
Chapter 3

Chapter 3
Basics in C

Chapter 3

Lesson 3_1 - Data and Variables (1)

Topics:
♦ Naming Variables
♦ Declaring data types
♦ Using assignment statements
♦ Displaying variable values
♦ Elementary assignment statements

Variables are crucial to virtually all C programs. You have learned about variables in
algebra and you will find that in C, variables are used in much the same manner.

Suppose, for instance, that you want to calculate the area of 10,000 triangles, all of
different sizes. And suppose that the given information is:

1. The length of each of the three sides, and
2. The size of each of the three angles.

In order to write an algebraic equation to determine the area you need to make up your
own variable names. You might choose as variable names:

1. Lengths - a
- b
- c

2. Angles - α
- β
- γ

Or you could name the variables:

1. Lengths - 1 1

- 1 2

- 1 3

2. Angles - θ1

- θ2

- θ3

Or you could name the variables something completely different. It is entirely up to you
what to name them and you most likely would choose variable names that for some
reason are most comfortable to you.

For programming in C, the situation is quite similar. You choose the variable names, and
it is best for you to choose names with which you are most comfortable. A major
difference between typical C programs and typical algebraic expressions is that the
variables in most algebraic expressions consist of just one or two characters with maybe
a subscript or superscript. Variables in C programs often consist of entire words rather

Chapter 3

than single characters. Why? Because as you will find, programs can get to be quite long
and there simply are not enough single characters to represent all of the necessary
variables. Also, you will find that it will be easier to understand your own programs
when you pick them up after a few weeks of leaving them idle if you have given very
descriptive names to each variable.

For instance, for the triangle area program you may use the variable names:

1. Lengths - length1
- length2
- length3

2. Angle - angle1
- angle2
- angle3

Or if you wanted to be even more descriptive, you could name your variables:

1. Lengths - side_length1
- side_length2
- side_length3

2. Angles - angle_opposite_length1
- angle_opposite_length2
- angle_opposite_length3

These variable names are much less ambiguous than their algebraic counterparts.
Unfortunately, expressions using these variable names look much more cumbersome than
the ones using simple algebraic notation. However, this is a disadvantage with which we
simply must live.

In C, there are rules that you must follow in choosing your variable names. For instance,
for many compilers, you are not allowed to use more than 31 characters for one variable
name. This and other rules will be discussed in this lesson.

In addition, you must “declare” all of your variable names near the beginning of your
program. “Declaring” means to essentially list all of your variable names and indicate
what types of variables they are. For instance, variables can be of the integer or real
(float) type (or other types which will be discussed later).

Look at the example program in this lesson and see if you can determine which are the
variables and of what type they are. Also, see how the printf statements can be used to
display the values of the variables. (Hint: The % sign is a key character used in printf
statements for displaying the values of variables.)

To make you output look neat, it is necessary that the variables occupy the correct
number of spaces. Look very closely at the number of spaces occupied by the variables in
the output. Can you relate the number of spaces occupied to the way the variables are
printed using the printf statement? Can you see that using the correct number of spaces in
the printf statement creates a more professional looking output. Also included in this

Chapter 3

program are several assignment statements. An assignment statement gives (assigns) a
value to a variable. The variable retains that value until it i s changed by another
assignment statement. See if you can determine which are the assignment statements in
this program.

Chapter 3

Source Code

main()
{int month;

float expense, income;

month = 12;
expense = 111.1;
income = 100.;

printf(“For the %5dth month of the year\n”
“the expenses were $%9.2f \n”
“and the income was $%9.3f\n\n”,
month,expense,income);

month = 11;
expense = 82;

printf(“For the %2dth month of the year\n”
“the expenses were $%5.2f \n”
“and the income was $%6.2f\n\n”,
month,expense,income);

}

Output

For the 12 month of the year
the expenses were $111.10
and the income was $100.00

For the 11th month of the year
the expenses were $82.10
and the income was $100.00

Explanation

1. How do we declare variables?

♦ Variable names in C must be declared. The statement

int month;

declares the variable month to be of the int type (which means integer and must
be typed in lower-case). An int type data does not contain a decimal point.

2. How do we declare more than one variable?

Chapter 3

♦ Variables of the same type may be declared in a statement. However, each of
them must be separated from the other by a comma, e.g., the statement

float expense, income;

declares the variables expense and income to be of the float (which must be typed
in lower case) type. A float type data contains a decimal point with or without a
fraction. For example, 1., 1.0, and 0.6 are float type data. When data without a
decimal point is assigned to a float type variable, the C compiler will
automatically place a decimal point after the last digit.

3. How do we name variables?

♦ Variables in C programs are identified by name. The naming convention must
obey the following rules:

Component Requirement

The 1st character in name Alphabetic characters a-z, A-Z, $, and _.

The other characters in name Any alphanumeric character, i.e., a-z, A-Z,
$, _, and 0-9.

The maximum number of
characters in a name

Depends on your compiler and the method of
compiling, however for most compilers, the
maximum number is 31 characters.

Use of C reserved words, also
called keywords, in name

Not allowed, i.e., do not use float, int, ...,
etc. A complete list of reserved word is:

auto break case
char const
continue
default do double
else enum extern
far float for
goto if int
long register return
short signed sizeof
static struct switch
typedef union
unsigned
void volatile while

Use of standard identifies such as
printf

Allowed, however it is not recommended
that
standard identifiers be used as variable
names
because it is very confusing.

Use of . , + - * / % & | Not allowed since they are not alphanumeric.

Use of uppercase characters or Allowed. However, many programmers use

Chapter 3

mixed-case characters lower-case characters for variable names and
uppercase for constant names.

Use of blank within name Not allowed.

♦ Examples of illegal variable names

1apple, pear%, float, In come, In.come, while, union

4. What is an assignment statement?

♦ An assignment statement assigns a value to a variable. For example, the statement

month = 12;

assigns the integer value 12 to int type variable month. In general, a C
assignment statement takes the form of

Variable_name = Value;

where the statement assigns the Value on the right side of the equal sign to the
variable on the left side of the equal sign. The Value can be a constant, a variable
with a known value, or other, such as a function or an expression which return a
value (see the next few lessons for more details).

5. How do we display the value of a variable or constant on the screen?

♦ The printf() function can be used to display the value of a variable or constant on
the screen. The syntax is:

printf(format string, argument list);

where the format string contains two types of objects. The first one is the plain
characters (optional) which will be displayed directly to the screen and the second
one is the conversion specification(s) which will be used to convert, format, and
display argument(s) from the argument list. Each argument must have a format
specification. Otherwise, the results will be unpredictable. For example, in the
statement

printf(“month=%5d,month);

The format string is “month=%5d”. The plain characters month = will be
displayed directly without any modification, but the conversion specification %5d
will be used to convert, format, and display the argument month on the screen.

♦ The simplest printf() conversion specifications (also called format specifications)
for displaying int and float type values have the following forms:

Chapter 3

%[field width]d e.g., %5d for int
%[field width][.precision]f e.g., %9.2f for float

where format string components enclosed by [] are optional. (The characters
[and] are not the part of the format string.) The field width is an integer
representing the minimum number of character spaces reserved to display the
entire argument (including the decimal point, digits before and after the decimal
point, and sign). The precision is an integer representing the maximum number
of digits after the decimal point. For example %5d will reserve 5 blank spaces for
displaying and int type data, %9.2f will reserve a total of 9 blank spaces for a
float type data, and 2 digits will be displayed after the decimal point. If your
actual input data contains fewer digits after the decimal point, the C compiler will
add additional zero(s) after the decimal point when displaying it. For example, for
the statements

expense=111.1;
printf(“the expenses were $%9.2f\n”,expense);

the C compiler will add one zero to make the precision equal to two to give
111.10 for the output of expense.

Exercises

1. True or False:

a. The following int type variable names are legal:
 1CAT, 2DOGS, 3PEARS.
b. The following float variable names are legal:
 CAT, DOGS2, PEARS3, main, printf.
c. 5d or %8D are legal format specifiers for an int type

variable or constant.
d. 6.3f or %10.1F are legal format specifiers for a float

type variable.
e. The two statements below are identical:

int ABC, DEF;
int abc, def;.

2. The price of an apple is 50 cents, a pear 35 cents, and a melon 2 dollars. Write a
program to display the prices as follows:

***** ON SALE *****
Fruit type Price
Apple $ 0.5
Pear $ 0.35
Melon $ 2

Solutions

Chapter 3

1. A B C D E
F T F F F

Chapter 3

Lesson 3_2 - Data and Variables (2)

Topics:
♦ More about format specifiers and their

components
♦ Scientific notation
♦ Using the define directive to define constants
♦ Displaying constant values

Not only may you be interested in controlling the number of spaces that your
displayed values will occupy, but you may also be interested in displaying the values
either left or right justified (meaning that the value is at the leftmost or rightmost
edge of the region allocated to the variable). Look at the program for this lesson. Can
you determine what format specifiers can be used to left j ustify the variable
output?

When working with very large or very small numbers, scientific notation is
convenient. For example, to represent:

57,650,000

the scientific notation would be:

5.765 × 107

which the C compiler would display as:

5.765e + 007 or 5.765E + 007

By using scientific notation, the C compiler decides the value of the exponent, and
thus it is possible to display an extremely large number in a small number of spaces.
The programmer need only decide on the number of significant digits to display.
When you look at the program for this lesson, see how scientific notation is specified.
Can you determine how to display the correct number of significant digits?

You will also find that there will be times when you will need to use values which do
not change. For instance, we know that PI is approximately 3.1416. For a program
which involves areas of circles, it is convenient to simply write PI in the equations.
This can be done by defining PI as a constant at the beginning of a program. Look at
this program to see how constants are defined. Notice where the define directive
appears in the program. Is there a semicolon at the end of the define directive?

Chapter 3

Source Code

#define DAYS_IN_YEAR 365
#define PI 3.1416
main()
{float income;

printf(“Days in year=\n”
“%+5d \n%-5d \n%1d \n% d \n%d \n%0.5d \n\n”,

DAYS_IN_YEAR, DAYS_IN_YEAR, DAYS_IN_YEAR,
DAYS_IN_YEAR, DAYS_IN_YEAR, DAYS_IN_YEAR);

printf(“PI=\n”
%+9.5f \n%-9.5f \n%1.3f \n%f\n\n”,
PI, PI, PI, PI);

income=1234567890.12;

printf(“income=\n”
“%15.4e \n%-15.4e \n%5.2e \n%e \n%E,n,n”,
income, income, income, income, income):

}

Output

Days in year=
b+365
365bb
365bb
bb365
365bb Note:
00365

PI= b represents blank.
b+3.14160
3.14160bb
3.142 The b’s do not
3.141600

income= appear in the
bbbb1.2346e+009
1.2346e+009bbbb
1.23e+009 actual output
1.234568e+009
1.234568E+009

Chapter 3

Explanation

1. How do we define a constant?

♦ We use a preprocessor directive to define a constant. The preprocessor is a
system program which is part of the C compiler. It performs various
operations prior to the translation of source code into object code. In C,
preprocessing directive begin with the symbol # (which must begin the line).
A semicolon must not be used at the end of the preprocessing directive. Only
the preprocessing directive should be on the line. For example, the line

#define DAYS_IN_YEAR 365

defines DAYS_IN_YEAR as a constant which has a value of 365.

