Chapter 3

Chapter 3

Basics In C

Chapter 3

Lesson 3 _1 - Data and Variables (1)

Topics:

¢ Naming Variables

Declaring data types

Using assignment statements
Displaying variable values
Elementary assignment statements

> & & o

Variables ag aucid to virtually all C programs. ¥u have learned about variables in
algebra and you will find that in C, variables are used in much the same manner.

Suppose, for instance, that you wdao calculate tb aea of 10,000 triangles, all of
different sizes. And suppose that the given information is:

1. The length of each of the three sides, and
2. The size of each of the three angles.

In order to wrie an algebrat equation b determine tle aeayou reed to makeip you
own variable names. You might choose as variable names:

1. Lengths -a
-b
-C

2. Angles -

a
- B

Y
Or you could name the variables:

1. Lengths -1

2. Angles -

Or you could name the variables something completely differteist ehtirey up to you
wha to name them iad youmod likely would choose variable names that for some
reason are most comfortable to you.

For programming in C, the situation is quite similar. You choose the variable names, and
it is best for you to choose names with vhigou are most comfortable. A major
difference between typical C programs and typical algebegpressions is thathe
variables in most algebraic expressions consist of just one or two characters with maybe
a subscript or superscript. Variables in C programs often consist of entire words rather

Chapter 3

than single characters. Why? Because as you will find, programs tcemlgequite long
and there simply are not enough sengharacters to represent all of the necessary
variables. Also, you will find tHhait will be eaier b understand you own programs
when you pck them up after a fe weelks of leaving then idle if you have given very
descriptive names to each variable.

For instance, for the triangle area program you may use the variable names:

1. Lengths - lengthl
- length2
- length3
2. Angle -anglel
- angle2
- angle3

Or if you wanted to be even more descriptive, you could name your variables:

1. Lengths - side_lengthl
- side_length2
- side_length3
2. Angles - angle_opposite_lengthl
- angle_opposite_length2
- angle_opposite_length3

These variable names are much less ambiguous than their algebuaiterparts.
Unfortunately, expressions using these variable names look much more cumbersome than
the ones using simpldgebraic notation. However, this is a disadvantage with which we
simply must live.

In C, there are rules that you must follow in chagsyou variable names. For instance,
for many compilers, you are not allowexiuse more tha 31 characters for one variable
name. This and other rules will be discussed in this lesson.

In addition, you must “declare” all of your variable nhames near the begirdhiyour
program. “Declaring” means to essentially list all of your variable names and indicate
wha types of variables they are. For instance, variablesbeaof the integer roreal
(float) type (or other types which will be discussed later).

Look & the example progren in this lesson and see if younceetermine which are the
variables ad d what type they are. Also, see how the printf statementsbeaused to
display the values of the variables. (Hint: The % sign is a key characternupeditf
statements for displaying the values of variables.)

To makeyou ouput look reat, it is necessary thahe variables occupy ¢harrect
number of spaces. Look very closely at the number of spaces occupied by the variables in
the output. Ca you relate the number of spaces occupied to the way the variables are
printed using the printf statement? Can you see that using the correct number of spaces in
the printf statement creates a more professitmaking ouput. Also included in this

Chapter 3

program are several assignment statements. An assignment statement gives (assigns) a
value to a variable. The variable retains that valusl iinis changd by another
assignment statement. See if yom catermine which are ghasignment statements in

this program.

Chapter 3

Source Code

main()
{int month;
float expense, income;

month = 12;
expense = 111.1;
income = 100.;

printf(“For the %5dth month of the year\n”
“the expenses were $%9.2f \n”
“and the income was $%9.3f\n\n”,
month,expense,income);

month = 11;
expense = 82;

printf(“For the %2dth month of the year\n”
“the expenses were $%5.2f \n”

“and the income was $%6.2f\n\n”,
month,expense,income);

Output

For the 12 month of the year
the expenses were $111.10
and the income was $100.00

For the 11th month of the year
the expenses were $82.10
and the income was $100.00

Explanation
1. How do we declare variables?
¢ Variable names in C must be declared. The statement
int month;

declares the variable montt be of the i type (which means integer and must
be typed in lower-case). An int type data does not contain a decimal point.

2. How do we declare more than one variable?

Chapter 3

¢ Variables of the same type ynde declared in a statement. However,heatc
them must be separated from the other by a comma, e.g., the statement

float expense, income;

declares the variables expense and income to be of the float (which must be typed
in lower case) type. A flddype daa mntains a decimal point witar without a
fraction. For example, 1., 1.0n& 06 are floa type data. Whe data withot a
decimal poin is assigned to a flbatype variable, the C compiler will
automatically place a decimal point after the last digit.

3. How do we name variables?

¢ Variables inC programs are identifee by rame. The naming convention must

obey the following rules:

Component

Requirement

The 1st character in name

Alphabetic characters a-z, A-Z, $, and _.

The other characters in name

$, , and 0-9.

Any alphanumeric character, i.e., a-z, A-Z4

The maximum number of
characters in a name

Depends on your compiler and the method
compiling, however for most compilers, thg
maximum number is 31 characters.

1%

Use of C reserved words, also
called keywords, in name

Not allowed, i.e., do not use float, int, ...,
etc. A complete list of reserved word is:

auto break case
char const

continue

default do double
else enum extern
far float for

goto if int

long register return

short signed sizeof
static struct switch
typedef union
unsigned

void volatile while

Use of standard identifies such a
printf

sAllowed, however it is not recommended
that

standard identifiers be used as variable
names

because it is very confusing.

Useof.,+-* /% &|

Not allowed since they are not alphanume

Use of uppercase characters or

Allowed. However, many programmers usg

Chapter 3

mixed-case characters lower-case characters for variable names and
uppercase for constant names.
Use of blank within name Not allowed.

¢ Examples of illegal variable names

lapple, pear%, float, In come, In.come, while, union
4. What is an assignment statement?

¢ An assignment statement assigns a value to a variable. For example, the statement
month = 12;

assigs the integer value 12 to tintype variable month.nl general, a C
assignment statement takes the form of

Variable_name = Value;

where the statement assigns the Value on the right sides afjtial sign to the
variable on the left side of the equal sign. The Value can be a constant, a variable
with a known value, or other, such as a fumctia an expression which return a
value (see the next few lessons for more details).

5. How do we display the value of a variable or constant on the screen?

¢ The printf() function can be used to display the value of a variable or constant on
the screen. The syntax is:

printf(format string, argument list);

where the format string contains two types of objects. The first one is the plain
characters (optional) which will be displayed directly to the screen and the second
one is tle onversion specification(s) which will be used to convert, format, and
display argumentjsfrom the agumern list. Each argumémmust hae aformat
specification. Otherwise, the results will be unpredictable. For example, in the
statement

printf(“month=%5d,month);

The forma string is “month=%5d”. The plain characters month = will be
displayed directly without any modification, but the conversion specification %5d
will be used to convert, format, and display the argument month on the screen.

¢ The simplest printf() conversion specifications (also called format specifications)
for displaying int and float type values have the following forms:

Chapter 3

%l[field width]d e.g., %5d for int
%l[field width][.precision]f e.g., %9.2f for float

where format string components enchbdgy [] are optional. (Tk daracters
[and] are no the part of the fornta string.) The field width is an integer
representing the minimum number of character spaces reservasplay the
entire agument (including the decimal point, digits befand after the decimal
point, and sign). Té precision is an integeaepresenting the maximum number

of digits after the decimal point. For example %5d will reserve 5 blank spaces for
displaying and ihtype data, %9.2f will reseevatotal of 9 blank spaces for a
float type data, ad 2 dgits will be displayed after the decimal point. If your
actual input data contains fewer digits after the decimal point, the C compiler will
add additional zero(s) after the decimal point when displaying it. For example, for
the statements

expense=111.1;
printf(“the expenses were $%9.2f\n”,expense);

the C compiler will dd ore zeo to make the precision edua two b gve
111.10 for the output of expense.

Exercises

1. True or False:

p

=

The following int type variable names are legal:

1CAT, 2DOGS, 3PEARS.

The following float variable names are legal:

CAT, DOGS2, PEARS3, main, printf.

5d or %8D are legal format specifiers for an int type
variable or constant.

6.3f or %10.1F are legal format specifiers for a float
type variable.

The two statements below are identical:

int ABC, DEF;

int abc, def;.

2. The price of an apple is 50 cents, a pear 35 cents, andoa @aldlars. Write a
program to display the prices as follows:
*kkkk ON SALE *kkkk
Fruit type Price
Apple $0.5
Pear $0.35
Melon $2

Solutions

Chapter 3

Chapter 3

Lesson 3 2 - Data and Variables (2)

Topics:

¢ More &dout forma specifies and theil
components

¢ Scientific notation

¢ Using the define directive to define constants

¢ Displaying constant values

Not only m& you be interested in controlling the number of spaces that your
displayed values will occupy, but you mayaal® interestedn dsplaying the values
either left @ right justified (meaning thathe value is fathe leftmost o rightmost
edge of the region allocated to the variable). Look at the program for this |€sson.
you determine wha format specifiers can be used to |& justify the variable
output?

When working wih very large or very small numbers, scientific notation is
convenient. For example, to represent:

57,650,000

the scientific notation would be:
5.765x 10

which the C compiler would display as:
5.765e + 007 or 5.765E + 007

By using scientific notation, the C compiler decides the value ®fetponent, and

thus it is possible to display an extremely large number in a small number of spaces.
The programmer neeorly decide on the number of significant digits display.

When you look at the program for this lesson, see how scientific notation is specified.
Can you determine how to display the correct number of significant digits?

You will also find that there will be times when you will need to use values which do
not change. For instance, we know that Pl is approxisn&&K16. For a program
which involves areas of circles,is conveniento simply write Pl n the eguations.

This can be done by defining Pl as a constatiieabeginmig d a program. Look at

this progran to see how constants are defined. Notice where the define directive
appears in the program. Is there a semicolon at the end of the define directive?

Chapter 3

Source Code

#define DAYS_IN_YEAR 365
#define PI 3.1416

main()

{float income;

printf(“Days in year=\n"
“%+5d \n%-5d \n%1d \n% d \n%d \n%0.5d \n\n”,

DAYS_IN_YEAR, DAYS_IN_YEAR, DAYS_IN_YEAR,
DAYS_IN_YEAR, DAYS_IN_YEAR, DAYS_IN_YEAR);

printf(“Pl1=\n"
%+9.5f \n%-9.5f \n%?1.3f \n%Mf\n\n",
PI, PI, PI, PI);

income=1234567890.12;

printf(income=\n"
“%15.4e \n%-15.4e \n%5.2e \n%e \n%E,n,n”,
income, income, income, income, income):

Output

Days in year=

b+365

365bb

365bb

bb365

365bb Note:
00365

Pl= b represents blank.
b+3.14160

3.14160bb

3.142 The b’s do not
3.141600

income= appear in the
bbbb1.2346e+009

1.2346e+009bbbb

1.23e+009 actual output
1.234568e+009

1.234568E+009

Chapter 3

Explanation
1. How do we define a constant?

