
Securing the Cloud-Native 5G Control Plane
Umakant Kulkarni, Sonia Fahmy

Purdue University
e-mail: {ukulkarn,fahmy}@purdue.edu}

Abstract—The shift to cloud-native architectures in the 5G
control plane introduces significant challenges in securing com-
plex network functions deployed as microservices. Traditional
security mechanisms, such as service mesh architectures and
kernel-level solutions, often suffer from protocol limitations,
high overhead, or incomplete inter-service encryption. Therefore,
we present Zero Trust X Security Enforcement Microservice
(ZTX-SEM), a protocol-agnostic zero-trust security solution
designed specifically for cloud-native deployments. We propose a
lightweight packet interception mechanism that operates across
all protocols, a proactive authentication strategy that reduces
latency and ensures continuous readiness, and an optimized
secret key lookup that accelerates encrypted communication pro-
cessing. Our experiments on a Kubernetes-deployed 5G control
plane (core) demonstrate that ZTX-SEM outperforms existing
solutions such as Istio, achieving 75% and 28% reductions in
resource utilization and session setup times, respectively.

I. INTRODUCTION

Operators are increasingly adopting a cloud-native ap-
proach to deploying 5G control plane network functions
(NFs). Unlike traditional monolithic architectures, 5G NFs
are now realized as microservices, typically deployed using
containers [2]. This shift increases flexibility and scalability,
allowing operators to deploy NFs closer to end-users, and
leveraging public cloud infrastructure to reduce cost and la-
tency, and streamline operations. However, this new paradigm
also introduces security challenges, given that most NFs are
delivered as black-box entities by software vendors, often
without integrated security mechanisms.

Current security approaches, such as service mesh-based
architectures and kernel-level solutions, attempt to address
these challenges by leveraging sidecar transparent proxies or
eBPF [1]. These approaches, however, often fall short due to
lack of support for non-TCP traffic, high overhead, incomplete
encryption of inter-service communication within the same
node, or privilege escalation risks [18].

To address these limitations, we propose a comprehen-
sive security solution specifically designed for cloud-native
microservice-based architectures. We introduce Zero Trust
X Security Enforcement Microservice (ZTX-SEM), which
provides end-to-end encryption, mutual authentication, and
low-overhead packet processing across all interfaces of the
5G control plane (core). ZTX-SEM is stateless, meaning it
processes packets independently, thereby minimizing resource
consumption and latency.

ZTX-SEM follows zero trust [21], a cybersecurity model
that eliminates implicit trust based on network location or as-

This work has been supported in part by NSF grants 2226447 and 2326898.

set ownership. Zero trust implies verification of each request
to network resources. In ZTX-SEM, we apply this approach
to secure the cloud-native 5G control plane by ensuring
that all communication is authenticated and encrypted. The
novelty of our work lies in two aspects. First, ZTX-SEM is
protocol-agnostic and preserves the original transport protocol
by encrypting the payload directly, avoiding the need for
secure tunnels and minimizing disruption to the 5G core.
Second, ZTX-SEM enforces a zero-trust model by not trusting
the underlying orchestrator or nodes. This makes it ideal for
military 5G core deployments in hostile environments where
the infrastructure itself may be compromised or untrusted.

The key contributions of this paper include the design
and implementation of (1) a protocol-agnostic lightweight
packet interception mechanism, (2) a proactive authentica-
tion to minimize latency and ensure continuous readiness,
and (3) an optimized secret key lookup method for rapid
encrypted communication processing. We validate ZTX-SEM
on a cloud-native 5G core deployed on a Kubernetes platform
and assess the overhead introduced in terms of both time
and resource utilization. We benchmark ZTX-SEM against
an Istio service mesh [6] and demonstrate that ZTX-SEM
reduces resource utilization by 75%, with a 28% decrease in
session setup times.

II. THREAT MODEL AND REQUIREMENTS

We consider a cloud-native deployment of the 5G core. Our
threat model assumes that an attacker can inject, modify, and
sniff network traffic.
Signaling disruption and user impersonation: We consider
attacks targeting signaling messages and 3GPP-TS-23.502
procedures between 5G core NFs as well as between NFs and
the User Plane or Radio Access Network (RAN). 5G networks
are known to be susceptible to such man-in-the-middle attacks
on unencrypted connections, allowing attackers to intercept
and modify critical messages, e.g., Attach Request/Response,
Service Request, or Authentication Request/Response [22].
By exploiting intercepted or previously captured traffic, at-
tackers can replay sessions and reuse authentication creden-
tials. This allows them to impersonate legitimate users, initiate
unauthorized state changes, and deny services [20].
Network function hijacking: The complexity of the 5G ar-
chitecture creates opportunities for unauthorized access and
configuration, where attackers exploit vulnerabilities to take
control of critical 5G NFs [12]. Specifically, during service
registration, a legitimate NF updates the Network Repository
Function (NRF) with its details, but if this communication