♦ The structure of a define directive is

#define Symbolic_name Value

where the Symbolic_name represents the constant name and Value is the
value assigned to the constant. Note that constants can only be defined one at
a time and their values cannot be altered later in the program using an
assignment or other statements. the preprocessor will replace any
Symbolic_name in the program with the given value. For example, this
symbolic name DAYS_IN_YEAR in the statement

printf(“Days in year=%5d\n”,DAYS_IN_YEAR);

will be replaced by 365 at the very beginning of compilation by the
preprocessor. The statement above will be “re-written” to be:

printf(“Days in year=%5d\n”,365);

The symbolic_name in a define directive is known as a constant macro. For
this example, the constant macro (DAYS_IN_YEAR) is replaced with the
value 365 throughout the program at the very beginning of compilation.

2. How do we name constants?

♦ Constants in C programs are identified by name. The naming convention for
constants is the same as the one for variables. Many C programmers use
uppercase characters to name constants and use lower-case characters to name
variables. This book follows this approach. Constant and variable names are
also called user-defined identifiers. These contrast with standard identifiers
which have special meaning such as printf or scanf.

Chapter 3

3. What is the complete structure of format specifiers?

♦ The complete structure of format specifiers is:

%[flag][fieldwidth][.precision]type

where format string components enclosed by [] are optional . (The characters
[and] are not the part of the format string.) The meanings of these
components may vary slightly from compiler to compiler. The Microsoft C
6.0 Compiler defines the meaning and usage of each component as shown in
the table below. (If you do not use the Microsoft C 6.0 Compiler, you should
check the manual of the compiler you use.)

Component Usage

flag=- Left-justifies the output with the given fieldwidth.

flag=+ Right-justifies the output. Displays plus sign if result is positive.

flag=zero Adds leading zeros to reach minimum fieldwidth.

flag=blank Right-justifies the output. If result is positive, the output begins
with a blank. If result is negative, the output begins with a
minus.

fieldwidth It is an integer which represents the minimum number of
character spaces reserved to display the entire output (including
the decimal point, digits before and after the decimal point, and
sign). If the specified fieldwidth is not given or is less than the
actual field width, all characters of the value, as long as they are
within the limit of precision specification, will be displayed, i.e.,
the fieldwidth specification never “truncate” the output value.

precision For floating data type, precision specifies the number of digits
after the decimal point. The default precision for float type data
is 6. Precision can also be used for integer type data. Here, the
precision specifies he minimum number of digits to be
displayed. If the data to be displayed has fewer digits than the
specified precision, the compiler will add leading zero of the
output.

type=d For int type data.

type=f The output is converted to decimal notation in the format of
[sign]ddd.ddd..., where the number of digits after the decimal
point is equal to the specified precision.

type=e or E The output is converted to scientific notation in the format of
[sign]d.ddd...e[sign]ddd, where the number of digits before the
decimal point is one; the number of digits after the decimal
point is equal to the specified precision; the number of exponent

Chapter 3

digits is 3.

♦ The table below shows the meaning of using different formats for displaying
an int constant DAYS_IN_YEAR=365, a float type constant PI=3.1416, and
a float type constant income = 1234567890.12 (note: the letter b in the
Display column indicates that a blank is displayed).

Chapter 3

Format Flag Field
width

Type Preci
sion

Display Note

%+5d + 5 d none b+365 Right adjusted output, +
sign added, total characters
displayed=5.

%-5d - 5 d none 365bb Flag is -, so output is left adjusted.

%1d none 1 d none 365 Specified fieldwidth is less than the
actual width, all characters in the
value are displayed, no truncation
occurs.

% d blank none d none bb365 Flag is blank, so output is prefixed
with blank, default fieldwidth for
int is 5.

%0.5d zero 0 d 5 00365 Flag is zero, so output is prefixed
with zeros, precision is 5, so the
number of characters to be printed
is 5.

%d none none d none 365 Fieldwidth is undefined, all
characters in the value are
displayed, no truncation occurs. No
blanks are added. Value is left
justified.

%+9.5f + 9 f 5 b+3.141
60

Total digits, including blanks, is 9.

%-9.5f - 9 f 5 3.14160
bb

Flag=-, left adjusted output.

%1.3f none 1 f 3 3.142 Use precision 3, note the result is
3.142, not 3.141.

%f none none f none 3.141600 Use default precision , 6.

%+15.4e + 15 e 4 bbbb1.2
346e+0
09

Flag=+, right adjusted output, total
digits is 15, precision is 4.

%-15.4e - 15 e 4 1.2346e
+009bb
bb

Same as above, but Flag=-, so
output is left adjusted.

%5.2e none 5 e 2 1.23e+0
09

Precision is 2. Fieldwidth is too
short, so C uses minimum
fieldwidth for output.

%E none none E none 1.23456
8E+009

Precision is undefined, so C uses
default precision of 6. Fieldwidth is
too short, so C uses minimum
fieldwidth for output.

Chapter 3

♦ Note that if the specified fieldwidth is not given or is less than the actual field
width, all characters of the value, as long as they are within the limit of precision
specification, will be displayed, i.e., the fieldwidth specification never “truncates”
the output value.

4. How does the Microsoft C compiler convert a float number to a scientific notation?

♦ It converts a float number to scientific notation using the format (d or D
represents a digit):

[sign]d.ddd...e[sign]DDD

where the number of digits before the decimal point is one; the number of digits
after the decimal point is equal to the specified precision; the number of exponent
digits is 3. Note that a number in this form is equivalent to

[sign] d.ddd...*10 [sign]ddd

For example, when we use the format %15.4e, i.e., fieldwidth=15 and
precision=4 to convert the number

123456789.12

to its scientific notation which is

bbbb1.2346e+009

where b represents blank and the number is equivalent to

1.2346*10 9 or
1234600000.0

We lose some accuracy after the conversion because the specified precision is not
high enough.

5. Given the same value and using the same format, will programs created using
different compilers display exactly the same output?

♦ No. In general, given the same value and using the same format, the output

displayed by programs created with different compilers may be slightly different.

Exercises

1. True or False:

Chapter 3

a. The statement printf(“%-3d”,123); displays -123.
b. The statement printf(“%+2d”,123); displays +12.
c. The statement printf(“%-2f”,123); displays 12.0.
d. The statement printf(“%+f.3”,123); displays .123.
e. The format specifier for an int type data should not

contain a decimal point and precision, e.g., %8.2d is
illegal.

Chapter 3

2. Find error(s), in the statements below:

a. #DEFINE Pi 3.1416
b. #define Pi 3.1416;
c. #define PI=3.14; AccuratePI=3.1416;
d. printf(“%f”,123.4567);
e. printf(%d %d %f %f”,1,2,3.3.4.4”);

3. Write a program to display the following output:

12345678901234567890123456789012345

income expense Name
+111.1 -999.99 Tom
+222.2 -999.88 Dennis
+333.3 -777.77 Jerry

4. Use four different flags but the same fieldwidth and precision, four different
fieldwidths but the same flag and precision, and four different precisions but the same
flag and fieldwidth (i.e., a total of 12 format specifiers) to display an int type variable
A and a float type variable B, where A=12345 and B=9876.54321.

Solutions

1. A B C D E
F F F F F

2.
a. #define Pi 3.1416
b. #define Pi 3.1416
c. #define PI=3.14
 #define AccuratePI 3.1416
d. no error
e. no error

Chapter 3

Lesson 3_3 - Arithmetic Statements (1)

Topics:
♦ Operands
♦ Arithmetic operators and their properties
♦ Arithmetic expressions

Arithmetic expressions in c look much like the arithmetic expressions you used in
algebra. The first section of the example program for this lesson shows some of the
operations that can be performed in C arithmetic expressions. Look at this section of the
program and see how addition, subtraction, multiplication and division are performed.

Note that is this section of the program are the statements:

i = i + 1
and

j = j + 1

Clearly, these two statements would not make sense if you were to use them in a math
class. However, in C, not only do these statements (and statements of this type) make
sense, they are actually used quite commonly in programs. What do they mean?

To answer this question you must recall that an assignment statement does. An
assignment statement assigns the value of the expression on the right side of the equal
sign to the variable which is located on the left side of the equal sign. Keep this in mind
as you look at the output from the first printf statement and determine what the
statements i=i+1 and
j=j+1 do.

In the second section of this program are expressions with operators whose functions are
not quite so obvious. The % sign is especially tricky. See if you can figure out what it
does. (Hint: it has something to do with division.)

Also the ++ and -- are operators, but there are no equal signs in the statements for these.
They do, though, have an impact on the values of the variables either preceding or
succeeding them. What effect do they have on these variables?

Source Code

main()
{int i,j,k,l,m,n;

float a,b,c,d,e,f,g,h,x,y;

i=5; j=5;

Chapter 3

k=11; l=3;
x=3.0; y=4.0;

printf(“...... Initial values\n”);
 printf(“i=%4d, j=%4d\nk=%4d, l=%d\nx=%4.2f, y=%4.2f\n\n”,

i,j,k,l,x,y);

/*--------------- Section 1 ---------------*/
a=x+y;
b=x-y;
c=x*y;
d=x/y;
e=d+3.0;
f=d+3;
i=i+1;
j=j+1;

printf(“...... Section 1 output\n”);
printf(“a=%5.2f, b=%5.2f\nc=%5.2f, d=%5.2f\n”
“e=%5.2f, f=%5.2f\ni=%5d, j=%5d \n\n”,
a,b, c,d, e,f, i,j);

/*--------------- Section 2 ---------------*/
m=k%1;
n=1%k;
i++;
++j;
e--;
--f;

printf(“...... Section 2 output\n”);
printf(“m=%4d, n=%4d\ni=%4d, j=%4d\n”
“e=%4.2f, f=%4.2f\n”,m,n, i,j, e,f);

}
Output

...... Initial values

i= 5, j= 5
k= 11, l= 3
x=3.00, y=4.00

...... Section 1 output

a= 7.00, b=-1.00
c=12.00, d= 0.75
e= 3.75, f= 3.75
i= 6, j= 6

...... Section 2 output

m= 2, n= 3
i= 7, j= 7

Chapter 3

e=2.75, f=2.75

Chapter 3

Explanation

1. What is an arithmetic expression?

♦ An arithmetic is a formula for computing a value. For example, the expression
x+y computes x plus y.

2. What are the components of an arithmetic expression?

♦ An arithmetic expression consists of operand(s) and operator(s). For example, the
expression -x+y consists of two operands x and y and two operators + and -.

3. What can be an operand?

♦ An operand can be a variable, such as x or y, or a constant, such as 3.1416, or
anything that represents a value, such as a function (see lesson 3_5 for details).

4. What are the meanings of the operators ++, -- and %?

♦ ++ is an increment operator which can be placed before or after (but not both) a
variable. The operator will increase the value of the variable by one. For example,
assuming a variable i is equal to one, then after the statement

i++; or
++i;

is executed, the value of i will become 2. Note that the C statement

i++; or
++i;

can be understood as the statement

i=i+1;

which also causes the value of the variable i to increase by one. Similarly, the
operator -- is a decrement operator which decreases the value of a variable by
one. Also, the statement

i--; or
--i;

can be understood as the statement

i=i-1;

Chapter 3

% is a remainder operator which must be placed between two integer variables or
constants. Assuming k and l are two integer variables, the meaning of k%l is the
remainder of k divided by l. For example, if k=11 and l=3, then k%l is equivalent
to 11%3, which is equal to 2. The operator % is pronounced “mod”. So the
above example would be k mod l.