¢+ We u® apreprocessor directive tdefine a onstant. The preprocessor is a
system program which is part of the C compiler. It performs various
operations prior to the translati & sourcce ®de inb olect code. In C,
preprocessig drective begin with the symbol # (which must begin the line).
A semicolon must not be usetlthe end d the preprocessg drective. Only
the preprocessing directive should be on the line. For example, the line

#define DAYS_IN_YEAR 365
defines DAYS_IN_YEAR as a constant which has a value of 365.

¢ The structure of a define directive is
#define Symbolic_name Value

where the Symbolic_name represents thnstant nam and Value is the
value assigned to ta mnstant. Note that constantsiaanly be definel ore &

a time ad their values cannotebdtered later in the program using an
assignment or other statements. the preprocessor willaceplay
Symbolic_name in the program with the givealue. For example, this
symbolic name DAYS_IN_YEAR in the statement

printf(“Days in year=%5d\n”,DAYS_IN_YEAR);

will be replace by 365 a the vey beginnng d compilaton by the
preprocessor. The statement above wiltreewritten” to be:

printf(“Days in year=%5d\n”,365);

The symbolic_name in a define directive is knowraasnstam macro. For
this example, tb constam macro (DAYS_IN_YEAR) is replaced with the
value 365 throughout the program at the very beginning of compilation.

2. How do we name constants?

¢ Constants in C programs are identifiey rame. The naming convention for
constants is the sama the one for variables. Many C programmers use
uppercase characters to name constants and use lower-case characters to name
variables. This book follows this approach. Constack \@ariable names are
also callel user-defined identifiers. Thesmntrast with standard identifiers
which have special meaning such as printf or scanf.

Chapter 3

3. What is the complete structure of format specifiers?

¢ The complete structure of format specifiers is:
%[flag][fieldwidth][.precision]type

where format string components enclosed by [] are optional . (The characters
[and] are nob the part of the format string. The meanings of these
components mavary slightly from compiler to compiler. The Microsoft C

6.0 Compiler defines the meaning and usage of each component as shown in
the table below. (Iyou do nd use the Microsoft C 6.0 Compiler, you should
check the manual of the compiler you use.)

Component Usage
flag=- Left-justifies the output with the given fieldwidth.
flag=+ Right-justifies the output. Displays plus sign if result is positive.

flag=zero Adds leading zeros to reach minimum fieldwidth.

flag=blank Right-justifies the outpulf resut is positive, the output begn
with a blank. If resudt is negative, the output begins with
minus.

fieldwidth It is an integer which represents the minimum numblef o
character spaces reserveddsplay the entire output (including
the decimal point, digits beferand after the decimal point, and
sign). If the specified fieldwidth is not gimeor is less than &
actual field width, all characters of the value, as long as treey ar
within the limit of precision specification, will be displayed, ije
the fieldwidth specification neveéitruncate” the output value.
precision Fo floating dcata type precision specifies the number of dgjit
after the decimal point. The defayprecision fo float type dah
is 6. Precision can aisbe used for integer type data. Hereg th
precision specifie he minimum number of digitsot be
displayed. If the dataotbe displaye has fewer digits than &
specifie precision, tle compiler will add leading zer of the

output.
type=d For int type data.
type=f The outptiis convertedd decimal notation in the fornba of

[sign]ddd.ddd.., where the number of digits after the dedima
point is equal to the specified precision.
type=e or E | The outpus converted to scientific notation in the formdt|o
[sign]d.ddd...e[sign]ddd, where the number of digits before| th
decimal poin is one the numbe of digits after the decinig
point is equ&to the specifid precision the number of exponén

Chapter 3

digits is 3.

¢ The table below shows the meaning of using different formats for displaying
an int constan DAYS_IN_YEAR=365, a floatype @mnstant P1=3.1416, and
a floa type mnstan incone = 1234567890.12 (notethe letter b in the
Display column indicates that a blank is displayed).

Chapter 3

Format | Flag Field | Type | Preci| Display Note
width sion

%-+5d + 5 d none| b+365 Right adjusted output, +
sign added, total characters
displayed=5.

%-5d - 5 d none| 365bb Flag is -, so output is left adjusteq.

%1d none | 1 d none| 365 Specified fieldwidth is less than th
actual width, all character in the
value ae displayed, no truncatn
OCCUrs.

%d blank | none d nong bb365 Flag is blank,ostput is prefixed
with blank, default fieldwidh for
int is 5.

%0.5d zero | O d 5 00365 Flag is zero, souput is prefixel
with zeros, precision is,5so tre
number of character® tbe printel
is 5.

%d none | none d nong 365 Fieldwidth is undefined,|l | a
characters in the vau ae
displayed, no truncain accurs. N
blanks ae alded. Value is laf
justified.

%+9.5f | + 9 f 5 b+3.141 | Total digits, including blanks, is 9

60

%-9.5f - 9 f 5 3.14160 | Flag=-, left adjusted output.

bb
%1.3f none | 1 f 3 3.142 Use premsi 3 note the reduis
3.142, not 3.141.
%f none | none f none| 3.14160Q Use default precision , 6.
%+15.4e| + 15 e 4 bbbbl.2 | Flag=+, right adjusted output, tbta
346e+0 digits is 15, precision is 4.
09

%-15.4e | - 15 e 4 1.2346e | Sane & above, but Flag=-, oS
+009bb output is left adjusted.
bb

%5.2e none | 5 e 2 1.23e+0 | Precision is 2. Fieldwidth isob
09 short, so C uses minimum

fieldwidth for output.

%E none | none E nong 1.23456| Precision is undefined, so C sse

8E+009 default precision of 6. Fieldwidtls

too short, 8 C uses minimunmn
fieldwidth for output.

N

Chapter 3

¢ Note tha if the specified fieldwidth is not giveo is less than # adual field
width, all characters of the value, as long as they are within the limit of precision
specification, will be displayed, i.e., the fieldwidth specification never “truncates”
the output value.

4. How does the Microsoft C compiler convert a float number to a scientific notation?

¢ It converts a float number to scientific noteti ising the formatd o D
represents a digit):

[sign]d.ddd...e[sign]DDD

where the number of digits before the decimal p@rone the number D digits
after the decimal point is equal to the specified precision; the number of exponent
digits is 3. Note that a number in this form is equivalent to

[sign] d.ddd...*10 [signddd

For example, when we use the format %15.4e, i.e., fieldwidth=15 and
precision=4 to convert the number

123456789.12

to its scientific notation which is

bbbb1.2346e+009

where b represents blank and the number is equivalent to

1.2346*10 °or
1234600000.0

We lose some accuracy after the conversion because the specified precision is not
high enough.

5. Given the sam \alue and wing the same format, will programs crehtesing
different compilers display exactly the same output?

¢ No. In general, given the same valund wing the same format, the output
displayed by programs created with different compilers may be slightly different.

Exercises

1. True or False:

Chapter 3

The statement printf(“%-3d”,123); displays -123.

The statement printf(“%+2d”,123); displays +12.

The statement printf(“%-2f",123); displays 12.0.

The statement printf(“%+f.3”,123); displays .123.

The format specifier for an int type data should not

contain a decimal point and precision, e.g., %8.2d is
illegal.

PoOTQ

Chapter 3

2. Find error(s), in the statements below:

#DEFINE Pi 3.1416

#define Pi 3.1416;

#define PI=3.14; AccurateP1=3.1416;
printf(“%f”,123.4567);

printf(%d %d %f %f”,1,2,3.3.4.4");

PoOTQ

3. Write a program to display the following output:

12345678901234567890123456789012345

income expense Name
+111.1 -999.99 Tom
+222.2 -999.88 Dennis
+333.3 17777 Jerry

4. Use four different flags buthe same fieldwidth rad precision, four different
fieldwidths but the same flag and precision, and four different precisions but the same
flag and fieldwidth (i.e., a total of 12 format specifiers) to display an int type variable
A and a float type variable B, where A=12345 and B=9876.54321.

Solutions

1. ABCDE
FFFFF

#define Pi 3.1416

#define Pi 3.1416

#define PI=3.14

#define AccuratePl 3.1416
no error

no error

cop

© Qo

Chapter 3

Lesson 3_3 - Arithmetic Statements (1)

Topics:

¢ Operands
¢ Arithmetic operators and their propert|es
¢ Arithmetic expressions

Arithmetic expressions in ¢ look much like géhaithmetic expressionsyou wsed in
algebra. The first sectin d the example program for this lesson stowme of the
operations that cabe performed in C arithmetiexpressions. Looktahis sction d the
program and see how addition, subtraction, multiplication and division are performed.

Note that is this section of the program are the statements:

i=i+1
and
j=j+1

Clearly, these two statements wobuld make sense if you were tuse then in a math
class. However, in C, not gndo these statements (and statements of this type) make
sense, they are actually used quite commonly in progiafnat do they mean?

To answer this questh you must rech that an assignment statement does. An
assignment statement assigns the value efetpresson onthe right side of ta equal
sign to the variable which is locat®nthe left side of th equal sign. Keep this in mind
as you look athe output fron the first printf statementra determine wha the
statements i=i+1 and

j=j+1 do.

In the second sectn d this program & expressions wh operators whose functions are
not quite ® obvous. The % sign is especially tricky. See if you can figure out wha
does. (Hint: it has something to do with division.)

Also the ++ and -- are operators, bthere ae no equal signs in the statements for these.
They do, though, hag ar impact on the values of the variables either precedr
succeeding themWhat effect do they have on these variables?

Source Code

main()
fintij.k,l,m,n;
float a,b,c,d,e,f,g,h,x,y;

i=5; J=5;

Chapter 3

printf(“...... Initial values \n");
prlntf(“l—%4d J=%4d\nk=%4d, |=%d\nx=%4.2f, y=%4.2f\n\n”,

i KX, Y);

a=x+y;
b=x-y;
c=x*y,;
d=xly;
e=d+3.0;
f=d+3;
i=i+1;
=it

printf(“...... Section 1 output \n");
printf(“a=%?5.2f, b=%5.2f\nc=%"5.2f, d=%5.2f\n"
“e=%05.2f, =%5.2\ni=%5d, j=%5d \n\n”,

a,b, c,d, e f, i));

e Section 2 --------------- */
m=k%1,;
n=1%Kk;
i++;
++j;
e--;
__f;
printf(“...... Section 2 output \n");
pr|ntf(“m—%4d n=%4d\ni=%4d, j=%4d\n”
“e=%4.2f, f=%4.2\n",m,n, i,j, ef)

Output

...... Initial values

i= 5,j=5
k= 11, 1= 3
x=3.00, y=4.00

a= 7.00, b=-1.00
c=12.00, d= 0.75
e=3.75, f= 3.75
i= 6,j= 6

m= 2,n= 3
= 7,]= 7

Chapter 3

e=2.75, f=2.75

Chapter 3

Explanation
1. What is an arithmetic expression?

¢ An arithmetic is a formula for computing a value. For example, the expression
x+y computes x plus y.

2. What are the components of an arithmetic expression?

¢ An arithmetic expression consists of operand(s) and operator(s). For example, the
expressionx+y consists of two operands x and y and two operators +.and -

3. What can be an operand?

¢ An operand can be a variable, such as x or y, or a constant, such as 3.1416, or
anything that represents a value, such as a function (see lesson 3_5 for details).

