also
provides insight of the multiple stages of the attack within
communities.

McBoost [54] boosts the scalability of malware analysis by
combining multiple classifiers to classify packed/unpacked
and malicious/benign executables. Polychronakis et al. [57]
use general machine learning techniques to score the suspi-
ciousness of URLs for further processing. These techniques
compliment HERCULE as they can be used to detect the
initial tainted log entries.

Dash et al. [22] develop DroidScribe which leverages Con-
formal Prediction and an SVM to deal with sparse behavior
profiles in classifying Android malware. Shu et al. [59] pro-
pose a constrained agglomerative clustering algorithm to
uncover the attack traces in long system call sequences. Alm-
gren et al. [4] explore the application of active learning on
the intrusion detection. Besides the out-performance of ac-
tive learning over traditional learning algorithms, their work
shows a significant training data reduction required by the
active learners. Amann et al. [5] deploy a summary statistics
framework to support user-defined statistics in anomaly de-
tection. These works deal with one or more specific problems
in anomaly/attack detection that are complimentary to HER-
CULE. In contrast, HERCULE focuses on the reconstruction
of attack phases, without giving special attention to specific
learning technique problems such as sparse behavior profiles,
reducing training data size, or long attack traces.



7. CONCLUSION
We have presented HERCULE, an automated multi-stage

intrusion analysis system, to reconstruct a complete, intu-
itive, and human-understandable attack story from multiple
correlated logs, without the burden of heavyweight logging
process. Our extensive evaluation on a wide spectrum of
different real-world APT attacks targeting both Linux and
Windows hosts shows the effectiveness of our technique in
reconstructing the attack stories including different infection
strategies, the vulnerabilities exploiting methods, and post
exploitation operations, with high accuracy and low false
positive rate.
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