5. Is an arithmetic expression a complete C statement and how are arithmetic
expressions used in assignment statements?

♦ An arithmetic expression is not a complete C statement. The expression is only a
component of a statement. The value evaluated from the expression may be stored
in a variable using an assignment statement. For example, the arithmetic
expression x/y is part of a C assignment statement

d = x/y;

The statement assigns the value obtained from the arithmetic expression on the
right to the variable on the left. Thus, the assignment statement

i=i+1;

while not looking correct algebraically, is a valid C assignment statement. The
arithmetic expression i+1 creates a new value which is one greater than i . The
assignment statement gives i this new value.

Exercises

1. True or False:

a. a+b is a correct arithmetic expression.
b. is a complete C statement.
c. If a=5, then a is equal to 6 after a++; is executed.
d. is equal to 2 and 3%5 is equal to 3.
e. is equal to 2 and 3.0%5 is equal to 3.0.
f. The meaning of the equal sign, =, in the statement

a = x+y;.
is equal, i.e., a is equal to x+y.

2. Write a program to calculate your expected average GPA in the current semester and
 display your output on the screen.

Solutions

1. A B C D E F
T T T T F F

Chapter 3

Lesson 3_4 - Arithmetic Statements (2)

Topics:
♦ Precedence of arithmetic operations
♦ Initializing variables
♦ Pitfalls in arithmetic statements

Before variables can be used in arithmetic expressions they must first be given numerical
values. Giving variables their first numerical values is called initializing them. We will
find that there are several different ways to initializing them. What are the two
different ways shown in this program for initializing variables?

In the following program, the arithmetic expressions 6/4 and 6/4.0 are used twice each.
The variables on the left side of the assignment statements using these expressions are
either float or integer. Look at the output for these variables. Can you guess how the
declared data type (float or int) influences how the C compiler assigns values to the
variables? (Hint: an integer must always be an integer. It cannot be assigned a real
value.)

Also included in the program are the compound operators +-, -=, *=, /=, and %=. By
looking at the output for k1, k2, k3, k4, and k5, you can deduce what these operators do?

In this program are assignment statements using the ++ and -- operators. When trying to
determine what these statements do, remember that assignment statements take the value
of the EXPRESSION on the right side of the equal sign and give that value to the
VARIABLE on the left side of the equal sign. Note that initially, both i and j are equal to
1. Are the values of the EXPRESSIONS i++ and ++j t he same? What does that
tell you about how the C compiler defines the VALUES OF THESE TYPES OF
EXPRESSIONS? Also, note what has happened to the values of i and j after execution
of these statements.

You have learned in your math classes that parentheses can be used in arithmetic
expressions to control the order in which the operations are performed. Similarly, you
can use parentheses in your C code to control the order of performance of operations.
Also, C has strict rules about the order of operation of addition, subtraction,
multiplication and division. These rules are established by setting the “precedence” of the
operators.

Operators which have high precedence are executed first while those of lower precedence
are executed later. For two operators of equal precedence, the one that is leftmost in the
expression is executed first. Use your calculator to calculate the values of X, Y, and Z in
the program below. Can you determine which operators are of higher precedence -
addition, subtraction, multiplication or division? (Hint: Addition and subtraction have
the same precedence and multiplication and division have the same precedence.)

Chapter 3

Source Code

main()
{int i=1, j=1,]

k1=10, k2=20, k3=30, k4=40, k5=50,
k, 1, m, n;

float a=7, b=6, c=5, d=4
e, p, q, x, y, z;

printf(“Before increment, i=%2d, j=%2d\n”,i,j);

k=i++;
l=++j;

printf(“After increment, i=%2d, j=%2d”
“ k=%2d, l=%2d \n\n”,i,j,k,l);

m=6/4;
p=6/4;
n=6/4.0;
q=6/4.0;

printf(“m%2d, p=%3.1f\nn=%2d, q=%3.1f\n\n”,m, p, n,
q);
printf(“Original k1=%2d, k2=%2d, k3=%2d, k4=%2 k5=%2d\n”

k1,k2,k3,k4,k5);

k1 += 2;
k2 -= i;
k3 *= (8/4);
k4 /= 2.0;
k5 %= 2;

printf(“New k1=%2d, k2=%2d, k3=%2d, k4=%2d, k5=%2d\n\n”,
k1,k2,k3,k4,k5);

e= 3;
x= a + b -c /d *e;
y= a +(b -c) /d *e;
z=((a + b)-c /d)*e;

printf(“a=%3.0f, b=%3.0f, c=%3.0f\nd=%3.1f, e=%3.1f\n\n”,
a,b,c,d,e);

printf(“x= a + b -c /d *e = %10.3f \n”
“y= a +(b -c) /d *e = %10.3f \n;
“z=((a + b)-c /d)*e = %10.3f\n”, x,y,z);

}

Chapter 3

Output

Before increment, i= 1, j= 1
After increment, i= 2, j= 2,

k= 1, l= 2
m= 1, p=1.0
n= 1, q=1.5

Original k1=10, k2=20, k3=30, k4=40, k5=50
New k1=12, k2=18, k3=60, k4=20, k5= 0

a= 7, b= 6, c= 5
d=4.0, e=3.0

x= a + b -c /d *e = 9.250
y= a +(b -c) /d *e = 7.750
z=((a + b)-c /d)*e =35.250

Explanation

1. How do we initialize variables?

♦ Method 1: use an assignment statement to initialize a variable, e.g.,

e=3;

♦ Method 2: initialize a variable in a declaration statement, e.g.,

float a=7, b=6;

2. Assuming that int variables i and j are equal to 1, is the meaning of k = i++; the
same as l = ++j?

♦ No. In the first statement, the value of i is first assigned to the variable k. After
the assignment, the variable i is incremented by the post-increment operator ++
from one to two. Therefore, after execution the first statement, i=1 and k=2.
However, in the second statement, the value of j is fist incremented by the pre-
increment operator ++ from one to two. After the increment, the new j value,
which is equal to two now, will be assigned to the variable l. Therefore, after
executing the second statement, j=2 and l=2.

In other words, the statements

k=i++;

is “equivalent to” statements

k=i;

Chapter 3

i=i+1;

However, the statement

l=++j;

is “equivalent to” statements

j=j+1;
l=j;

♦ In other words, even though both expressions (i++ and ++i) cause the value of i
to be increased by one, the value of the expression i++ is equal to the value of i
prior to the increase while the value of the expression ++i is equal to the value of
i after the increase. For example, for the statements:

h=7;
i=7;
j=i++;
k=++h;

The value of j is 7 and the value of k is 8 because j and k are assigned the values
of the expressions i++ and ++j, respectively. Note that after executing the above
four statements, the values of h and i are 8.

3. What is the value of 6/4 or 6/4.0 or 6.0/4?

♦ When one integer is divided by another integer, the fraction part of the quotient is
discarded. Therefore, 6/4 is equal to 1. If the result is assigned to an int type
variable m, the value of m will be 1; If the result is assigned to a float type
variable p, the value will be 1.0. Clearly, this may not be the result that you
would like to get for p. Read further to see how you can get different result for a
similar calculation.

♦ In an arithmetic expression, if one operand is of int type and the other is of f loat

type, the int type operand will be converted first to the float type before the
expression is evaluated. Therefore, for the expression 6/4.0 or 6.0/4 both
operands will be converted to 6.0/4.0 which is equal to 1.5. If the result is
assigned to an int type variable n, the value of n will be 1 (the fraction part is
discarded). If the result is assigned to a float type variable, the value will be 1.5.

♦ There is a very important lesson in this. When you are writing your code and a

float type variable is on the left side of an assignment statement, to be safe, you
should use decimal points for any numbers on the right side of the assignment
statement. You may get the correct results without using decimal points, but we
recommend that you use decimal points until you feel comfortable with mixed

Chapter 3

variable type arithmetic (you may also convert an integer number to a number
with a decimal point and vice versa, see Chapter 8 for details).

Also, when an int type variable is on the left side of an assignment statement, it is
necessary that you make sure that the arithmetic expression on the right side of
the assignment statement is an integer value or that you are deliberately dropping
the fractional part.

4. What are the meanings of operators +=, -=, *=, /=, and %=?

♦ The operators +=, -=, *=, /= and %= are compound assignment operators. Each of
them performs an arithmetic operation and an assignment operation. These
operators require two operands, the left operand must be a variable, the right one
can be a constant, a variable, or an arithmetic expression. In general, the two
operands can be of integer or floating data type. However, the %/ operator
requires that its two operands must be of integer type.

♦ The meaning of

k1+=2;
(not k1 =+ 2;) can be understood to be similar to the statement

k1=k1+2;

If the original value of k1 is equal to 20, the new value will be 20+2 or 22.
Similarly, the statements above are also valid if we replace the arithmetic
operator + with operators -, *, /, or %. For example,

k1*=2;

is similar to

k1=k1*2;

5. How do we control precedence in an arithmetic expression?

♦ Parentheses can be used to control precedence. Any arithmetic operators located
within the parentheses always have higher precedence than any outside the
parentheses. When an arithmetic expression contains more than one pair of
parentheses, the operators located in the innermost pair of parentheses have the
highest precedence. For example, the + operator in the statement

z = ((a+b)-c/d);

has higher precedence than the - or / operator and a+b will be evaluated first.

6. What will happen if all operators have the same level of precedence?

Chapter 3

♦ If all arithmetic operators are of equal precedence in an arithmetic expression, the
leftmost operator is executed first.

7. Can we use two consecutive arithmetic operators in an expression?

♦ We cannot use two consecutive arithmetic operators in an arithmetic statement
unless parentheses are used. For example, x/-y is not permissible but x/(-y) is
permissible.

8. What operators can be used in an arithmetic expression?

♦ The table below shows the operators along with their properties that can be used
in an arithmetic expression:

Arithmetic Operators

Operator Name Number of
operands

Position Associatively Precedence

(parentheses unary prefix L to R 1

) parentheses unary postfix L to R 1

+ positive sign unary prefix L to R 2

- negative sign unary prefix L to R 2

+ post-increment unary postfix L to R 2

-- post-decrement unary postfix L to R 2

+ pre-increment unary prefix R to L 2

-- pre-decrement unary prefix R to L 2

+= addition &
Assignment

binary infix R to L 2

-= subtraction &
Assignment

binary infix R to L 2

*= multiplication
& Assignment

binary infix R to L 2

/= division &
Assignment

binary infix R to L 2

%= remainder &
Assignment

binary infix R to L 2

% remainder binary infix L to R 3

* multiplication binary infix L to R 3

Chapter 3

/ division binary infix L to R 3

+ addition binary infix L to R 4

- subtraction binary infix L to R 4

= assignment binary infix R to L 5

9. What are the meaning of number of operands, position, associatively, and precedence
in the table above?

♦ Number of operands: It is the number of operands required by an operator. A
binary operator, such as /, requires two operands while a unary operator, such as
++, needs only one.