4. What are the meanings of the operators ++, -- and %?

¢ ++is anincrement operator which can be placed before or after (but not both) a
variable. The operator will increase the value of the variable by one. For example,
assuming a variable i is equal to one, then after the statement

i++; or
++i;

is executed, the value of i will become 2. Note that the C statement

i++; or
++i;

can be understood as the statement
i=i+1;

which also causes the value of the variable i to increase by one. Similarly, the
operator -- is a decrement operator which decreases the value of a variable by
one. Also, the statement

i--: or

can be understood as the statement

i=i-1;

Chapter 3

% is a remainder operator which must be placed between two integer variables or
constants. Assuming k and | are two integer variables, the meaning of k%l is the
remainder of k divided by |. For example, if k=11 and |=3, then k%l is equivalent
to 11%3, which is equal to 2. The operator % is pronoufroed”. So the

above example would be k mod .

5. Is an arithmetic expression a complete C statement and how are arithmetic
expressions used in assignment statements?

¢

An arithmetic expression is not a complete C statement. The expression is only a
component of a statement. The value evaluated from the expression may be stored
in a variable using an assignment statement. For example, the arithmetic
expression x/y is part of a C assignment statement

d = xly;

The statement assigns the value obtained from the arithmetic expression on the
right to the variable on the left. Thus, the assignment statement

i=i+1;
while not looking correct algebraically, is a valid C assignment statement. The

arithmetic expressioitl creates a new value which is one greater thdarhe
assignment statement givieshis new value.

Exercises

1. True or False:

~oooTp

a+b is a correct arithmetic expression.

is a complete C statement.

If a=5, then a is equal to 6 after a++; is executed.
is equal to 2 and 3%5 is equal to 3.

is equal to 2 and 3.0%?5 is equal to 3.0.

The meaning of the equal sign, =, in the statement
a = x+y;.

is equal, i.e., ais equal to x+y.

2. Write a program to calculate your expected average GPA in the current semester and
display your output on the screen.

Solutions

Chapter 3

Lesson 3_4 - Arithmetic Statements (2)

Topics:

¢ Precedence of arithmetic operations
¢ Initializing variables

+ Pitfalls in arithmetic statements

Before variables can be used in arithmetic expressions they must first be given numerical
values. Giving variables their first numerical values is called initializing them. We will

find tha there ae several different ways to initializing therihat are the two
different ways shown in this program for initializing variables?

In the following program, tle aithmetic expressions 6/4ral 64.0 are used twe eab.

The variables on the left side ofetl@ssignment statements using thexpressions are
eithe float or integer. Look tathe output for these variables. rCgou guess how the
declarel data type (float or int) influences how the C compiler assigns values to the
variables? (Hint: an integer must always & integer. It cannot é asigned a real
value.)

Also included in the program areett@mpound ojrators +-, -=, *=, /=, and %=. By
looking at the output for k1, k2, k3, k4, and k5, you can deduce what these operators do?

In this program a asignment statements using th+ and -- operators. When trying to
determine whiathese statements do, remember that assignment statements take the value
of the EXPRESSION on the right side ofetliual sign ad gve that value to the
VARIABLE on the left side of the equal sign. Note that initially, both i and j are equal to

1. Are the values @ the EXPRESSIONS i++ and ++ the samé& What does that

tell you about how the C compiler defines the VALUES OF THEE TYPES OF
EXPRESSIONS?AIso, note what has happened to the values of i and | after execution
of these statements.

You have learnd in you math classes that parentheses ba used in arithmetic
expressions to controéhe order in which the operations are performed. Similarly, you
can use parentheses you C code ¢ contrd the order of performance of operations.
Also, C ha& drict rules abot the order of operain d addition, subtraction,
multiplication and division. These rules are established by setting the “precedence” of the
operators.

Operators which have high precedence are executed first while those of lower precedence
are ecuted later. For tavoperators of equal precedence, the one ithéeftmos in the
expression is executed first. Use your calculator to calculate the values of X, Y, and Z in
the program below. @ayou ctermine whib operators are of higher precedence -
addition, subtraction, multiplicath a division? (Hint: Addition and subtraatn have

the same precedence and multiplication and division have the same precedence.)

Chapter 3

Source Code

printf(“Before increment, i=%2d, j=%2d\n",i,));

k=i++;
[=++j;

printf(“After increment, 1=%2d, |=%2d”
“ k=%2d, [=%2d \n\n",i,j,k,);

m=6/4;
p=6/4;
n=6/4.0;
g=6/4.0;

printf(“m%2d, p=%3.1Ann=%2d, g=%3.1f\n\n",m, p, n,

a);
printf(“Original k1=%2d, k2=%2d, k3=%2d, k4=%2 k5=%2d\n”
k1,k2,k3,k4,k5);

kl +=2;
k2 -=1i;

k3 *= (8/4);
k4 /= 2.0;
k5 %= 2;

printf(“New k1=%2d, k2=%2d, k3=%2d, k4=%2d, k5=%2d\n\n”",
k1,k2,k3,k4,K5):

e= 3;

Xx= a+b-c /d*e
a +(b -c) /d *e;
z=((a + b)-c /d)*e;

printf(“a=%3.0f, b=%3.0f, c=%3.0And=%3.1f, e=%3.1A\n\n",
a,b,c,d,e);

printf("x= a+ b -c /d *e = %10.3f \n”
“vy= a +(b -c) /d *e = %10.3f \n;
“z=((a + b)-c /d)*e = %10.3\n", x,y,2);

Chapter 3

Output

Before increment, =1, =1
After increment, =2, =2,

k=1,1=2

m=1, p=1.

n=1, g=1.5
Original k1=10, k2=20, k3=30, k4=40, k5=50
New k1=12, k2=18, k3=60, k4=20, k5= 0
a= 7,b=6,c=5
d=4.0, e=3.0
x= a+b-c /d*e= 9.250
y= a+(b-c)/d*e = 7.750
z=((a + b)-c /d)*e =35.250

Explanation

1. How do we initialize variables?

¢ Method 1: use an assignment statement to initialize a variable, e.g.,

e=3;

¢ Method 2: initialize a variable in a declaration statement, e.g.,

float a=7, b=6;

2. Assuming thiaint variables i and j a& equd to 1, is the meamg o k = i++; the
same as| = ++j?

¢

No. In the first statement, the valueiak first assigned to the variable k. After
the asignment, the variableis incremente by the post-increment operator ++
from one to two. Therefore, after execution the first statement, el ka2.
However, in the second statement, the valugiseffis incrementd by the pre-
increment operatof¥+ from one to two. After the increment, the newalue,
which is equito two naw, will be asigned to the variable |. Therefore, after
executing the second statement, j=2 and |=2.

In other words, the statements
k=i++;
is “equivalent to” statements

k=i:

Chapter 3

i=i+1;

However, the statement
[=++j;
is “equivalent to” statements

j=i+1;
I=j;

¢ In aher words, everhbugh boh expressions {i#+ and ++i) cause the value of i
to be increase by ore, the value of th expression i++ is equido the value of i
prior to the increase while the value oé tixpression +#is equéto the value of
i after the increase. For example, for the statements:

h=7,
i=7;
J=1++;
k=++h;

The value of jis 7 and the value of k8gecause jad k are asigned the values
of the expressions++ and ++j, respectively. Note that after executing thove
four statements, the values of h and i are 8.

3. What is the value of 6/4 or 6/4.0 or 6.0/4?

¢ When one integer is divided by another integer, the fraction part of the quotient is
discarded. Therefore, 6/4 is etjda 1 If the resit is assigned to an tinype
variable m, the value of m will be 1; If the réisis assigned to a flbaype
variable p, the value will be 1.0. Clearly, thisymaa be the redu that you
would like to get for p. Read further to see how you candiféerent result for a
similar calculation.

¢ In an arithmet expression, if one operand is ot itype axd the other is fofloat
type, the in type operand will & converted firs to the floda type before the
expression is evaluated. Therefore, foe tkpresson 640 o 6.04 bdh
operands will B mnverted & 6.0/4.0 which is equato 15. If the resli is
assigned to an irtype variable n, the value of n will be 1 (the frantipart is
discarded). If the result is assigned to a float type variable, the value will be 1.5.

¢ There is a very importaresson in this. Wheyou are writhg you coce and a
float type variable is on the left side of an assignment stateneehé, $afe, you
shoutl use decimal points forng numbers on the right side of @éhassignment
statement. You myaget the orrect results without usg decimal points, but we
recommend thayou wse decimal points until you feel comfortable with mixed

Chapter 3

variable tyg aithmetic (you may also convert an integer number to a number
with a decimal point and vice versa, see Chapter 8 for details).

Also, when an int type variable is on the left side of an assignment statement, it is
necessary that you make suretttie aithmetic expresson onthe right side of

the assignment statement is an integer value or that you are delibdrapging

the fractional part.

4. What are the meanings of operators +=, -=, *=, /=, and %="

¢ The operators +=, -=, *=, /= and %= are compound assignment operators. Each of
them performs an arithmetic operation and an assignment operation. These
operators require twvoperands, the left operand mug avariable, the right one
can be a onstant, a variable, or an arithneetxpression. h general, the two
operands aa be of integer o floating cata type. However, the %/ operator
requires that its two operands must be of integer type.

¢ The meaning of

k1+=2;
(not k1 =+ 2;) can be understood to be similar to the statement

k1=k1+2;

If the original value of k1 is equ&o 20 the new value will be 2& o 22.
Similarly, the statements ab®vae dso valid if we replace tb aithmetic
operator + with operators -, *, /, or %. For example,

k1*=2;
is similar to
k1=k1*2;
5. How do we control precedence in an arithmetic expression?

¢ Parentheses nae used to control precedence. Any arithmetic operators located
within the parentheses always have higher precedence tharouside the
parentheses. When an arithraetxpression contains more thaore pair of
parentheses, the operators located in the innermost pair of parentheses have the
highest precedence. For example, the + operator in the statement

z = ((a+b)-c/d);
has higher precedence than the - or / operatoa&hd will be evaluated first.

6. What will happen if all operators have the same level of precedence?

Chapter 3

¢ If all arithmetic operators are of equal precedence in an arithmetic expression, the
leftmost operator is executed first.

7. Can we use two consecutive arithmetic operators in an expression?

¢ We canot use two consecugvaithmetic operators in an arithmetic statement
unless parentheses are used. For example, x/-y is not permissible but x/(-y) is
permissible.

8. What operators can be used in an arithmetic expression?

¢ The table below shows the operators along with their properties thde ased
in an arithmetic expression:

Arithmetic Operators

Operator Name Number of Position | Associativelyf Preceden¢
operands
(parentheses unary prefix LtoR 1
) parentheses unary postfix LtoR 1
+ positive sign unary prefix LtoR 2
- negative sign unary prefix LtoR 2
+ post-increment| unary postfix LtoR 2
-- post-decremen| unary postfix LtoR 2
+ pre-increment | unary prefix RtoL 2
-- pre-decrement| unary prefix RtoL 2
+= addition &| binary infix RtolL 2
Assignment
-= subtraction & binary infix RtoL 2
Assignment
*= multiplication | binary infix RtoL 2
& Assignment
/= division & | binary infix RtoL 2
Assignment
%= remainder & binary infix RtoL 2
Assignment
% remainder binary infix LtoR 3
* multiplication | binary infix LtoR 3

e

Chapter 3

/ division binary infix LtoR 3
+ addition binary infix LtoR 4
- subtraction binary infix LtoR 4
= assignment binary infix RtoL 5

9. What are the meaning of number of operands, position, associatively, and precedence
in the table above?

¢ Numbe of operands:tlis the number of operands reqdirdy an operator. A
binaty operator, such as /, requiresawperands whig¢ aunary operator, such as
++, needs only one.