♦ Positions: It is the location of an operator with respect to its operands. For a unary
operator, its position is prefix if the operator is placed before its operand and
postfix if it is placed after its operand; for a binary operator, the position is infix
because it is always placed between its two operands. For example, the negation
operator is -x is prefix, the post-increment operator in y++ is postfix, and the
remainder operator in a %b is infix.

♦ Associatively: It specifies the direction of evaluation of the operators with the
same precedence. For example, the operators + and - have the same level of
precedence and both associate from left to right, so 1+2-3 is evaluated in the
order of (1+2) -3 rather than 1+(2-3).

♦ Precedence: It specifies the order of evaluation of operators with their operands.

Operators with higher precedence are evaluated first. For example, the operator *
has higher precedence than -, so 1-2*3 s evaluated as 1-(2*3) rather than (1-2)*3.
Note that in this example the ‘-’ indicates subtraction and is a binary operator
with precedence 4. The ‘-’ can also be used as a negative sign which is a unary
operator with precedence 2. For example, -2+3*4 is evaluates as (-2)+(3*4) rather
than -(2+3*4)).

10. What is a side effect?

♦ The primary effect of evaluating an expression is arriving at a value for that
expression. Anything else that occurs during the evaluation of the expression is
considered a side effect.

For instance, the primary effect of the C statement (assuming i is originally 7)

j = i++;

is that the expression on the right side of the assignment statement is found to
have a value of 7. The side effect of the above statement is the value of i is
incremented by one (to make i equal to 8). Consider the following C statement:

Chapter 3

j = (i=4) + (k=3) - (1=2);

Its primary effect is to arrive at the value of the expression on the right side of
the assignment statement (which is 5). It has three side effects which occur during
the evaluation of the expression. They are to:

1. Set i equal to 4
2. Set k equal to 3
3. Set 1 equal to 2

11. What are the dangers of side effects?

♦ At times, side effects can be confusing. For the statement

k = (k=4) * (j=3);

the result of k will be 12 instead of 4. It is best not to use side effects except in
their simplest form such as:

i = j++;
or

i = j = k = 5;

Note that because the associatively of the assignment operator is from right to
left, multiple assignment statements such as the one above can be written. The
order of operation is:

1) k = 5
2) j = k
3) i = j

Also, an expression

i = j = k = 2 + n + 1;

is evaluated in the order

1) k = 2 + n + 1;
2) j = k;
3) i = j;

because the addition operation has a higher precedence than the assignment
operator.

Exercises

Chapter 3

1. Based on the following statements

int i=10, j=20, k, m,n;
float a,b,c,d,e=12.0;

Determine whether each of the following statements is true or false:

a. i =+ 2; is a valid C statement.
b. i %= e; is a valid C statement.
c. i *= (i+j*e/123.45); is a valid C statement.
d. k=i/j; k is equal to 0.5.
e. i+=j; i is equal to 30 and j is equal to 20.
f. k=1/3+1/3+1/3; is equal to 1.
g. k=1/3.+1.0/3+1.0/3.0 is equal to 1.
h. a=1/3+1/3+1/3 is equal to 1.0.
i. a=1./3+1/3.+1.0/3.0 is equal to 1.0.

2. Hand calculate the values of X, Y, and Z in the program below and then run the
program to check your results.

Chapter 3

main()
{

float a=2.5,B=2,C=3,D=4,E=5,X,Y,Z;
X= a * B - C + D /E ;
Y= a * (B - C) + D /E ;
Z= a * (B - (C + D) /E) ;
printf(“X= %10.3f, Y= %10.3f, Z=%10.3f”,X,Y,Z);

}

Solutions

1. A B C D E F G H I
F F T F T F F F T

Chapter 3

Lesson 3_5 - Library Functions (math)

Topics:
♦ Double data type
♦ Library Functions
♦ Using standard header file

Your calculator makes it very easy for you to perform such operations as sin, log, and
square root by having single buttons for them. Similarly, the C compiler makes it easy
for you to perform these operations by providing mathematical li brary functions which
you can call from your program. This lesson illustrates the use of some of these library
functions. Note that just like the printf function, these library functions require
parentheses for enclosing the argument(s).

Use your calculator to verify the results obtained in the output for this lesson. What are
the necessary units for the argument for the sin function? What kind of log does the log
function take?

The C compiler has these functions in its library, but it is necessary for you to tell the
compiler more information about them. Can you guess which statement in this program
tells the C compiler where the extra information is located?

We have previously discussed float and int type variables. In this lesson, the double type
variable is introduced. Compare the output for the variables c and g for this lesson. They
are different. Which is more accurate? Use your calculator to check this.

Source Code
#include <math.h>
main()
{double x=3.0, y=4.0, a,b,c,d,e,f;

float g;

a=sin(x);
b=exp(x);
c=log(x);

d=sqrt(x);
e=pow(x,y);
f=sin(y)+exp(y)-log10(y)*sqrt(y)/pow(3.2,4.4);
g=log(x);

printf(“x=%4.1f y=%4.1f \n\n\
a=sin(x) = %11.4f\n\
b=exp(x) = %11.4f\n\
c=log(x) = %11.9f\n\n\
d=sqrt(x) = %11.4f\n\
e=pow(x,y) = %11.4f\n\

Chapter 3

f=sin(y)+exp(y)log10(y)*sqrt(y)/pow(3.2,4.4) = %11.4f\n\n\
g=log(x) = %11.9f\n”,x,y, a,b,c,d,e,f,g);

}

Output

x= 3.0 y= 4.0

a=sin(x) = 0.1411
b=exp(x) = 20.0855
c=log(x) = 1.098612289

d=sqrt(x) = 1.7321
e=pow(x,y) = 81.0000
f=sin(y)+exp(y)-log10(y)*sqrt(y)/pow(3.2,4.4)=

53.8341

g=log(x) = 1.098612309

Explanation

1. What is the difference between the double and the float data types?

♦ The double data type is another floating-point data type in C. Unlike the float
data type which is for a single-precision real constant, the double data type is for
a double-precision real constant. Essentially, variables which are declared as
being data type carry more significant digits with them during calculations than
do variables which are declared as float data type. Carrying a large number of
digits may be important when a large number of calculations are to be done. The
drawback in declaring all variables as being of the double data type is that more
memory is required to store double data type variables than float type variables.

Consider the following example which illustrates the effect of the number of
digits carried in a calculation. You should try this on your calculator. Suppose
you are multiplying a number by π 100 times. You will essentially be computing
π100. The influence on the number of significant digits used for π is the following.
Using 5 significant digits for π gives:

(3.1416) 100 = 5.189061599 * 10 49

while using 8 significant digits for π gives:

(3.1415926) 100 = 5.187839464 * 10 49

Here, it can be seen that the first estimate of π has five significant digits,
however, (3.1416)100 is accurate only for the first three digits. This illustrates that
accuracy is reduced after numerous arithmetic operations. Since one computer
program can easily do one million operations, one can begin to understand the

Chapter 3

need for initially carrying many digits. Note that for this lesson’s program, it was
not necessary to declare the variables to be the double data type. The float data
type would have been sufficient. Float and double data types are compared in the
table below. Note that the double data-type can store greater values than the
float data type:

Chapter 3

Item Float Double

Required memory 4 bytes 8 bytes

Values 1.17549944E-38 to
3.4028235E+38

2.2250738E-308 to
1.7976935E+308

Precision 6 15

Simplest format %f, %e, %E %1f, %e, %E

♦ Given the low precision of the float data type, we recommend that you use double
in your program. We will see that there are numerous other data types in C.
Through this text we will i ntroduce the different data types and when it is
appropriate to use them.

♦ Note that the simplest double format is %1f. This format is used extensively

throughout this book. It is also acceptable to use %f with the printf function,
however, %f is not acceptable for the scanf function which is covered in the next
lesson.

2. What are the meanings of the functions in this lesson?

♦ The meaning of these C mathematical li brary functions are shown below (note
that the input argument(s) x or y and the return value of each of these functions
are of double type.

Function name Calculating

sin(x) the sine of x, x is in radians

exp(x) the natural exponential of x

log(x) the natural logarithm of x

sqrt(x) the square-root of x

pow(x,y) x raised to the power of y

There are other mathematical C library functions which may take different types of data
as input and may return different types of data as output. In general, C library functions
may vary slightly from compiler to compiler. You should check your C compiler manual
for details). The table below lists a few more math library functions.

Chapter 3

Function
name

Example Description

abs(x) y=abs(x); Gets the absolute value of an int type argument, x
and y are of type int.

fabs(x) y=fabs(x); Gets the absolute value of a double type
argument, x and y are of type double.

sin(x) y=sin(x); Calculates the sine of an angle in radians, x and y
are of type double.

sinh(x) y=sinh(x); Calculates the hyperbolic sine of x, x and y are of
type double.

cos(x) y=cos(x); Calculates the cosine of an angle in radians, x
and y are of type double.

cosh(x) y=cosh(x); Calculates the hyperbolic cosine of x, x and y are
of type double.

tan(x) y=tan(x); Calculates the tangent of an angle in radians, x
and y are of type double.

tanh(x) y=tanh(x); Calculates the hyperbolic tangent of x, x and y are
of type double.

log(x) y=log(x); Evaluates the natural logarithm of x, x and y are of
type double.

log10(x) y=log10(x)
;

Evaluates the logarithm to the base 10 of x x and
y are of type double.

3. How do we use C mathematical functions?

♦ To use C math functions, you need to add the following statement:

#include <math.h>

at the beginning of your program. The statement begins with the character #,
followed by the lower-case word ‘include’, and open angle bracket, the filename
to be included, and ends with a closed angle bracket. The filename within the
coupled angle brackets is a standard header file provided by the C compiler.

4. What is a header file?

♦ A header file is an ASCII f ile which has an extension ‘.h’. In general, a header is
a collection of information and is referred to at the beginning of a C program. For
example, the header file ‘math.h’ contains constant definitions and C function
declarations for the math library. By default, the file is usually located in the
‘\INCLUDE’ sub directory. For Microsoft C Version 6.0, math.h is a 107 line
file. For example, the file contains the prototype of the exponential function,
pow(x,y), which looks something like

Chapter 3

double pow(double, double);

the first double tells you that the pow() function returns a double type output; the
second and the third indicate that the pow() function must have two double
parameters as input. By calling the header file at the beginning of a program, we
inform the compiler that we may use some of the library functions in the header
file. The compiler will select those needed functions and connect it to your
program during compilation.

5. What is a C preprocessor directive?

♦ The include statement is, strictly speaking, not a standard C statement because it
does not end with a semicolon ‘;’. In reality, the statement is called a C
preprocessor directive because it directs the C compiler to do some pre-
processing work before compiling. For example, when the C compiler sees

#include <math.h>

it first looks for the header file math.h, if the file is found, the compiler will “put”
the relevant part of math.h file in the place where the include directive is located.
As an experiment, you may delete the include directive from 3_4.C, replace it
with the 107 line math.h header file copied from \include\math.h, and then
compile the C file. If you do not make any mistakes, the new 3_4.EXE file not
only has the same size as the old one, but also generates the same output.
However, your new 3_4.C source code is much larger than our old 3_4.C and
looks cumbersome to read. By now you believe hat using an include directive is a
much better way to deal with an external header file.

6. What are the advantages of using the include directive?

♦ You don’t need to write a library function yourself.
♦ Your program and the library functions are two independent programs.
♦ Your program is short.
♦ The header file need only be typed once and can be used by many C programs.
♦ You have more flexibility and freedom to update you program.

7. How does the C compiler find a header file?

There are two methods to guide your C compiler to find the header file.
♦ Method 1: Write the full path of the header file in your source code. For

example, if your math.h file is in the C:\MC6\INCLUDE directory, then you
could type

#include <C:\MC6\INCLUDE\math.h>

Chapter 3

at the beginning of your program.

♦ Method 2: Type a SET command such as

SET INCLUDE=C:\MC6\INCLUDE

before you compile your program. The set command is a DOS command and sets
the DOS system environment so that the C compiler can find where the include
files are. It can also be part of the AUTOEXEC.BAT file which is executed
when your computer boots. Typically, this command is put into the
AUTOEXEC.BAT or other BATCH files.

Exercises

1. True or False:

a. #include <Math.H> is a correct C preprocessor
directive.
b. A header file must be placed at the beginning of a C

program.
c. In C, the value of sin(30) is equal to 0.5.
d. In C, the value of log(100) is equal to 2.0.

2. Find math.h in your C compiler include directory. Then copy and paste it to the
program below. Compile, link and run the program. Do you get the same output as
the one from C3_4.EXE? Compare the sizes of the source code, object code, and the
executable code of the program below and C3_4.C program. Summarize your
findings.

/* Copy the MATH.H file (without modification)
 below this line */

main()
{float x=3.0,y, z;

y = 4.0;
z=pow(x,y);
printf(“x=%4.1f, y=%4.1f, pow(x,y)=%7.2f”,x,y,z);

}

3. The program below can be compiled and linked without error. But you get an error
message when you run it. Why?

#include <math.h>
main()
{float X=-111.11, Y=0.5, Z;

Z=pow(X,Y);
printf(“X=%10.2f, Y=%10.2f, Z=%10.2f\n”,X,Y,Z);

}

Chapter 3

4. Write a program to calculate the unknown values below:

Alpha(degree) Alpha(radian) sin(2*Alpha)
30.0 ? ?
45.0 ? ?

Solutions

1. A B C D
T F F T

Chapter 3

Lesson 3_6 - Input Data From Keyboard

Topics:
♦ Using the scanf() function
♦ Inputting data from the keyboard
♦ The address operator ‘&’

None of the programs in any of the previous lessons have had input going into them
during execution. These programs had only output, and for these the output device was
the screen (or monitor). Most commonly, your programs will have both input and output.
Your program can instruct the computer to retrieve data from various input devices.
Input devices include:

1) the keyboard
2) a mouse
3) a joystick
4) the hard disk drive
5) a floppy disk drive

to name a few. The program below illustrates how input can be retrieved by a C program
from the keyboard. Programs which have input from the keyboard create a dialogue
between the program and the user during execution of the program. Examine this
program and see how a dialogue can be established between the program and the user.
What does the scanf function do in the program below?

Source Code

main()
{double income, expense;

int month, hour, minute;

printf(“What month is it?\n”);
scanf(“%d, &month);
printf(“You have entered month=%5d\n”,month);

printf(“Please enter your income and expenses\n”);
scanf(“%1f %lf”,&income,&expense);
printf(“Entered income=%8.21f, expenses=%8.21f\n”,

income,expense);

printf(“Please enter the time, e.g.,12:45\n”);
scanf(“%d : %d”,&hour,&minute);

printf(“Entered Time = %2d:%2d\n”,hour,minute);
}

Chapter 3

On Screen Dialogue

Program Output What month is it?
Keyboard input 12
Program output You have entered month = 12
Program output Please enter your income and expenses
Keyboard input 32 43

Program output Entered income = 32.00, expenses= 43.00
Program output Please enter the time, e.g., 12:45
Keyboard input 12:15
Program output Entered Time = 12:15

Explanation

1. How do we input data from the keyboard?

♦ An easy way to input data from the keyboard is by using the scanf() function. The
syntax of the function is

scanf(format string, argument list);

where the format string converts characters in the input into values of a specific
type, the argument list contains the variable(s) into which the input data are
stored, a comma must be used to separate each argument in the list from the
other. For example, the statement

scanf(“%1f%1f,&income,&expense);

will convert the first input data to double type value using the %1f format
specifier and store the double value in the variable income. Similarly, the second
input is stored in the variable expense. Note that you must precede each variable
name with an & when you read a value. The reason is that the argument in the
scanf() function uses a pointer to the variable (which will be discussed in Chapter
7). For now, you don’t need to understand the concept of pointers to use the
scanf() function. Just remember to add & in front of the variable. If you want to
read an int type variable, use %d instead of %1f as the format specifier.

2. What are the components of a format string in the scanf() function?

♦ The format string may consist of format specifiers, such as %d or %1f, blanks,
and character(s) to be input. If the format string contains character(s), you must
match the character(s) when you input from the keyboard. For example, the
statement

Chapter 3

scanf(“%d : %d”,&hour,&minute);

contains a colon “”:” in the format string, if you want to input hour=12 and
minute=34, the valid input is

12 : 34

If you omit the colon, the data are read incorrectly. In general, the format string
in the scanf() function should be kept as simple as possible. Otherwise you will
have trouble to correctly input your data.

Exercises

1. Based on the statements

int cat, dog;
double weight;

find error(s) in each of the statements below:

a. scanf(“%d %d”),cat,dog;
b. scanf(%d %d,cat,dog);
c. scanf(“%d %f”,cat,dog);
d. scanf(“%d %d”,&cat,&dog);
e. scanf(“%d,\n, %1f”,&cat,&weight);

2. Write a program to input all your grades in the last semester from the keyboard and
then display your input and the average GPA on the screen.

Solutions

1.
a.scanf(“%d %d”,&cat,&dog);
b.scanf(“%d %d”,&cat,&dog);
c.scanf(“%d %d”,&cat,%dog);
d.no error.no error, but you have to type in two commas

when you input the data.

Chapter 3

Lesson 3_7 - Input Data From File

Topics:
♦ Opening and closing a file
♦ Reading data from a file
♦ Using the fscanf() function

You will find that if your input data is lengthy and you are planning to execute your
program many times, it is not convenient to input your data from the keyboard. This is
especially true if you want to make only minor changes to the input data each time you
execute the program.

For instance, if your income is the same every month and only your expenses change, it
is cumbersome to repeatedly type the same number for each month. It is more convenient
to set up a file (which can be created using a word processing type program, also called
editor) which has your income and expenses in it. Your program can read that file during
execution instead of receiving the input from the keyboard. If you want to rerun the
program with different input data, you can simply edit the input file first and then
execute the program.

This lesson’s program illustrates how to read data from an input file. In the program
below, the file name is C3_7.IN. You must remember, though, that when you create your
input file using your editor that you give that file the same name that you have specified
in the code for your program. When you execute your program, the C compiler searches
for a file of that name and reads it. If that file does not exist, the C compiler will give
you an error message when you execute your program.

Look at the program below. What is the name of the standard function used to read a
file?
You also need to open your file before you use it. Can you see which statements are used
to open your file? Can you see which statement is used to close your file?

Source Code

#include <stdio.h>
main()
{double xx;

int ii, kk;
FILE *inptr;
inptr=fopen (“C3_7.IN”,”rt”);

fscanf(inptr,”%d”,&ii);
fscanf(inptr,”%d %1f”,&kk,&xx);

fclose(inptr);

Chapter 3

printf(“ii=%5d\nkk=%5d\nxx=%9.31f\n”,ii, kk, xx);
}

Chapter 3

Input file C3_7.IN
36
123 456.78

Output
ii= 36
kk= 123
xx= 456.780

Explanation

1. What are file and FILE?

♦ A file is a collection of information in an electronic format. It may contain your
personnel data, a CIA secret document, or Hollywood’s latest video movie.
Information in a file is stored in certain section(s) of external device(s), such as
tapes or disks. Unlike a number, such as +1234, which can be determined by its
size and sign, a file is more complicated and contains more features. For example,
a file must have a name so that you or a computer can identify it. A file may be
opened for reading, i.e., get data from it, or writing, i.e., store data in it. A file
can be in text format, such as the source code of this program, 3_7.C, or binary
format, such as the execution code of this program, 3_7.EXE. In addition, a file
needs a temporary storage area to declare its size and other information so that it
can be placed correctly by the computer operating system. In order to keep all of
these features in one place, C “invents” a new data type (in reality it is a data
structure, this will be explained in more detail i n Chapter 8) named name FILE
which is somewhat similar by slightly more complicated than the other data types
you have learned, such as int and float.

♦ FILE is a C derived data type defined in the C standard header file stdio.h. To

include stdio.h, we need to add an include directive

#include <stdio.h>

at the beginning of the program. Without the include file, stdio.h, the C compiler
will not understand what FILE stands for and will generate an error message.

♦ When you want to manipulate a file, you use the C data type FILE to declare a
special type of variable called file_pointer (see note 3 below), and then use this
file_pointer to handle your file. This means that there is no direct relation
between the C data type FILE and your actual file, i.e., you cannot use the
following statement

FILE “3_7.IN”;

Chapter 3

to declare your file. Instead, you must use FILE to declare a file_pointer, and then
use the file_pointer to manipulate your file. The process is schematically shown
below:

FILE → file_pointer → actual_file

2. What function is most commonly used to read data from a file?

♦ In C, we usually use the fscanf() function to read data from a file. In general, the
syntax of the fscanf() function is

fscanf(file_pointer, format_string, argument_list);

The fscanf() function reads all the contents in the argument_list using the given
format_string from a file which has a file pointer of f ile_pointer (see note 3 for
explanation of file pointer). For example, in the statement

fscanf(inptr, “%d %1f”,&kk,&xx);

the values in the argument list, kk and xx, are read using a format string

“ %d %1f”

from an external file which has a file pointer called inptr. Note that all i nput
argument names must be preceded with an &.

3. What is a file pointer?

♦ A file pointer is a topic which will be discussed in detail i n Chapter 7. For now,
just remember that a file pointer is a variable name which must be preceded by n
asterisk when you define it and must be defined in a statement that begins with
FILE. For example, the statement

FILE *intptr;

declares *inptr to be a file pointer. The naming convention for file pointers
(except the asterisk character) is the same as the naming convention for other C
conventional data types. Examples of legal and illegal file pointer names are
shown below:

Legal file pointers: FILE *apple, *IBM93, *HP7475;
Illegal file pointers: FILE *+apple, *93IBM, 75HP75;

4. What function is used to open an input file?

Chapter 3

♦ Before input can be red from an external file, the file must be opened using the
fopen() function whose syntax is:

file_pointer = fopen (file_name,access_mode);

For example, in the statement

inptr = fopen (“C3_6.IN”,”rt”);

the file_name is C3_6.IN, the file_pointer is named inptr, and the access_mode is
“rt”, where ‘r’ mans the file is opened for reading and ‘t’ means the input is read
in text mode. You may choose any valid name for file_pointer or file_name to
open a file. Note that the file_name and the access_mode are character strings.
Hence, they must be enclosed with a pair of double quotes. However, the file
pointer is not a character string, so no double quotes surround inptr.