¢ Positions: It is the location of an operator with respect to its operands. For a unary
operator, its position is prefix if the operator is pthdefore its operand and
postfix if it is placed after its operand; for a binaperator, the position is infix
becauset is always plaad between its tw operands. For example, the negation
operator is -x is prefix, the post-increment operatog++ is postfix, and the
remainder operator in a %b is infix.

¢ Associatively: It specifies the direoth d evaluaton d the operators with the
same precedence. For example, the operataasd - have tB same level of
precedene and bdh associate frm left to right, ® 1+2-3 is evaluated in the
order of (1+2) -3 rather than 1+(2-3).

¢ Precedence: It specifies the order of evatunatf operators with thei operands.
Operators with higher precedence are evaluated first. For example, the operator *
has higher precedence than -, so 1-2*3 s evaluated as JLr§#8r than (1-2)*3.
Note thad in this example the ‘-’ indicase sibtraction and is a binaroperator
with precedence 4. The can als be used as a negativgsi which is a unary
operator with precedence 2. For example, -2+3*4 is evaluates as (-2)+(3*4) rather
than -(2+3*4)).

10. What is a side effect?

¢ The primary effect of evaluating an expression is arriving at a value for that
expression. Anything else that occurs during &naluaton d the expression is
considered a side effect.

For instance, the primary effect of the C statement (assuming i is originally 7)
| =i+,
is tha the expressbn onthe right side of tb assignment stateméems found to

haw avalue of 7. The sk dfect of the @ove statemenis the value of is
incremented by one (to make i equal to 8). Consider the following C statement:

Chapter 3

j = (1=4) + (k=3) - (1=2);

Its primay effed is to arrive & the value of tB expressbn onthe right side of
the assignment statement (which is 5). It has three side effects which occur during
the evaluation of the expression. They are to:

1. Setiequalto4
2. Set kequalto 3
3. Setlequalto?2

11. What are the dangers of side effects?

¢ Attimes, side effects can be confusing. For the statement
k = (k=4) * (j=3);

the result of k will be 12 insteladf 4. It is best nbto use si@ dfects excepin
their simplest form such as:

I = j++,
or
i:j:k:5;

Note that because éhassociativey of the assignment operator is from rigto
left, multiple assignment statemenich as the om &ove can be written. The
order of operation is:

1) k=5
2)j=k
3)i=j

Also, an expression
i=j=k=2+n+1;

is evaluated in the order
Dk=2+n+1,;

2)j=k;

3)i=j

because th aldition operaton has a higher precedence thare tessignment
operator.

Exercises

Chapter 3

1. Based on the following statements

inti=10, j=20, k, m,n;
float a,b,c,d,e=12.0;

Determine whether each of the following statements is true or false:

i =+ 2; is a valid C statement.

I %= e; is a valid C statement.

i *= (i+j*e/123.45); is a valid C statement.
k=i/J; k is equal to 0.5.

i+=j; iis equal to 30 and j is equal to 20.
k=1/3+1/3+1/3; is equal to 1.
k=1/3.+1.0/3+1.0/3.0 is equal to 1.
a=1/3+1/3+1/3 is equal to 1.0.
a=1./3+1/3.+1.0/3.0 is equal to 1.0.

TSe-eoooTy

2. Hand calculate the values of X, Y, and Z in the program below and then run the
program to check your results.

Chapter 3

main()

float a=2.5,B=2,C=3,D=4,E=5,X,Y,Z;
X=a*B-C +D /E;

Y=a*B-C)+D /E;

Z= a*(B-(C+D)/E);

printf(“X= %210.3f, Y= %10.3f, Z=%10.3f",X,Y,2);

Solutions

Chapter 3

Lesson 3 5 - Library Functions (math)

Topics:

¢ Double data type

¢ Library Functions

¢ Using standard header file

Your calculator makes it very easy for yaugerform sut operations a sn, log, and
square rooby having single buttons for them. Similarly, the C compiler makes it easy
for you © perform these operationBy providing mathematiddibrary functions which

you can call from your program. This lesson illustrates the use of some of these library
functions. Note thajug like the print function, these library functions require
parentheses for enclosing the argument(s).

Use your calculatorot verify the results obtained in the output for this lesson. What are
the necessgrunits for the agument for the sin functichWhat kind o log dces the log
function take?

The C compiler has these functions in its libraryt ibus necessary for you tolitéhe
compiler more information abbthem. Ca you gwess which statememn this program
tells the C compiler where the extra information is located?

We have previously discussed float andtype variables. In this lesson, the double type
variable is introduced. Compare the output for the variablasd g for this lesson. They
are different. Which is more accurate? Use your calculator to check this.

Source Code
#include <math.h>

main()

{double x=3.0, y=4.0, a,b,c,d,ef;
float g;
a=sin(x);
b=exp(x);
c=log(x);
d=sqrt(x);
e=pow(x,y);
f=sin(y)+exp(y)-log10(y)*sqrt(y)/pow(3.2,4.4);
g=log(x);
printf(“x=%4.1f y=%4.1f \n\n\
a=sin(x) = 9%711.4f\n\
b=exp(x) = %711.4f\n\
c=log(x) = 9%7211.9f\n\n\
d=sqrt(x) = %11.4f\n\

e=pow(X,y) = %711.4f\n\

Chapter 3

f—sm(y)+exp(y)IoglO(y)*sqrt(y)/pow(3 2,4.4) = %11.4\n\n\

g=log(x) =9%711.9f\n” xy,abcdefg)

Output

x= 3.0 y=4.0

a=sin(x) = 0.1411

b=exp(x) = 20.0855

c=log(x) =1.098612289

d=sqrt(x) = 17321

e=pow(X,y) = 81.0000

f=sin(y)+exp(y)-log10(y)*sqrt(y)/pow(3.2,4.4)=
53.8341

g=log(x) = 1.098612309
Explanation
1. What is the difference between the double and the float data types?

¢ The double data type is anothi#oating-point data type in C. Unlike the float
data type which is for a single-precision real constant, the double data type is for
a double-precision real constant. Essentially, variables which are declared as
being cata tyge cary more significant digits with them during calculations than
do variables which are declared as float data type. Carrying a large number of
digits ma/ be important when a large number of calculations aigetdone. The
drawback m declaring all variables as lmg d the double data type is theore
memory is required to store double data type variables than float type variables.

Consider the following example which illustrate® tdfect of the number of
digits carried ina cdculation. You should try thi®n you calculator. Suppose
you are multiplying a number by 100times. You will essentiall be computing
. The influence on the number of significant digits usedtfis the following.
Using 5 significant digits fort gives:

(3.1416) ' =5.189061599 * 10 “
while using 8 significant digits far gives:
(3.1415926) '* =5.187839464 * 10 “

Here, it ca be seen thathe first estimate ofrt has five significant digits,
however, (3.1416¥ is accurate only for the firshree digits. This illustrates that
accuracy is reduced after numerous arithmetic operations. Sieceomputer
program can easildo ore million opgerations, oa can begin b uncerstand the

Chapter 3

need for initially carrying many digits. Note that for this lesson’s program, it was
not necess§r to declare the variable® the the double data typerhe float data
type would have been sufficient. Floatdadoulbe data types arcmmpared in the
table below. Note thiahe double data-typcan store greate values than the
float data type:

Chapter 3

Item Float Double
Required memory 4 bytes 8 bytes
Values 1.17549944E-38 tg 2.2250738E-308 td
3.4028235E+38 1.7976935E+308
Precision 6 15
Simplest format %f, %e, %E %1f, %e, %E

¢+ Given the low precision of the float data type, we recommend that you use double
in you program. We will see thaher ae numerous other data types in C.
Through this text we W introduce the different data types and whens

appropriate to use them.

¢ Note tha the simplest double formhas %1f. This formais used extensively
throughot this book. t is also acceptable tuse %f with the prirft function,
however, %f is not acceptable for the gdamction which is covered in the next

lesson.

2. What are the meanings of the functions in this lesson?

¢ The meamg d these C mathematicé brary functions are shawbelow (note
tha the input argument(s) or y and the retur value of ealb o these functions

are of double type.

Function name Calculating
sin(x) the sine of x, x is in radians
exp(x) the natural exponential of x
log(x) the natural logarithm of x
sqrt(x) the square-root of x
pow(X,y) X raised to the power of y

There are other mathematical C library functions which may take different types of data
as input and may return different types of data as output. In general, C library functions
may vary slightly from compiler to compiler. You should check your C compiler manual

for details). The table below lists a few more math library functions.

Chapter 3

Function | Example Description
name

abs(x) y=abs(x); Gets ¢habsolute value of an trtype agument,x
and y are of type int.

fabs(x) y=fabs(x); | Gets #th &solute value of a double tgf
argument, x and y are of type double.

sin(x) y=sin(x); Calculates the sine of an angle in radians)dxyg
are of type double.

sinh(x) y=sinh(x); | Calculates the hyperbolic sine of x,nxd § are d
type double.

cos(x) y=cos(X); Calculates ¢hasine of an angleni radians,x
and y are of type double.

cosh(x) y=cosh(x);| Calculates the hyperbalosine of x, x ad yare
of type double.

tan(x) y=tan(x); Calculates the tangent of an angleradians,x
and y are of type double.

tanh(x) y=tanh(x); | Calculates the hyperbolic tangent of xc yaare
of type double.

log(x) y=log(x); Evaluates the natural logarithm of x, x and y dr
type double.

logl0(x) | y=logl0(x)| Evaluates the logarith to the baselO d x x and

; y are of type double.

3. How do we use C mathematical functions?

¢ To use C math functions, you need to add the following statement:

#include <math.h>

a the beginmig d your program. The statement begins witle ttharacter #,
followed by the lower-case word ‘include’nd open angle bracket, the filename
to be included, and ends with dosed angle bracket. The filename within the
coupled angle brackets is a standard header file provided by the C compiler.

4. What is a header file?

¢+ A header file is an ASICfile which has an extension ‘.h’nlgeneral, a header is
a collection of information and is referred to at the beginning of a C program. For
example, the headdile ‘math.h’ contains constant definitions and C function
declarations for the math library.yBlefault, the file is usually located in the
\INCLUDE’ sub drectory. For Microsoft C Versh 60, math.h is a 107 line
file. For example, the & mntains the prototype of ¢hexponential function,
pow(X,y), which looks something like

Chapter 3

double pow(double, double);

the first double tells you thahe pow() function returns a double type outptine
second and the third indicate théhe pow) function must have tw doulble
parameters as input. By calling the hedile & the beginmig d a program, we
inform the wmmpiler that we myuse some of the library functions in the header
file. The compiler will selet those needed functions and cortnécto you
program during compilation.