5. Do we need to close an input file?

♦ It is good practice to close files after they have been used. However, if no fclose()
statements are used, C will automatically close all open files, after execution is
completed. To close a file, use the fclose() function whose syntax is

fclose(file_pointer);

Note that, the function uses the file pointer, not the filename, to close a file. For
example, the statement

fclose(inptr);

uses file pointer intpr to close the file 3_7.in.

Exercises

1. True or False:

a. We use the scanf() function to read input from the
keyboard.

b. We use the fscanf() function to read input from a file.
c. You must open an external file before you can read your

input data.
d. It is a good practice to close an input file once you

do not need it.
e. You must define a file pointer before you can open the

file.

2. Find error(s), if any, in each statement below.

Chapter 3

a. #INCLUDE <stdio.h>.
b. file myfile;.
c. *myfile = fopen (C3_6.DAT,rt);.
d. fscanf(“myfile”,”%4d %5d\n”,WEEK,YEAR);.
e. close(“myfile”);.

3. Write a program to read your grades from last semester from an input file named
“4GRADE.REP” which has one line of data consisting of 4 grades only (no
characters), e.g.,

4.0 3.3 2.7 3.7

compute your average GPA, and write all the input and average GPA on the screen
and in a report file named “MYGRADE.REP”.

Chapter 3

Solutions

1. A B C D E
T T T T T

2.
a. #include <stdio.h>
b. FILE *myfile;
c. myfile = fopen (“C3_6.DAT”,”rt”);
d. fscanf(myfile,”%4d %5d\n”,&WEEK,&YEAR);
e. fclose(myfile);

Chapter 3

Lesson 3_8 - Output Data to File

Topics:
♦ Writing data to a file
♦ Using the fprintf() function

Previous programs have displayed all of their output to the screen. This may be
convenient at times, however once the screen scrolls or clears, the output is lost.

In most cases you will want to have a more permanent record of your output. This can be
obtained by writing your output to a file instead of to the screen. Once the output is in a
file, you can use a file editor to view it. You can also use the editor to print the result on
a printer.

The program below illustrates how to print output to a file. Just as is true for an input
file, an output file:

1. Can have any acceptable DOS name.
2. Must be defined before it is used.
3. Must be opened before it is used.
4. Should be closed after it is used.

As you read the program compare and contrast it to the program in Lesson 3_7 which
reads data from a file. Do you see any similarities?

Source Code

#include <stdio.h>
main()
{double income=123.45, expenses=987.65;
int week=7, year=1996;
FILE *myfile;

myfile = fopen(“3_8.OUT”,”wt”);
fprintf(myfile,”Week%5d\nYear=%5d\n”,week,year);
fprintf(myfile,”Income =%7.21f\n Expenses=%8.31f,n”,
income,expenses);
fclose(myfile);

}

Output file 3_8.OUT

Week= 7
Year= 1996
Income = 123.45
Expenses=987.650

Chapter 3

Explanation

1. What function do we use to write data to a file?

♦ In C, we use the fprintf() function to write data to a file, In general, the syntax of
the fprintf() function is

fprintf(file_pointer, format_string, argument_list);

The fprintf() function writes the values of argument_list using the given
format_string to a file which has a file pointer of file_pointer. For example, in the
statement

fprintf(myfile,” Week = %5d\n Year = %5d\n”,week,year);

the values of argument_list, week and year, are written to an external file which
has a file pointer named myfile using format string

“ Week = %5d\n Year = %5d\n”

2. What function do we use to open an output file?

♦ Before data can be written to an external file, the file must be opened using the
fopen() function whose syntax is:

file_pointer = fopen (file_name,access_mode);

where the definitions of the file_pointer and file_name are the same as those for
opening an input file. However, the access_mode for writing is “wt” where ‘w’
means the file is opened for writing and ‘t’ means the output is written in text
mode. For example, the statement

myfile = fopen (“3_8.OUT”,”wt”);

opens file 3_8.OUT for writing. If 3_8.OUT exists, the contents of the file will be
overwritten.

3. Do we need to close the output file?

♦ It is good practice to close files after they have been used. However, if no fclose
statements are used, C will automatically close all open files after execution is
completed. We also use the fclose() function to close n output file.

Chapter 3

Exercises

1. True or False:

a. We use the printf() function to write output on the
screen.

b. We use the fprintf() function to write output to an
external file.

c. You must open an external file before you can write
your output in it.

d. It is a good practice to close an output file once you
don’t need it.

e. You must define a file pointer before you can open an
output file.

2. Find error(s), if any, in each statement below:

a. #include <stdio.h>
b. FILE myfile;
c. *myfile = fopen (TEST.OUT,wt);
 fprintf(*myfile,” Week = %4d\n Year = %5d,n”,

 &week,&year);
d. fclose(“myfile);

3. Write a program to input all your grades in the last semester from the keyboard,
compute your average GPA, and write all the input and average GPA on the screen
and in a report file name “MYGRADE.REP”.

Solutions

1. A B C D E
T T T T T

2.
a. No error
b. FILE *myfile;
c. myfile = fopen (“TEST.OUT”,”wt”);
d. fprintf(myfile,” Week = %4d\n Year = %5d\n”

week,year);
e. fclose(myfile);

Chapter 3

Lesson 3_9 - Summary

In this chapter, you have learned int, float, and double data types, how to name and
declare variables, input and output format specifications, assignment and arithmetic
statements, input from the keyboard and from a file, and output to screen and to a file.
The program below summarizes what you have learned in this chapter.

Source Code

#include <stdio.h>
main()

{int x;
float y;
double z;
FILE *in, *out;

printf(“Please type a number\n”);
scanf(“%d”,&x);

in=fopen(“3_9.IN”,”rt”);
fscanf(input,”%f %1f”, &y,&z);

out=fopen(“3_9.OUT”,”wt”);
fprintf(out, “X=%d\nY=%5.1f\nZ=%5.2f\n”,x,y,z);

fclose(in);
fclose(out);

}

Input file 3_9.IN

11.1 22.2

On Screen Dialogue

Program output Please type a number
Keyboard input 987

Output file 3_9 .OUT

x= 9.87
Y= 11.1
Z= 22.20

Chapter 3

Exercises

1. Write a program to:

a. Read the input file 3_9.DAT as shown below (b
represents blank);

 1bb1.1bb1.1
 2bb2.2bb2.22
 3bb3.3bb3.333
 4bb4.4bb4.4444
 5bb5.5bb5.55555

b. Display the input file as it is on the screen.
c. Calculate the average value in each column and write

the output as below on the screen and to file 3_9.OUT:

MONTH *** INCOME *** EXPENSES

1 1.1 1.1
2 2.2 2.22
3 3.3 3.333
4 4.4 4.4444
5 5.5 5.55555

Ave 3 3.3 3.33059

Chapter 3

Application Program 3_1

Comment on development of programs

Creating a program which accomplishes the desired task may not be simple. As programs
become more complex in this book, the following step-by-step procedure will be used to
illustrate the development of the application programs:

1. Assemble the relevant equations.
2. Do a hand calculation of an example problem.
3. Write an algorithm (sometimes called pseudo-code) which

uses the equations and follows the pattern of the hand
calculation. We recommend that you write an informal
algorithm which is roughly a line by line description of
what the program does. It should be written in plain
English.

4. Use the algorithm to write the actual source code.

This four step method of program development has evolved over the course of teaching
by the authors. It has been successfully implemented by many students and will be used
in this book to illustrate the development of the application programs. We recommend
that you follow this procedure in writing your own programs. However, as you become
more adept at programming you may be able to skip some of the steps or develop another
method which suites your own style better.

Problem statement:

Write a program which computes the areas of four right triangles. The three of the
triangles are shown below. You should deduce the dimensions of the fourth triangle from
the pattern Lh1

exhibited by the first three. Use the pattern in writing your program

Solution

Assemble relevant equations:

Note that there is a pattern to the length of the legs. The lengths of the horizontal legs are
5, 5 + 1 = 6, 6 + 1 = 7, and the vertical legs are 7, 7/2 = 3.5, 3.5/2 = 1.75. Thus, we can

Chapter 3

see that the fourth triangle has a horizontal leg length of 7 + 1 = 8 and a vertical leg
length of 1.75/2 = 0.875.

We can see that the horizontal leg length can be computed from the following equations:

Lh2
= Lh1

+1

Lh3
= Lh2

+ 1

Lh4
= Lh3

+ 1

where:

Lh1
 = horizontal leg length of the first horizontal leg = 5.0

Lh2
= horizontal leg length of the second horizontal leg

 Lh3
 = horizontal leg length of the third horizontal leg

 Lh4
 = horizontal leg length of the fourth horizontal leg

Also the vertical leg length is:

Lv2
= Lv1

/ 2

Lv3
= Lv2

/ 2

Lv4
= Lv3

/ 2

where:

Lv1
= vertical leg length of the first vertical leg

Lv2
= vertical leg length of the second vertical leg

Lv3
= vertical leg length of the third vertical leg

Lv4
= vertical leg length of the fourth vertical leg

Note that the area of a right triangle is:

A = 0.5 L1 L2

where L1 and L2 are the lengths of the legs.

Specific Example:

For this particular program, the results can be easily found using a hand calculator. For
most real programs it is not possible to do this because of the very large number of

Chapter 3

calculations that are performed by most real programs. The calculations below show the
lengths and the areas.

Chapter 3

Triangle 1

Lh1
 = 5

Lv1
 = 7

A1 = (0.5) (5) (7) = 17.50

Triangle 2

Lh2
 = 5 + 1 = 6

Lv2
 = 7/2 = 3.5

A2 = (0.5) (6) (3.5) = 10.50

 Triangle 3

Lh3
 = 6 + 1 = 7

Lv3
 = 3.5/2 = 1.75

A3 = (0.5) (7) (1.75) = 6.125

 Triangle 4

Lh4
 = 7 + 1 = 8

Lv4
 = 1.75/2 = 0.875

A4 = (0.5) (8) (0.875) = 3.50

Algorithm

One of the purposes of performing a sample calculation is to clearly outline all of the
steps that are needed to arrive at a correct and complete result. The sample calculation
above has been used as a guide to writing the algorithm shown below:

Begin
Declare variables
Initialize horizontal leg length of first triangle
Initialize vertical leg length of first triangle
Calculate area of first triangle
Calculate horizontal leg length of second triangle
Calculate vertical leg length of second triangle
Calculate area of second triangle

Calculate horizontal leg length of third triangle
Calculate vertical leg length of third triangle
Calculate area of third triangle

Calculate horizontal leg length of fourth triangle
Calculate vertical leg length of fourth triangle
Calculate area of fourth triangle

Chapter 3

Print results onto the screen

End

Chapter 3

Source Code

The below source code has been written directly from the algorithm.

main()
{float horizleg, vertleg, areal, area2, area3, area4;

 horizleg = 5.0;
 vertleg = 7.0;
 areal = 0.5 * horizleg * vertleg;

 horizleg +- 1.0;
 vertleg /= 2.0;
 area2 = 0.5 * horizleg * vertleg;

 horizleg += 1.0;
 vertleg /= 2.0;
 area3 = 0.5 * horizleg * vertleg;

 horizleg += 1.0;
 vertleg /= 2.0;
 area4 = 0.5 * horizleg * vertleg;

printf (“ \n\

}

Output

First triangle area = 17.50
Second triangle area = 10.50
Third triangle area = 6.13
Fourth triangle area = 3.50

Comments:

This program illustrates how patterns are used in programming. One can imagine that it
would be very simple to write a program similar to this one which computes the areas of
fifty triangles which follow the same pattern. As we illustrate more programming
techniques you will see that it will be possible to write such a program with very few
statements.