5. What is a C preprocessor directive?

¢ The include statemenms, strictly speaking, not a standard C statement because it
does not end with a semicolon ‘;’. In reality, the statamiencalled a C
preprocessor directive because it directs the C compiedda some pre-
processing work before compiling. For example, when the C compiler sees

#include <math.h>

it first looks for the header file math.h, if the file is found, the compiler will “put”
the relevant part of math.h file in the place where the include directive is located.
As an experiment, you madelete the include directive from 3_4.C, replace it
with the 107 line math. heade file @pied fran \include\math.h, and then
compile the C file. Ifyou dona make any mistakes, the new 3 _4.EXE file not
only has the same = & the ol ore, but als generates the same output.
However, your new 3_4.C sa@ ®de is much larger thmaou old 3 _4C and

looks cumbersome to read. By now you believe hat using an include directive is a
much better way to deal with an external header file.

6. What are the advantages of using the include directive?

You don’t need to write a library function yourself.

Your program and the library functions are two independent programs.

Your program is short.

The header file need only be typed once and can be used by many C programs.
You have more flexibility and freedom to update you program.

* & & o o

7. How does the C compiler find a header file?

There are two methods to guide your C compiler to find the header file.
¢ Method 1. Write the full path o the heade file in you souce ©de. For
example, if your math.h file is in the C:\MCG\INCLUDE directory, rthgou
could type

#include <C:\MCG6\INCLUDE\math.h>

Chapter 3

at the beginning of your program.
¢ Method 2: Type a SET command such as
SET INCLUDE=C:\MC6\INCLUDE

before you compile your program. The set command is a DOS command and sets
the DOS system environment sotttiee C compiler can find where the include
files are. t can al® be part of the AUTOEXEC.BAT file which is executed
when you computer boots. Typically, this command ist pinto the
AUTOEXEC.BAT or other BATCH files.

Exercises
1. True or False:

a. #include <Math.H> is a correct C preprocessor

directive.

b. A header file must be placed at the beginning of acC
program.

c. InC, the value of sin(30) is equal to 0.5.

d. In C, the value of log(100) is equal to 2.0.

2. Find math.hm you C compiler include directory. Then copydapasteit to the
program below. Compile, link and run the prograno. ydu ¢t the same output as
the one from C3_4.EXE? Compare the sizes of the source code, object code, and the
executal® wmde of the program below and C3 4.C program. Summarize your
findings.

[* Copy the MATH.H file (without modification)
below this line */

main()
{float x=3.0,y, z;
y =4.0;
Z=pow(X,y);
printf(“x=%4.1f, y=%4.1f, pow(x,y)=%7.2f",X,y,z);

3. The progran below ca be wmpiled and linked without error. Bybu get an error
message when you run it. Why?

#include <math.h>
main()
{float X=-111.11, Y=0.5, Z;
Z=pow(X,Y);
printf(“X=%210.2f, Y=%10.2f, Z=%210.2f\n",X,Y,2);

Chapter 3

4. Write a program to calculate the unknown values below:
Alpha(degree) Alpha(radian) sin(2*Alpha)
30.0 ? ?
45.0 ? ?

Solutions

e
o

Chapter 3

Lesson 3 6 - Input Data From Keyboard

Topics:

¢ Using the scanf() function

¢ Inputting data from the keyboard
¢ The address operator ‘&’

None of the programs inng o the previous lessons have had input going into them
during execution. These programsihaly output, and for these the output device was
the screen (or monitor). Most commonly, your programs will have both input and output.
Your program can instraidhe wmputer to retrieve data from various input devices.
Input devices include:

1) the keyboard

2) a mouse

3) a joystick

4) the hard disk drive
5) a floppy disk drive

to name a few. The program below illustrates how input can be retrieved by a C program
from the keyboard. Programs whidave input fran the keyboard creata dialogue
between the program and the user during exacudf the program. Examine this
program and see how a dialeguan be establishé between the program and the user.
What does the scanf function do in the program below?

Source Code

main()
{double income, expense;
int month, hour, minute;

printf(“What month is it?\n");
scanf(“%d, &month);
printf(“You have entered month=%5d\n”,month);

printf(“Please enter your income and expenses\n”);

scanf(“%1f %lf”,&income,&expense);

printf(“Entered income=%8.21f, expenses=%8.21\n",
income,expense);

printf(“Please enter the time, e.qg.,12:45\n”);
scanf(“%d : %d”,&hour,&minute);

printf(“Entered Time = %2d:%2d\n”,hour,minute);

Chapter 3

Program Output
Keyboard input
Program output
Program output
Keyboard input

Program output
Program output
Keyboard input
Program output

On Screen Dialogue

What month is it?

12

You have entered month = 12

Please enter your income and expenses
3243

Entered income = 32.00, expenses= 43.00
Please enter the time, e.g., 12:45

12:15

Entered Time = 12:15

Explanation

1. How do we input data from the keyboard?

¢ An easy way to input data from the keyboard is by using the scanf() function. The
syntax of the function is

scanf(format string, argument list);

where the format string converts characters in thetimga values of a specific
type, tte agumen list contains the variable(s) into which the inputadae
stored,a mwmma must be used to separ&ab argumenin the list fran the
other. For example, the statement

scanf(“%1f%1f,&income,&expense);

will convert the fird input data @ doube type value using the %ZXormat
specifier and store the double value in the variable income. Similarly, the second
input is gored in the varialel expense. Note that you must preeesht variable

name with an & whe youread a value. Td reason is thathe agumer in the
scanf() function uses a pointer to the variable (which will be discussed in Chapter
7). For now,you dorit need b uncerstand tB @ncept of pointersot use the
scarf() function. Just remember to add & in front of the variable. If you wan

read an int type variable, use %d instead of %1f as the format specifier.

2. What are the components of a format string in the scanf() function?

¢ The format string may consist tormat specifiers, such asd¥ar %1f, blanks,
and character(sptbe input. If the format string contains character(s), you must
match tle daracter(s) whe you input from the keyboard. For example, the

Sstatement

Chapter 3

scanf(“%d : %d;&hour,&minute);

containsa wlon “”.” in the format string, if you wanto input hour=12 and
minute=34, the valid input is

12:34
If you amit the wlon, the da ae read incorrectly.n general, the format string

in the scaf() function shou be kept @ smple & possible. Otherwise you will
have trouble to correctly input your data.

Exercises

1. Based on the statements

int cat, dog;
double weight;

find error(s) in each of the statements below:

PoOTQ

scanf(“%d %d”"),cat,dog;
scanf(%d %d,cat,dog);

scanf(“%d %f”,cat,dog);
scanf(“%d %d”,&cat,&dog);
scanf(“%d,\n, %1f",&cat,&weight);

2. Write aprogran to input all your grades in the last seme$tem the keyboard and
then display your input and the average GPA on the screen.

Solutions

a.scanf(*%d %d”,&cat,&dog);
b.scanf(“%d %d”,&cat,&dog);
c.scanf(“%d %d”,&cat,%dog);
d.no error.no error, but you have to type in two commas

when you input the data.

Chapter 3

Lesson 3_7 - Input Data From File

Topics:

¢ Opening and closing a file
¢ Reading data from a file

¢ Using the fscanf() function

You will find that if your input data is lengthynd youare planning to execute your
progran many timesiit is not conveniemnto input your data fnm the keyboard. This is
especially true if you warto make only minor changes to the inputadatib time you
execute the program.

For instance, if your income is the samvery month ad ony you expenses change, it

is cumbersome to repeatedly type the same number for each month. It is more convenient
to set up a file (which cabe aeata using a wod processing type program, also called
editor) which has your income and expenses in it. Your program can read that file during
execution insted of receiving the input fnm the keyboard. If you wdnto rerun the
program wih dfferent input data, you can simply idhe input file first and then
execute the program.

This lesson’s progma illustrates how to reladata from an input file. In the program
below, the file name is C3_7.IN. You must remember, though, that when you create your
input file ushg you editor thatyou gve that file the same name thatu have specified

in the code for your program. Wimeyouexecute your program, the C compiler searches
for a file of that nara and reads it. If that fé does not exist, the C compiler will give

you an error message when you execute your program.

Look & the program below. Whas the name of the standard fuoctivsed to read a

file?

You also need to open your file before you use it. Can you see which statements are used
to open your file? Can you see which statement is used to close your file?

Source Code

#include <stdio.h>
main()
{double xx;
int i, kk;
FILE *inptr;
inptr=fopen (“C3_7.IN","rt");

fscanf(inptr,”%d”,&ii);
fscanf(inptr,”%d %1f",&Kk,&xx);

fclose(inptr);

Chapter 3

printf(“ii=%5d\nkk=%5d\nxx=%9.31f\n",ii, kk, xx);

Chapter 3

Input file C3_7.IN

36
123 456.78
Output
i= 36
kk= 123
xx= 456.780
Explanation

1. What are file and FILE?

¢+ Afile is a wllection d information in an electronic formatt inay contan you
personnk data, a CIA secret document, or Hollywood’s latest video movie.
Information in a file $ dored in certain section(s) of external device(s), such as
tapes or disks. Unl& anumber, such as +1234, whichnche determind by its
size and sign, a file is more complicated and contains more features. For example,
a file must hag aname so thayou a a computer can identify it. A file mabe
opened fo reading, i.e., get data fmoit, or writing, i.e., store data in it. A file
can be in text format, such as the soarode of this program, 3_7.C, or binary
format, such as thexecution code of this program, 3_7.EXE. In addition, a file
needs a temporary stoegea b declare is sze and aher information so tHait
can be placed correctly by the computer operating system. In avdexep all of
these featuresniore place, C “invents” a new data type (in realitys a data
structure, this will b explained in more detiain Chapter 8) nante name FILE
which is somewhat similar by slightly more complicated than the other data types
you have learned, such as int and float.

¢ FILE is a C derivd data type defined in the C standdmreade file stdio.h. To
include stdio.h, we need to add an include directive

#include <stdio.h>

a the beginmg d the program. Withauthe include file, stdio.h, the C compiler
will not understand what FILE stands for and will generate an error message.

¢ When youwarn to manipulag¢ afile, you wse the C data type FIL®D tdeclae a
specid type of variabé cdled file_pointe (see note3 below), and the use this
file_pointer b handle you file. This means thathere isno drect relation
between theC data type FILE ad you actua file, i.e., you cannot use the
following statement

FILE “3_7.IN";

Chapter 3

to declare your file. Instead, you must use FILE to declare a file_pointer, and then
use the file_pointer to manipulate ydile. The processsi £hematically shown
below:

FILE - file_pointer - actual_file
2. What function is most commonly used to read data from a file?

¢+ In C, we usuall use the fscdh() function to red data from a file. h general, the
syntax of the fscanf() function is

fscanf(file_pointer, format_string, argument_list);

The fscaf() function readslathe contents in tk agument_list using the given
format_string from a file whit has a file pointer ofile_pointe (see note 3 for
explanation of file pointer). For example, in the statement

fscanf(inptr, “%d %1f”,&kk,&xx);
the values in the argument list, kk and xx, are read using a format string

“%d %21f”

from an external file whit has a file pointer called inptr. Note thdt enput
argument names must be preceded with an &.