This particular example is somewhat contrived in that it is deliberately set up to have a
pattern to it. You will find, though, that real problems will also have patterns and that
part of the skill in writing more advanced programs is in recognizing patterns and writing
efficient code which takes advantage of the patterns.

Chapter 3

Application Program 3_2

Problem statement

Write a program which creates a table of degrees Celsius with the corresponding degrees
Fahrenheit. Begin at 0 °C and proceed to 100 °C in 20 °C increments. Use no more than
two variables in your program.

Solution

Assemble relevant equations:

The equation converting degrees Celsius to degrees Fahrenheit is:

 F =
9

5
 C + 32

Where:
 C = degrees Centigrade
 F = degrees Fahrenheit

Specific example

Once again, for this simple program, all the calculations can be done by hand and are
shown below.

 C = 0

 F = C
9

5




 + 32 = 32

 C = 20

 F = C
9

5




 + 32 = 68

 C = 40

 F = C
9

5




 + 32 = 104

 C = 60

 F = C
9

5




 + 32 = 140

 C = 80

 F = C
9

5




 + 32 = 176

 C = 100

Chapter 3

 F = C
9

5




 + 32 = 212

Algorithm:

This algorithm is written from the sample calculations with the addition of the printing
of the headings and the results.

Begin
Declare variables
Print headings of table

Set C = 0
Calculate F
Print C and F

Set C = 20
Calculate F
Print C and F

Set C = 40
Calculate F
Print C and F

Set C 60
Calculate F
Print C and F

Set C = 80
Calculate F
Print C and F

End

Source Code

This source code has been written from the algorithm. Note that this code has made use
of the fact that the values of degrees centigrade are increments of 20.

main()
{float degC, degF;

printf(“Table of Celsius and Fahrenheit degrees\n\n”
“ Degrees Degrees \n”
“ Celsius Fahrenheit \n”);

degC = 0.;
degF = degC * 9./5. +32.;
printf(“%16.2f %20.2f\n”, degC, degF);

Chapter 3

degC += 20.;
degC = degC * 9./5. +32.;
printf(“%16.2f %20.2f\n”, degC, degF);

degC += 20.;
degF = degC * 9./5. +32.;
printf(“%16.2f %20.2f\n”, degC, degF);

degC += 20.;
degF = degC * 9./5. + 32.;
printf(“%16.2f %20.2f\n”, degC, degF);

degC += 20.;
degF = degC * 9./5. +32.;
printf(“%16.2f %20.2f\n”, degC, degF);

degC += 20.;
degF = degC * 9./5. +32.;
printf(“%16.2f %20.2f\n”, degC, degF);

}

Output

Table of Celsius and Fahrenheit degrees

Degrees
Celsius

Degrees
 Fahrenheit

0.00 32.00
20.00 68.00
40.00 104.00
60.00 140.00
80.00 176.00

100.00 212.00

Comments

First, we can see immediately that this program has the same three statements written
repeatedly. Had we wanted to display the results for every single degree between 0 and
100 instead of every twentieth degree, the program would have been extremely long but
with the same three statements written over and over again. We will learn more advanced
programming techniques in Chapter 4 which will allow us to write a program which can
accomplish the same task but with many fewer statements.

Second, we could have used the programming technique illustrated in the previous
application which had a single printf statement at the end of the program instead of one
immediately after each calculation of degF. However, this would have necessitated the
use variables.

For instance, the program could have been:

Chapter 3

main()
{float degC1, degC2, degC3, degC4, degC5, degC6,

degF1, degF2, degF3, degF4, degF5, degF6;
printf (“ Table of Celsius and Fahrenheit
degrees\n\n”

“ Degrees Degrees \n”
“ Celsius Fahrenheit\n”);

degC1 = 0.;
degF1 = degC1 * 9./5. +32.;

degC2 = 20.;
degF2 = degC2 * 9./5. +32.;

degC3 = 40.;
degF3 = degC3 * 9./5. +32.;

degC4 = 60.;
degF4 = degC4 * 9./5. +32.;

degC5 = 80.;
degF5 = degC5 * 9./5. +32.;

degC6 = 100.;
degF6 = degC6 * 9./5. +32.;

printf (“\n”
“%20.2f %20.2f\n%20.2f %20.2f\n%20.2f %20.2f\n”
“%20.2f %20.2f\n%20.2f %20.2f\n%20.2f %20.2f\n”,
degC1, degF1, degC2, degF2, degC3, degF3,
degC4, degF4, degC5, degF5, degC6, degF6);

}

With this program 12 variables have been used instead of just two. Variables take up
space in the memory of the computer, so the program with 12 variables would occupy
more memory than the program with just two variables. You will l earn that efficient
programming means, in part, to write a program which takes as little memory as possible.
For this very small program, either programming technique could be used on today’s
computers. However, for very large programs the memory needed by the program may
be v important. So, it is good to develop efficient programming habits now that you are
just learning programming. Reducing memory size is only a part of developing efficient
program Comments on other ways to make your program efficient will be made
throughout this book.

It should also be noted that it is necessary to make your program understandable to
someone than you. The reason for this is that it is common for programs to be developed
by teams of people and for programs to undergo several versions. This means that it is

Chapter 3

possible that someone who has never seen a particular program may be responsible for
modifying it. Thus, your program is more valuable if it is easily understood.

Sometimes you will find that there is a conflict between understandability and efficiency.
In other words, efficient programs may not be understandable, and understandable
programs may not be efficient. You should consult your employer or your course
instructor for guidance in determining the most important characteristics that your
program should have.

You can begin to see now that there are many ways to write even the simplest of
programs. One can argue that there is no right or wrong way provided the program gives
the correct result. However, one can say that it is best to write code that is efficient and
understandable.

Chapter 3

Application Program 3_3

Problem statement

Write a program which calculates the volume of paint which is needed to paint a room.
The paint is to be put on four walls and a ceiling. The room has dimensions:

h = height of our walls
11, 1 2, 1 3, 1 4 = lengths of four walls
l c = length of ceiling
wc = width of ceiling

The paint thickness can be considered to be constant:

t 1 = thickness of first coat = 0.08 cm
t 2 = thickness of second coat = 0.03 cm

Only one coat of paint is to be put on the ceiling. Two coats will be put on the walls.

The dimensions are to be read from an input file called PAINT.DAT. The contents of
PAINT.DAT are:

first line h
second line 1 1 12 13 14

third line l c wc

These values are all real numbers and the units are meters.

Display the results on the screen in the form;

The volume of the paint required to paint the room is:
.... m3

Solution

1. Assemble all relevant equations

The volume of paint on the first wall is (other walls can be calculated similarly):

V1 = 1 1 h (t 1 + t 2) (3_3.1)

The volume of paint on the ceiling is:

Vc = 1 c w c t 1 (3_3.2)

The total volume of paint used is:

Chapter 3

Vt = V 1 + V 2 + V 3 + V 4 + V c (3_3.3)

where:

Chapter 3

V1 = volume of paint on wall number 1
Vc = volume of paint on ceiling
Vt = total volume of paint

2. Specific example

Consider the following dimensions:

h = 3 m
11 = 6 m
12 = 9 m
13 = 7 m
14 = 9 m
1c = 9 m
wc = 7 m

Compute the paint volumes (note that 1/100 is to convert from cm to m):

First wall V 1 = (6)(3)(0.08+0.03)(1/100) = 0.0198 m 3 (3_3.1)
Second wall V 2 = (9)(3)(0.08+0.03)(1/100) = 0.0297 m 3 (3_3.1)
Third wall V 3 = (7)(3)(0.08+0.03)(1/100) = 0.0231 m 3 (3_3.1)
Fourth wall V 4 = (9)(3)(0.08+0.03)(1/100) = 0.0297 m 3 (3_3.1)
Ceiling V c = (9)(7)(0.08)(1/100) = 0.0504 m 3 (3_3.2)

Total volume
Vt = 0.0198+0.0297+0.0231+0.0297+0.0504 = 0.1527 m 3 (3_3.3)

3. Algorithm

This algorithm follows the example problem, and includes the parts of the program (such
as opening the data file) which are not needed in the hand calculation.

Define constants
Declare variables
Open data file
Read input data

Calculate paint volume for first wall
Calculate paint volume for second wall
Calculate paint volume for third wall
Calculate paint volume for fourth wall
Calculate paint volume for ceiling
Calculate total volume
Print result to screen

4. Source code

Chapter 3

This source code is developed by using the equations and the algorithm. Note that the
variable names used in the program are much more descriptive than the single letter
variables used in the equations.

Chapter 3

main()
{#define THK_COAT1 0.08

#define THK_COAT2 0.03

float length_wall, length_wall2, length_wall3, length_wall 4,
vol_wall1, vol_wall2, vol_wall3,

vol_wall4,
length_ceil, width_ceil, height, vol_tot;

/* Open input file */

FILE *inptr;
inptr = fopen (“PAINT.DAT”,”rt”);

/* Read input file */

fscanf (“%f”, &height);
fscanf (“%f %f %f %f”, &length_wall1,&length_wall2,

&length_wall3,&length_wall4);
fscanf (“%f %f”, &length_ceil, &width_ceil);

/* Compute paint volumes */

vol_wall1=length_wall1 * height * (THK_COAT1+THK_COAT2);
vol_wall2=length_wall2 * height * (THK_COAT1+THK_COAT2);
vol_wall3=length_wall3 * height * (THK_COAT1+THK_COAT2);
vol_wall4=length_wall4 * height * (THK_COAT1+THK_COAT2);
vol_ceil =length_ceil * width * (THK_COAT1);
vol_tot =vol_wall1 + vol_wall2 + vol_wall3 +
vol_wall4+vol_ceil;

/* Print results to the screen */

printf (“\nThe volume of the paint \n”
“ required to paint the room is: \n%7.4f m^3”,
vol_tot);

}

5. Comments

This is a relatively simple program. It can be seen for simple programs such as this one,
much of the program is occupied by such things as declaring variables, reading the input
file, and printing the results. For more complex programs, most of the program is
involved with doing the actual calculations.

Chapter 3

Application Program 3_4

Problem statement

Write a program which computes the necessary force to move a block across a plane.
Friction resists the movement of the block. Consider three different blocks.

The three different blocks have the following dimensions:

Block Height Length Width
(m) (m) (m)

1 0.5 2.0 1.5
2 1.2 0.75 0.2
3 0.8 2.2 1.3

The density of the material of which the blocks are made is 5.7 kN/m3. The coefficient
of friction of each block on the plane is 0.35.

The data file containing the dimensions of each block is FRICTION.DAT. The data file
has tree lines - each with a block number, height, length and width as listed above. Print
to the screen the force required to move the block.