3. What is a file pointer?

¢+ A file pointer is a topic which will be discussed detal in Chapter 7. For now,
just remember that a file pointer is a variable name which must be pidaogde
asterisk whe you define it and must be defined in a statetriiat begins with
FILE. For example, the statement

FILE *intptr;

declares *inptr @ be afile pointer. The naming convention rfdile pointers
(excep the asterisk character) is the sans the naming convention for other C
conventional data types. Examples of legal and illegal file pointer names are
shown below:

Legal file pointers: FILE *apple, *IBM93, *HP7475;
lllegal file pointers: FILE *+apple, *93I1BM, 75HP75;

4. What function is used to open an input file?

Chapter 3

5.

¢

Before input ca be red from an external file, the file must be omknsing the
fopen() function whose syntax is:

file_pointer = fopen (file_name,access_mode);
For example, in the statement
inptr = fopen {C3_6.IN","rt");

the file_name is C3_6.IN, the file_pointer is named inptr, aachtttes_mode is
“rt”, where ‘r mans the file is openedfoeading and ‘' means the inpis read

in text mode. You mg choo® awy valid name fo file_pointer @ file_name to
open a file. Note thathe file_nane and the acces_moe ae daracter strings.
Hence, they mustebenclosed with a pair of double quotes. However, the file
pointer is not a character string, so no double quotes surround inptr.

Do we need to close an input file?

¢

It is good practice to close files after they have been used. However, if no fclose()
statements are used, C will automatically el@ open files, after execution is
completed. To close a file, use the fclose() function whose syntax is
fclose(file_pointer);

Note that, the funabin uses the fé pointer, no the filename, to clasafile. For
example, the statement

fclose(inptr);

uses file pointer intpr to close the file 3_7.in.

Exercises
1. True or False:
We use the scanf() function to read input from the
keyboard.
We use the fscanf() function to read input from a file.

You must open an external file before you can read your

input data.

It is a good practice to close an input file once you
do not need it.

You must define a file pointer before you can open the

file.

2. Find error(s), if any, in each statement below.

Chapter 3

#INCLUDE <stdio.h>.

file myfile;.

*myfile = fopen (C3_6.DAT,rt);.
fscanf(*myfile”,"%4d %5d\n”, WEEK,YEAR);.
close(“myfile”);.

PoOTQ

3. Write aprogran to rea you grades frm last semestefrom an input file named
“4GRADE.REP” whidy has one line of dat consistng d 4 gades only (no
characters), e.g.,

4.03.32.73.7

compute your average GPA, and wrdl the input and average GPA on the screen
and in a report file nameétYGRADE.REP”.

Chapter 3

Solutions

a. #include <stdio.h>

b. FILE *myfile;

c. myfile = fopen (“C3_6.DAT”","’rt");

d. fscanf(myfile,”%4d %5d\n”,&WEEK,&YEAR);
e. fclose(myfile);

Chapter 3

Lesson 3 8 - Output Data to File

Topics:
¢ Writing data to a file
¢ Using the fprintf() function

Previous programs have displayed all of their outfmu the screen. This mabe
convenient at times, however once the screen scrolls or clears, the output is lost.

In most cases you will want to have a more permanent record of your output. This can be
obtainal by writing you outpu to a file insted o to the screen. Once the outps in a

file, you can use a file editor to view it. You cancaise tle aitor to print the result on

a printer.

The program below illustrates how print outpu to a file. Just as is true for an input
file, an output file:

Can have any acceptable DOS name.
Must be defined before it is used.
Must be opened before it is used.
Should be closed after it is used.

PobdE

As you read the program compad contrasit to the progren in Les®n 3_7 which
reads data from a file. Do you see any similarities?

Source Code

#include <stdio.h>
main()
{double income=123.45, expenses=987.65;
int week=7, year=1996;
FILE *myfile;

myfile = fopen(“3_8.0UT","wt");
fprintf(myfile,”"Week%5d\nYear=%5d\n”,week,year);
fprintf(myfile,”Income =%7.21f\n Expenses=%8.31f,n”,
income,expenses);

fclose(myfile);

}

Output file 3_8.0UT
Week= 7
Year= 1996

Income = 123.45
Expenses=987.650

Chapter 3

Explanation
1. What function do we use to write data to a file?

¢+ In C, we use the fprintf() function to write data to a file,general, the syntaof
the fprintf() function is

fprintf(file_pointer, format_string, argument_list);

The fprinf() function writes the values of argument list using the given
format_string to a file which has a file pointer of file_pointer. For example, in the
statement

fprintf(myfile,” Week = %5d\n Year = %5d\mweek,year);

the values of argument_list, weekdayear, are written to an external file which
has a file pointer named myfile using format string

“ Week = %5d\n Year = %5d\n
2. What function do we use to open an output file?

¢+ Before dad can be written to an external file, the file must be opmkmesing the
fopen() function whose syntax is:

file_pointer = fopen (file_name,access_mode);

where the definitions of the file_pointer and file_reame the sam a those for
opening an input file. However, énhacces_mode for writing is “wt” where ‘w’
means the file is opened for writing and ‘' means the duipwvritten in text
mode. For example, the statement

myfile = fopen {3_8.0UT","wt");

opens file 3_8.0UT for writing. If 3_8.0UT exists, the contents of the file will be
overwritten.

3. Do we need to close the output file?
¢ Itisgood pactice to close files after théave bea used. However, if no fclose

statements are used, C will automatically ela@ open files after execution is
completed. We also use the fclose() function to close n output file.

Chapter 3

Exercises
1. True or False:

a. We use the printf() function to write output on the
screen.

b. We use the fprintf() function to write output to an
external file.

c. You must open an external file before you can write
your output in it.

d. Itis a good practice to close an output file once you
don’t need it.

e. You must define a file pointer before you can open an
output file.

2. Find error(s), if any, in each statement below:

a. #include <stdio.h>
b. FILE myfile;
c. *myfile = fopen (TEST.OUT,wt);
fprintf(*myfile,” Week = %4d\n Year = %5d,n”,
&week,&year);
d. fclose(“myfile);

3. Write aprogran to input all your grades in the last semedtem the keyboard,
compute your average GPA, and wrdl the input and average GPA on the screen
and in a report file nam®MYGRADE.REP”.

Solutions

a. No error

b. FILE *myfile;

c. myfile = fopen (“TEST.OUT”,"wt");

d. fprintf(myfile,” Week = %4d\n Year = %5d\n”
week,year);

e. fclose(myfile);

Chapter 3

Lesson 3 9 - Summary
In this chapteryou have learned int, float,nal doulbe data types, howotname and
declare variables, inputnd ouput format specifications, assignment and arithmetic

statements, input fro the keyboard and from a filend ouput to screen and to a file.
The program below summarizes what you have learned in this chapter.

Source Code

#include <stdio.h>

main()
{int X;
float v;
double z;
FILE *in, *out;

printf(“Please type a number\n”);
scanf(“%d”,&x);

in=fopen(*3_9.IN","rt");
fscanf(input,”%f %1f", &y,&2z);

out=fopen(“3_9.0UT","wt");
fprintf(out, “X=%d\nY=%"5.1AnZ=%"5.2\n",x,y,z);

fclose(in);
fclose(out);
}
Input file 3_9.IN
11.1 22.2
On Screen Dialogue
Program output Please type a number
Keyboard input 987
Output file 3_9.0UT
x=9.87
Y=11.1

Z=22.20

Chapter 3

Exercises

1. Write a program to:

a. Read the input file 3 9.DAT as shown below (b
represents blank);

1bb1.1bb1.1
2bb2.2bb2.22
3bb3.3bb3.333
4bb4.4bb4.4444
5bb5.5bb5.55555

b. Display the input file as it is on the screen.
c. Calculate the average value in each column and write
the output as below on the screen and to file 3 _9.0UT:

MONTH *** INCOME *** EXPENSES

1 11 11

2 2.2 2.22

3 3.3 3.333

4 4.4 4.4444
5 5.5 5.55555

Ave 3 3.3 3.33059

Chapter 3

Application Program 3_1

Comment on development of programs

Creating a program which accomplishes the desired task may not be simple. As programs
become more complex in this book, the following step-bg-ptecedure will be used to
illustrate the development of the application programs:

1. Assemble the relevant equations.

2. Do a hand calculation of an example problem.

3. Write an algorithm (sometimes called pseudo-code) which
uses the equations and follows the pattern of the hand
calculation. We recommend that you write an informal
algorithm which is roughly a line by line description of
what the program does. It should be written in plain
English.

4. Use the algorithm to write the actual source code.

This four stp mehod d program development has evalivever the ourse of teaching

by the authors. It has been successfully implemdrtg many students and will be used

in this book to illustrate the development oé tpplication pograms. We recommend

that you follow this procedure in wnity you own programs. However, agpu become

more adept at programming you may be able to skip some of the steps or develop another
method which suites your own style better.

Problem statement:
Write aprogram which computes éhaeas & four right triangles. The three of the

triangles are shown below. You should deduce the dimensions of the fourth triangle from
the patternL,, exhibited by the first three. Use the pattern in writing your program

Solution
Assemble relevant equations:

Note that there is a pattern to the length of the legs. The lengths of the horizontal legs are
5,56+1=6,6+1=7,andthe vertical legs are 7, 7/2 = 3.5, 3.5/2 = 1.75. Thus, we can

Chapter 3

see thathe fourth triangle has a horizohtag lengh o 7+ 1 = 8 and a vertiddeg
length of 1.75/2 = 0.875.

We can see that the horizontal leg length can be computed from the following equations:

Lhz = th +1

L, =L, +1

Lh‘1 = Lh3 +1
where:

L,, = horizontal leg length of the first horizontal leg = 5.0
L, = horizontal leg length of the second horizontal leg
L,, = horizontal leg length of the third horizontal leg

L., = horizontal leg length of the fourth horizontal leg

Also the vertical leg length is:

L, =L, /2
L, =L,/2
L, =L,/2
where:
L,, = vertical leg length of the first vertical leg
L,, = vertical leg length of the second vertical leg
L, = vertical leg length of the third vertical leg

3

L,, = vertical leg length of the fourth vertical leg

Note that the area of a right triangle is:
A=05L,L,

whereL, andL, are the lengths of the legs.

Specific Example:

For this particular program, the results1da eaily found wsing a hand calculator. For
most real programg is not possiblea do this because of the very l&gnumber of

Chapter 3

calculations that are perforiehdy most real programs. ‘Ehcdculations below show the
lengths and the areas.