Solution

1. Assemble relevant equations

Because friction is the only force resisting movement of the block, the force required to
move the block is equal to the frictional resistance. You have learned from your first
physics class that frictional resistance is a function of the coefficient of fr iction and the
normal force on the plane of contact:

F = µ N (3_4.1)
where:

F = frictional resistance
µ = coefficient of friction

Chapter 3

N = normal force on the plane of contact

For this particular case, the normal force is equal to the weight of the block, that is

N = w (3_4.2)

where:

W block weight

The block weight can be computed from the volume and the density, and the volume can
be computed from the dimensions as follows:

W = Vd (3_4.3)
V = hlw (3_4.4)

where:

V = block volume
d = material density
h = block height
l = block length
w = block width

2. Perform an example calculation

In many cases you will have to make up the example problem yourself, which means that
you will need to create the information that goes into the input file. In this case, however,
the input data is given. The below calculation sequence uses the information about the
first block:

d = 5.7 kn/m3
µ = 0.35
h = 0.5 m
l = 2.0 m
w = 1.5 m
V = (0.5)(2.0)(1.5) = 1.5 m 3 (eqn.

3_4.4)
W = (1.5)(5.7) = 8.55 kN (eqn. 3_4.3)
N = 8.55 kN (eqn. 3_4.2)
F = (0.35)(8.55) = 2.9925 kN (eqn. 3_4.1)

3. Algorithm

Define constants
Declare variables
Open the input data file

Read first block information
Compute V

Chapter 3

Compute W
Compute N
Compute F
Print F

Chapter 3

Read second block information
Compute V
Compute W
Compute N
Compute F
Print F

Read third block information
Compute V
Compute W
Compute N
Compute F
Print F

4. Source code

The program shown below is one which satisfies the requirements of the problem
statement. The algorithm has been used to write the source code.

#include <stdio.h>
main()
{
#define DENSITY 5.7
#define FRICTION_COEFF 0.35

int block_number;
float weight, height, length, width, volume,

normal_force, frictional_force, movement_force;

FILE *inptr;
inptr = fopen (“FRICTION.DAT”,”rt”);
printf (“\n\
Block number Force required for movement(KN)\n\n”);

fscanf (inptr, “%d %f %f %f”,
&block_number, &height, &length, &width);

volume = height * length * width;
weight = volume * DENSITY;
normal_force = weight;
frictional_force = FRICTION_COEFF * Normal_force:
movement_force = frictional_force;
printf(“ \n%10d %30.7f
\n”,block_number,movement_force);

fscanf (inptr, “%d %f %f %f”,
&block_number, &height, &length, &width);

volume = height * length * width;
weight = volume * DENSITY;
normal_force = weight;

Chapter 3

frictional_force = FRICTION_COEFF * normal_force;
movement_force = frictional_force;
printf(“ \n%10d %30.7f
\n”,block_number,movement_force);

fscanf (inptr, “%d %f %f %f”,
&block_number, &height, &length, &width);

volume = height * length * width;
weight = volume * DENSITY;
normal_force = weight;
frictional_force = FRICTION_COEFF * normal_force;
movement_force = frictional_force;
printf(“ \n%10d %30.7f
\n”,block_number,movement_force);

}

Output

Block number Force required for movement (kN)

1 2.9925
2 0.3591
3 4.56456

Comments

Use your calculator to check the results shown above. Note that once again several
statement have been repeated. Also note that every program an be written many ways.
Do you have any ideas on how to change this program to fit your own personal style of
programming?

Chapter 3

APPLICATIONS EXERCISES

Use the four step procedure outlined in this chapter to write the following programs.

3_1. Write a program which creates a table of Olympic competition running distances in
meters, kilometers, yards and miles. The following distances should be used:

100 m
200 m
400 m
800 m

Use the pattern exhibited in these distance to write your program. Call your program
OLYM.C. (Note: 1m = 0.001 km = 1.094 yd = 0.0006215 mi.)

Input specifications

No external input (meaning no data input from the keyboard or file). All distances are
real numbers.

Output specifications

Print the results to the screen in the following manner:

Table of Olympic running distances

Meters Kilometers Yards Miles

100 --- --- ---
200 --- --- ---
400 --- --- ---
800 --- --- ---

Right justify the numbers in the table

3_2. Write the program described in Application Exercise 3_1 with the output going to a
file called OLYM.OUT. Left justify the numbers in the table.

3_3. Write a program which computes the length of the hypotenuse of 5 right triangles
based on the lengths of the two legs. Call your program HYPLENG.C.

Chapter 3

Input specifications

Read the input data from the keyboard by prompting the user in the following way:

Screen output Input the values of the leg lengths
for five right triangles

Keyboard input leg1 leg2
Keyboard input leg1 leg2
Keyboard input leg1 leg2
Keyboard input leg1 leg2

All input values are real numbers.

Output specifications

Print the result to the file HYPLENG.OUT with the following format:

Hypotenuse lengths of five triangles

Triangle
number

leg1
length

leg 2
length

hypotenuse
length

1 --- --- ---
2 --- --- ---
3 --- --- ---
4 --- --- ---

Right justify all of the numbers in the table.

3_4. Write a program which computes the values of the two acute angles of a right
triangle given the lengths of the two legs. Call your program ANGLE.C. Create the input
data file ANGLE.DAT before executing your program.

Input should come from data file ANGLE.DAT with the following form:

line 1 leg1 leg2
line 2 leg1 leg2
line 3 leg1 leg2
line 4 leg1 leg2
line 5 leg1 leg2

All of the values are real numbers.

Output specifications

Chapter 3

The output results should be in degrees, not radians. Make sure that in your program you
convert from radians to degrees. The output should go to file ANGLE.OUT and have the
following format:

Chapter 3

Acute angles of five triangles

Triangle
number

acute
angle 1

acute
angle 2

1 --- ---
2 --- ---
3 --- ---
4 --- ---
5 --- ---

3_5. Write a program which is capable of displaying the distances from the sun to the
four planets closest to the sun in centimeters and inches given the kilometer distances as
follows:

Planet Distance from the sun
(million km)

Mercury 58
Venus 108.2
Earth 149.5
Mars 227.8

Input specifications

No external input. The distances listed above can be initialized in the source code.

Output specifications

Print the results to the screen in the form of the table shown below:

Planet Distance from the sun
(million km) (cm) (inches

)

Mercury 58 --- ---
Venus 108.2 --- ---
Earth 149.5 --- ---
Mars 227.8 --- ---

Note: In order to fit the numbers properly in the table, you must use scientific notation.

3_6. The distance that a car (undergoing constant acceleration) will travel is given by the
expression

s = v 0 t + 1/2 a t 2

where:

Chapter 3

s = distance traveled
v0 = initial velocity
t = time of travel
a = acceleration

Write a program which computes this distance give v0, t and a. Call your program
DISTANCE.C.

Input specifications

The input should come from the file DISTANCE.DAT with the following format:

line 1 v 0 t
line 2 a 1

line 3 a 2

line 4 a 3

line 5 a 4

line 6 a 5

line 7 v 0 t
line 8 a 1

line 9 a 2

line 10 a 3

line 11 a 4

line 12 a 5

All of the above numbers are real numbers. An example data file is:

10 5
3
4
5
6
7
10 10
3
4
5
6
7

Output specifications

Print the results to the file DISTANCE.OUT in the following form:

Car under constant acceleration

Initial
Velocity

time acceleration distance

Chapter 3

10 5 3 ---
4 ---
5 ---
6 ---

10 10 3 ---
4 ---
5 ---
6 ---
7 ---

3_7. The general gas law for an ideal gas is given by:

PV/T = constant

where:

P = pressure
V = volume
T = temperature (Rankine or Kelvin)

which leads to the equation:

P1V1/T 1 = P 2V2/T 2

for a given mass of gas.

Write a computer program which computes the temperature of a gas which is originally
at:

P1 = 5 atmospheres
V1 = 30 liters
T1 = 273 deg Kelvin

Call your program TEMPER.C.

Input specifications

The input data should come from the file TEMPER.DAT and consists of five lines:

line 1 P 2 V2

line 2 P 3 V3

line 3 P 4 V 4

line 4 P 5 V5

line 5 P 6 V6

A sample data file is:

2 40
3 80

Chapter 3

6 50
1 15
2 70

All of the above values are real.

Chapter 3

Output specifications

Your output should be to the screen and consist of the following table.

The below listed pressure, volume and temperature
conditions can occur for a given mass of an ideal
gas which is originally at P = 5 atm, V = 30 1,
and T = 273 K

Case P(atm) V(1) T(K)

1 2 40 ---
2 3 80 ---
3 6 50 ---
4 1 15 ---
5 2 70 ---

3_8. Ohm’s law for a steady electrical current can be written as:

V = I R

where:

V = potential difference across a conductor
I = current in the conductor
R = resistance of the conductor

Write a program (called OHM.C) which is capable of f illing in the blanks in the
following table:

Case V
(Volts)

I
(Amps)

R
(Ohms)

1 10 2 --
2 -- 5 7
3 3 -- 4

Input specifications

The input data should come from the keyboard and be treated as real numbers. You
should prompt the user in the following manner:

“For case 1, enter the voltage and current.”
“For case 2, enter the current and resistance.”
“For case 3, enter the voltage and resistance.”

Chapter 3

Output specifications

Print the completed table to the screen.

3_9. The pressure at depth in water is given by:

P = h γw

where:

p = pressure
h = depth
γw = weight density of water

Write a program which determines the pressure at five different depths. Call your
program PRESS.C. Use metric units (γw = 9.8 kN/m2).

Input specifications

Create a data file called PRESS.DAT with your editor. In the data file list the five depths
on one line:

depth1 depth2 depth3 depth4 depth5

An example data file is:

10. 15. 828. 1547. 431.2

All of the above data are real.

Output specifications

Print the results to file PRESS.OUT in the following form:

Depth
(m)

Pressure
(kPa)

--- ---
--- ---
--- ---
--- ---
--- ---

3_10. The period of one swing of a simple pendulum is given by:

Chapter 3

T = 2 π T

G

where (in metric units):

T = period (sec)
l = length of pendulum (m)
g = gravitational acceleration = 9.81 m/sec 2

Write a program which is capable of completing the following table:

Length
(m)

Period
(sec)

0.5 ---
1.0 ---
--- 10.
--- 20.

0.32 ---

Input specifications

Prompt the user to input the data from the screen in a manner similar to that described in
the previous exercise.

Output specifications

Print the completed table to the screen.

3_11. The kinetic energy of an object in motion is expressed as:

K =
1

2
 m v 2

where:

k = kinetic energy of object
m = mass of object
v = velocity of object

The work done by a force pushing on an object in the direction of the object’s motion is:

W = F s

where:

W = work done by the force
F = force on object

Chapter 3

s = distance traveled by the object during the time the
 object is pushed

For an object pushed horizontally from rest, k = W so that:

F s =
1

2
 m v 2

Assume that one person can push with the force of 0.8 kN and that we have a car of m =
1000 kg. Write a program which can complete the following table:

Distance
shed
(m)

Final
velocity
(m/sec)

Number of people
required to push

5 10 ---
--- 10 15
20 --- 8

Input specifications

Prompt the user to enter the data from the keyboard.

Output specifications

Print the completed table to the screen.

Chapter 3