Chapter 3

Triangle 1

L, =5

L, =7

A, =(0.5) (5) (7) = 17.50
Triangle 2

L, =5+1=6

L, =7/2 =35

A, =(0.5) (6) (3.5) = 10.50

Triangle 3
th =6+1=7

L, =3.5/2=175
A, =(0.5) (7) (1.75) = 6.125

Triangle 4

L, =7+1=8
L,, = 1.75/2=0.875
A, =(0.5) (8) (0.875) = 3.50

Algorithm

One of the purposes of performing a sangdculation is to cleasl outline dl of the
steps that are needed to agrig a @rrect and complete result. The saenpHlculation
above has been used as a guide to writing the algorithm shown below:

Begin

Declare variables

Initialize horizontal leg length of first triangle
Initialize vertical leg length of first triangle
Calculate area of first triangle

Calculate horizontal leg length of second triangle
Calculate vertical leg length of second triangle
Calculate area of second triangle

Calculate horizontal leg length of third triangle
Calculate vertical leg length of third triangle
Calculate area of third triangle

Calculate horizontal leg length of fourth triangle
Calculate vertical leg length of fourth triangle
Calculate area of fourth triangle

Chapter 3

Print results onto the screen

End

Chapter 3

Source Code

The below source code has been written directly from the algorithm.

main()

{float horizleg, vertleg, areal, area2, area3, area4,
horizleg =5.0;

vertleg =7.0;

areal = 0.5 * horizleg * vertleg;
horizleg +- 1.0;

vertleg /=2.0;

area2 = 0.5 * horizleg * vertleg;
horizleg +=1.0;

vertleg /=2.0;

area3 = 0.5 * horizleg * vertleg;
horizleg +=1.0;

vertleg /=2.0;

area4 = 0.5 * horizleg * vertleg;
printf (“ \n\

}

Output

First triangle area = 17.50
Second triangle area =10.50
Third triangle area = 6.13
Fourth triangle area = 3.50

Comments:

This progran illustrates how patterns are usedaiogramming. Oa can imagine thait
would be very simple to write a program similar to this one which compgesehs of

fifty triangles which follow the same pattern. As we illustrate more programming
techniques you will see th& will be possible to write such a program hvitery few
statements.

This particular examplesismewhat contrivé in tha it is deliberately set upthave a
pattern to it. You will find, though, that real problems willcalsave patterns and that
part of the skill in writing more advanced programs is in recognizing patterns and writing
efficient code which takes advantage of the patterns.

Chapter 3

Application Program 3_2

Problem statement

Write a program which creates a table of degrees Celsius \gittottespondig degrees
Fahrenheit. Begin at 0C and proceed ¢ 100°C in 20°C increments. Use no more than
two variables in your program.

Solution
Assemble relevant equations:

The equation converting degrees Celsius to degrees Fahrenheit is:
9
F= =-C+32

5
Where:
C = degrees Centigrade
F = degrees Fahrenheit

Specific example

Once again, for the smple program, k& the cdculations ca be doneby hand and are
shown below.

cC=0
F=C E'—EE+32:32
C=20
F=C EEE+32:68
C=40
F=C E'—EE+32:104
C=60
F=C E'—EE+32:140
C=80
F=C EEE+32:176

C =100

Chapter 3

Algorithm:

This algoritm is written fron the samp cdculations with tle addition d the printing
of the headings and the results.

Begin
Declare variables
Print headings of table

SetC=0
Calculate F
Print C and F

SetC=20
Calculate F
Print C and F

SetC = 40
Calculate F
Print C and F
Set C 60
Calculate F
Print C and F
SetC =80
Calculate F
Print C and F

End
Source Code

This ©urce ®©de has been written frothe dgorithm. Note thathis code has made use
of the fact that the values of degrees centigrade are increments of 20.

main()
{float degC, degF;

printf(“Table of Celsius and Fahrenheit degrees\n\n”

Degrees Degrees \n”
“ Celsius Fahrenheit \n");
degC =0,
degF =degC *9./5. +32;

printf(“%16.2f %20.2f\n", degC, degF);

Chapter 3

degC += 20.;

degC =degC* 9./5. +32,;
printf(“%16.2f %20.2f\n", degC, degF);
degC += 20.;

degF =degC* 9./5. +32,;
printf(“%16.2f %20.2f\n", degC, degF);
degC +=20.;

degF =degC *9./5. +32,;

printf(“%16.2f %20.2f\n”, degC, degF);

degC += 20.;

degF =degC* 9./5. +32,;
printf(“%16.2f %20.2f\n”, degC, degF);
degC +=20.;

degF =degC *9./5. +32;
printf(“%16.2f %20.2f\n", degC, degF);

Output

Table of Celsius and Fahrenheit degrees

Degrees Degrees

Celsius Fahrenheit
0.00 32.00
20.00 68.00
40.00 104.00
60.00 140.00
80.00 176.00
100.00 212.00

Comments

First, we can see immediatgl tha this program has the same three statements written
repeatedly. Had we wanted tisplay the results for every single degree betw@and

100 insted of every twentigt degree, the program wallhave been extremelyihg bu

with the same three statements written over and over again. We will learn more advanced
programming techniques in Chapter 4 which will allow us to write a program which can
accomplish the same task but with many fewer statements.

Second, w ould have used the programming technique illustrated in the previous
application whib had a single printf statemerat the end o the progran instea o one
immediately after each calculati & degF. However, this wodlhave necessitated the
use variables.

For instance, the program could have been:

Chapter 3

main()
{float degC1, degC2, degC3, degC4, degC5, degC®,
degF1, degF2, degF3, degF4, degF5, degF6;

printf (“Table of Celsius and Fahrenheit

degrees\n\n”
¢ Degrees Degrees \n”
“ Celsius Fahrenheit\n”);

degCl =0,

degF1 =degC1 *9./5. +32.;

degC2 =20,

degF2 =degC2 *9./5. +32.;

degC3 =40,

degF3 =degC3*9./5. +32,;

degC4 =60.;

degF4 =degC4 * 9./5. +32.;

degC5h =80,

degF5 =degC5 * 9./5. +32.;

degC6 =100,

degF6 =degC6 * 9./5. +32.;

printt (\n”

“0020.2f 9%20.21\n%20.2f %20.2\n%20.2f %20.2\n”
“0020.2f 9%20.21\n%20.2f %20.2\n%20.2f %20.2f\n”,
degCl, degF1, degC2, degF2, degC3, degF3,
degC4, degF4, degC5, degF5, degC6, degF6);

}

With this programl2 variables have beeused insted o just two. Variables take up
space in the memyprof the wmputer, so the program Witl2 variables wou occupy

more memory than the program with tjug/o variables. You W |earn that efficient
programming means, in part, to write a program which takes as little memory as possible.
For this very small program, either programming techmiquuild be usel ontoday’s
computers. However, for very large programs the mgmeede by the progran may

be v important. Sat is good ¢ develop efficient programmg habits now that you are

just learning programming. Reducing memory size is only &2 phdeveloping efficient
program Comment®n daher ways to make your program efficient will be made
throughout this book.

It should als be noted thiait is necessary to make your program understandable to
someone than you. The reason for this is that it is common for programs to be developed
by teams of peopland for programsa uncergo several versions. This meanst thas

Chapter 3

possible that someoneha has never seen a particular pragrawy be responsible for
modifying it. Thus, your program is more valuable if it is easily understood.

Sometimes you will find that there is a conflict between understandability and efficiency.
In aher words, efficient programs manat be understandablen@ undrstandable
programs mg@ nat be dficient. You should consult your employer or your course
instructa for guidance n determining the mdsimportant characteristics that your
program should have.

You can begin to see now thahere ae many ways to wm eren the simplest of
programs. One can argue that there is no right or wronygorearided the program gives
the a@rrect result. However, encan say thait is bes to write code thais efficient and

understandable.

Chapter 3

Application Program 3_3

Problem statement

Write aprogram which calculates the volume of paint which is neealgdint a room.
The paint is to be put on four walls and a ceiling. The room has dimensions:

h = height of our walls
1,1 ,,1 ,,1 ,=lengths of four walls
I, = length of ceiling

W, = width of ceiling

The paint thickness can be considered to be constant:

t , = thickness of first coat = 0.08 cm
t , = thickness of second coat = 0.03 cm

Only one coat of paint is to be put on the ceiling. Two coats will be put on the walls.

The dimensions aretbe read from an input &l cdled PAINT.DAT. The @ntents of
PAINT.DAT are:

first line h
second line 1 1, 1, 1,
third line I . W,

These values are all real numbers and the units are meters.

Display the results on the screen in the form;

The volume of the paint required to paint the room is:
... M3

Solution
1. Assemble all relevant equations

The volume of paint on the first wall is (other walls can be calculated similarly):

Lt) (3.3.1)

(3.3.2)

4 4 4 1

The total volume of paint used is:

Chapter 3

V.=V +V ,+V ,+V +V | (3.3.3)

where:

Chapter 3

V, = volume of paint on wall number 1

V_ = volume of paint on ceiling

C

V, = total volume of paint

2. Specific example

Consider the following dimensions:

”f’”‘“”“"”"’”“” 1]
\l@@\l@mw
33333353

SRPrRRPRRRT
o

Compute the paint volumes (note that 1/100 is to convert from cm to m):

Firstwall V . = (6)(3)(0.08+0.03)(1/200) = 0.0198 m °(3.3.1)
Second wall V ,=(9)(3)(0.08+0.03)(1/100) = 0.0297 m °(3.3.1)
Thirdwall V| =(7)(3)(0.08+0.03)(1/100) = 0.0231 m °(3.3.1)
Fourthwall VvV ,=(9)(3)(0.08+0.03)(1/100) = 0.0297 m °(3.3.1)
Ceiling V . =(9)(7)(0.08)(1/100) =0.0504 m °(3.3.2)
Total volume

V, = 0.0198+0.0297+0.0231+0.0297+0.0504 = 0.1527 m ° (3.3.3)

3. Algorithm

This algorithm follows the example problem, and includes the parts of the program (such
as opening the data file) which are not needed in the hand calculation.

Define constants
Declare variables
Open data file
Read input data

Calculate paint volume for first wall
Calculate paint volume for second wall
Calculate paint volume for third wall
Calculate paint volume for fourth wall
Calculate paint volume for ceiling
Calculate total volume

Print result to screen

4. Source code

Chapter 3

This ©urce ®de is developk by wing the equations and # dgorithm. Note thathe
variable names used in the program are much more descriptive than the single letter
variables used in the equations.

Chapter 3

main()
{#define THK_COAT1 0.08
#define THK_COAT?2 0.03

float length_wall, length_wall2, length_wall3, length_wall 4,

vol_walll, vol WaII2 vol - wall3,
vol_wall4,

length_cell, width_ceill, height, vol_tot;
I* Open input file */

FILE *inptr;

inptr = fopen (“PAINT.DAT",’rt");
I* Read input file */

fscanf (“%of”, &height);

fscanf (“%f %f %f %f’, &length_walll,&length_wall2,

&length_wall3,&length_wall4);
fscanf (“%f %f”, &length_ceil, &width_ceil);
I* Compute paint volumes */

vol_walll=length_walll * height * (THK_COAT1+THK_ COAT?2);
vol_wall2=length WaII2*he|ght*(THK COAT1+THK_COAT?2);
vol_wall3=length_wall3 * height * (THK_COAT1+THK_COAT?2);
vol_wall4=length_wall4 * height * (THK_COAT1+THK_COAT?2);
vol_ceil =length_ceil * width *(THK COATL);

vol_tot =vol_walll + vol_wall2 + vol_wall3 +
vol_wall4+vol_cell,

I* Print results to the screen */
printf (“\nThe volume of the paint \n”

“ required to paint the room is: \n%7.4f m~3”,
vol_tot);

}

5. Comments

This is a relatively simple program. Itrcée seen for simple prograngich as this one,
much of the program is occugidy such things as declag variables, reading the input
file, and pinting the results. For mer @mplex programs, most of the prograis

involved with doing the actual calculations.

Chapter 3

Application Program 3_4

Problem statement

Write aprogram which computes the necessary force toemevlock across a plane.
Friction resists the movement of the block. Consider three different blocks.

v

y 3

The three different blocks have the following dimensions:

Block Height Length Width

(m) (m) (m)
1 0.5 2.0 1.5
2 1.2 0.75 0.2
3 0.8 2.2 1.3

The densit of the materih of which the blocks are made i75kN/m°. The wefficient
of friction of each block on the plane is 0.35.

The data fié containing the dimensions of datlock is FRICTION.DAT. The data file
has tree lines - each with a bkosumber, height, length and width as listed above. Print
to the screen the force required to move the block.

Solution
1. Assemble relevant equations

Because friction is the only force resisting movement of the block, the force required to
move the blocks equa to the frictional resistance.otl have learned from yaufirst
physics class that frictional resistance is a fumctf the wefficient d friction and the
normal force on the plane of contact:

F= uN (3.4.1)
where:

F = frictional resistance

K = coefficient of friction

Chapter 3

N = normal force on the plane of contact

For this particular case, the normal force is equal to the weight of the block, that is
N = w (3_4.2)

where:
W block weight

The block weight can be computed from the volume and the density, and the\a@um
be computed from the dimensions as follows:

W = Vd (3.4.3)
V = hlw (3._4.4)
where:

V = block volume

d = material density
h = block height

| = block length

w = block width

2. Perform an example calculation

In many cases you will have to make up the example problem yourself, which means that
you will need to create the information that goes into the input file. In this case, however,
the input data is given. The below calculation sequence uses the informati¢rthabou
first block:

d =5.7 kn/m3

M =0.35

h=05m

[=2.0m

w=15m

V =(0.5)(2.0)(1.5)=1.5m : (eqn.
3 4.4)

W = (1.5)(5.7) = 8.55 kN (eqn. 3_4.3)

N = 8.55 kN (eqn. 3_4.2)

F =(0.35)(8.55) =2.9925kN (eqn. 3_4.1)
3. Algorithm

Define constants
Declare variables
Open the input data file

Read first block information
Compute V

Chapter 3

Compute W
Compute N
Compute F

Print F

Chapter 3

Read second block information

Compute V
Compute W
Compute N
Compute F
Print F
Read third block information

Compute V
Compute W
Compute N
Compute F
Print F

4. Source code

The program show below is one which satisfies the requirements of the problem
statement. The algorithm has been used to write the source code.

#include <stdio.h>
main()

#define DENSITY 5.7
#define FRICTION_COEFF 0.35

int block_number;
float weight, height, length, width, volume,
normal_force, frictional_force, movement_force;

FILE *inptr;
inptr = fopen (“FRICTION.DAT",’rt");
printf (“\n\

Block number Force required for movement(KN)\n\n");

fscanf (inptr, “%d %f %f %f”,
&block _number, &height, &length, &width);

volume = height * length * width;

weight =volume * DENSITY;

normal_force = weight;

frictional_force = FRICTION_COEFF * Normal_force:
movement_force = frictional_force;

printf(* \n%10d %30.7f

\n”,block_number,movement_force);

fscanf (inptr, “%d %f %f %f”,
&block _number, &height, &length, &width);

volume = height * length * width;
weight = volume * DENSITY;
normal_force = weight;

Chapter 3

frictional_force = FRICTION_COEFF * normal_force;
movement_force = frictional_force;

printf(* \n%10d %30.7f
\n”,block_number,movement_force);

fscanf (inptr, “%d %f %f %f”,
&block _number, &height, &length, &width);

volume = height * length * width;
weight =volume * DENSITY;
normal_force = weight;
frictional_force = FRICTION_COEFF * normal_force;
movement_force = frictional_force;
printf(* \n%10d %30.7f
\n”,block_number,movement_force);
}
Output
Block number Force required for movement (kN)
1 2.9925
2 0.3591
3 4.56456
Comments

Use your calculator to check the resuthown above. Note that oa aain several
statement have been repeated.oAlste that ever program a be written many ways.
Do you have avy ideason hav to change this progmato fit your own personal style of
programming?

Chapter 3

APPLICATIONS EXERCISES

Use the four step procedure outlined in this chapter to write the following programs.

3_1 Write aprogram which creates a table of Olympbmpetition runmg dstances in
meters, kilometers, yards and miles. The following distances should be used:

100 m
200 m

400 m
800 m

Use the pattern exhibited in these distance to write your program. Call your program
OLYM.C. (Note: 1m = 0.001 km =1.094 yd = 0.0006215 mi.)

Input specifications

No extern&input (meamg no @ta input fron the keyboad or file). All distances are
real numbers.

Output specifications

Print the results to the screen in the following manner:
Table of Olympic running distances
Meters Kilometers Yards Miles
100
200

400
800

Right justify the numbers in the table

3_2 Write the program described in Application Exercise 3_1 with the output going to a
file called OLYM.OUT. Left justify the numbers in the table.

3 3 Write aprogram which computes the lehgtf the hypotenuse of 5 righriangles
based on the lengths of the two legs. Call your program HYPLENG.C.

Chapter 3

Input specifications

Read the input data from the keyboard by prompting the user in the following way:

Screen output Input the values of the leg lengths
for five right triangles

Keyboard input legl leg2

Keyboard input legl leg2

Keyboard input legl leg2

Keyboard input legl leg2

All input values are real numbers.
Output specifications

Print the result to the file HYPLENG.OUT with the following format:

Hypotenuse lengths of five triangles

Triangle legl leg 2 hypotenuse
number length length length
1 —- —- —-
2 —- —- —-
3 —- —- —-
4 —- —- —-

Right justify all of the numbers in the table.

3_4 Write aprogram which computes the values of the® twacue angles of a right
triangle given the lengths of the two legs. Call your program ANGLE.C. Create the input
data file ANGLE.DAT before executing your program.

Input should come from data file ANGLE.DAT with the following form:

line 1 legl leg2
line 2 legl leg2
line 3 legl leg2
line 4 legl leg2
line 5 legl leg2

All of the values are real numbers.

Output specifications

Chapter 3

The output results should be in degrees, not radians. Make sure that in your program you
convert from radians to degrees. The output should go to file ANGLE.OUT and have the
following format:

Chapter 3

Acute angles of five triangles

Triangle acute acute
number angle 1 angle 2
1 —- —-
2 —- —-
3 —- —-
4 —- —-
5 —- —-

3_5 Write aprogram which is capable of displaying the distances ftwe sun to the
four planets closédo the sun in centimeters and inches given the kilometer distances as
follows:

Planet Distance from the sun
(million km)

Mercury

Venus 108.2

Earth 149.5

Mars 227.8

Input specifications
No external input. The distances listed above can be initialized in the source code.
Output specifications

Print the results to the screen in the form of the table shown below:

Planet Distance from the sun
(million km) (cm) (inches
)
Mercury 58
Venus 108.2
Earth 149.5
Mars 227.8

Note: In order to fit the numbers properly in the table, you must use scientific notation.

3_6 The distance that a car (undergoing constant acceleration) will travel is given by the

expression
s=v t+1l/2at

where:

2

Chapter 3

s = distance traveled
Vv, = initial velocity

t = time of travel

a = acceleration

Write a program which computes this distance giye tvand a. Call your program
DISTANCE.C.

Input specifications

The input should come from the file DISTANCE.DAT with the following format:

line 1 t
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11
line 12

DOYOYOYOYCOLOLOYYOYI

a A W N P O O b W N P O

Al

of the above numbers are real numbers. An example data file is:

o

5

o

10

~Nooh~,rWRLr~NOUOIRARWE

Output specifications

Print the results to the file DISTANCE.OUT in the following form:

Car under constant acceleration

Initial time acceleration distance
Velocity

Chapter 3

10 5

10 10

~NoohRAWoo~AW
1
1
1

3 7. The general gas law for an ideal gas is given by:

PV/T = constant

where:
P = pressure
V = volume

T = temperature (Rankine or Kelvin)
which leads to the equation:

PVJT =P VT,
for a given mass of gas.

Write a omputer program which computes the temperature of a gas which is originally
at:

P, = 5 atmospheres
V, = 30 liters
T, =273 deg Kelvin

Call your program TEMPER.C.

Input specifications

The input data should come from the file TEMPER.DAT and consists of five lines:

line 1 P, Vv,
line 2 P V,
line 3 P Vv,
line 4 P . V,
line 5 P V,

A sample data file is:

2 40
3 80

Chapter 3

6 50
1 15
2 70

All of the above values are real.

Chapter 3

Output specifications

Your output should be to the screen and consist of the following table.

The below listed pressure, volume and temperature

conditions can occur for a given mass of an ideal

gas which is originally at P = 5atm, V=301,

and T =273 K

Case P(atm) V(1) T(K)
1 2 40
2 3 80
3 6 50
4 1 15
5 2 70

3 8 Ohm’s law for a steady electrical current can be written as:
V=IR
where:

V = potential difference across a conductor
| = current in the conductor
R = resistance of the conductor

Write a program (called OHM.C) which is capabld filling in the blanks in the
following table:

Case \% I R
(Volts) (Amps) (Ohms)
1 10 2 --
2 -- 5 7
3 3 -- 4

Input specifications

The input data should come fothe keyboard rad ke treated as real numbers. You
should prompt the user in the following manner:

“For case 1, enter the voltage and current.”
“For case 2, enter the current and resistance.”
“For case 3, enter the voltage and resistance.”

Chapter 3

Output specifications
Print the completed table to the screen.
3_9 The pressure at depth in water is given by:

P=h vy,

where:

p = pressure
h = depth
y, = weight density of water

Write a program whit determines the pressura five different depths. Call your

program PRESS.C. Use metric unige/ = 9.8 kN/nf).

Input specifications

Create a data file called PRESS.DAT with your editor. In the data file list the five depths

on one line:

depthl depth2 depth3 depth4 depth5

An example data file is:

10. 15. 828. 1547.

All of the above data are real.

Output specifications

Print the results to file PRESS.OUT in the following form:

Depth Pressure
(m) (kPa)

431.2

3_10Q The period of one swing of a simple pendulum is given by:

Chapter 3

_|

1]

N

o |
I~y

where (in metric units):
T = period (sec)
| = length of pendulum (m)
g = gravitational acceleration = 9.81 m/sec

Write a program which is capable of completing the following table:

Length Period
(m) (sec)
0.5
1.0
10.
20.

0.32

Input specifications

Prompt the user to input the data from the screen in a manner similar to that described in
the previous exercise.

Output specifications
Print the completed table to the screen.

3 _11. The kinetic energy of an object in motion is expressed as:

where:

k = kinetic energy of object
m = mass of object
v = velocity of object

The work done by a force pushing on an object in the direction of the object’'s motion is:
W=Fs
where:

W = work done by the force
F = force on object

Chapter 3

s =distance traveled by the object during the time the
object is pushed

For an object pushed horizontally from rest, k = W so that:

1
Fs= =mv?
2

Assume that one person can push with the force of 0.8 kN and that eva bawf m =
1000 kg. Write a program which can complete the following table:

Distance Final Number of people
shed velocity required to push
(m) (m/sec)
5 10
10 15
20 8

Input specifications
Prompt the user to enter the data from the keyboard.
Output specifications

Print the completed table to the screen.

Chapter 3