is unencrypted, attackers can intercept and alter the message,
redirecting it to a fake NRF under their control. This allows
the attackers to reroute NFs to their malicious 5G core.
Exploiting cloud vulnerabilities: An attacker with access to
the underlying host in a 5G cloud-native deployment can run
packet capture utilities directly on the node. If the traffic
between microservices is unencrypted, the attacker can easily
capture sensitive information such as authentication tokens,
session data, or payload content, thereby compromising con-
fidentiality. Since microservices share the same kernel, any
vulnerability in the host operating system or its kernel can
allow an attacker to escalate privileges and access all inter-
service communication. If one microservice is compromised,
the attacker may have access to all data exchanged between
microservices on the same node, which undermines the secu-
rity of the entire system.

Under this threat model, four key requirements can be
derived for securing the cloud-native 5G control plane:
(1) Confidentiality, Integrity, and Availability (CIA): Data
exchanged between 5G microservices must be kept confiden-
tial through encryption. Unlike the one-way authentication
common in Internet-based services, where only the client ver-
ifies the server’s identity, cloud-native microservices demand
mutual authentication.
(2) Ease of deployment: A security solution must be transpar-
ent to 5G microservices, requiring no code changes. Ideally,
deployment should be accomplished via a webhook, labels,
or a proxy injection mechanism. Additionally, the security
tool should not require changes to the underlying host and
should not need additional privileges such as root access,
additional network interfaces, or the installation of custom
kernel modules.
(3) Low overhead: Commonly deployed security solutions,
such as VPNs and IPSec, provide blanket protection to the
underlying network, but they create an IP-in-IP tunnel, adding
per-packet overhead and creating fragmentation issues. A
security solution should be lightweight.
(4) Customizability: A security solution should allow flex-
ibility in the selection of policies, encryption algorithms,
authentication schemes, and key sizes, and adapt to external
(e.g., RAN) security threats.

III. CHALLENGES

Three primary challenges make securing the cloud-native
5G control plane microservices difficult:
(1) Lack of integrated security in microservices: 5G NFs
are often provided as black-box microservices by software
vendors, without built-in security components. This requires
operators to implement security externally.
(2) Operational and performance impact: Security solutions
must maintain high performance. A security tool that de-
grades performance or alters the functionality of microser-
vices negates the modularity and rapid deployment advantages
of a cloud-native deployment. Further, requiring software
vendors to modify their codebases to accommodate specific
security tools is often impractical and costly.

(3) Public cloud infrastructure constraints: When deploying
5G microservices on public cloud platforms, operators must
contend with the fixed nature of the underlying Infrastructure
as a Service and Platform as a Service components, which
are managed by the cloud provider. Security tools must func-
tion independently of container engines, CPU architectures,
storage solutions, hypervisors, and kernel versions in use.

IV. LIMITATIONS OF CURRENT APPROACHES

Cloud-native microservices use virtual IP addresses as-
signed by an orchestrator, so transparent operation of the
security mechanism is essential. Current industry standards
for cloud-native security propose several architectures for
different network stacks and threat models as described below.

a) Service Mesh-Based Security: This architecture, im-
plemented in Istio, Linkerd, and Consul, introduces a transpar-
ent proxy adjacent to each microservice. The proxy intercepts
incoming and outgoing packets, enforcing security policies
without being visible to the microservice. Each microservice
is typically deployed in its own network namespace, and the
service mesh-based tools ensure that the transparent proxy
shares this namespace.

Transparent packet interception is achieved using
iptables redirect rules that modify the outgoing packets
so that their destination IP address is set to localhost and
the destination port is set to the proxy port. As a result, the
transparent proxy receives the outgoing packet, establishes a
TLS tunnel with another proxy, and forwards the packet to
the destination proxy.

This approach, however, presents a challenge. When the
iptables rules redirect the packet, the original destination
IP address and port are altered. The transparent proxy must
recover the original destination IP address and port to cor-
rectly route the packet. The proxy utilizes a socket option
known as SO_ORIGINAL_DST to recover the original values.
This option enables applications within the same network
namespace to retrieve the original destination IP address and
port from the kernel, even after they have been overwritten by
the iptables rules. Once the transparent proxy has recovered
this information, it applies the necessary security policies and
transmits the packet over the TLS tunnel. The socket option
described above, however, only functions with sockets that
are “accepted,” i.e., that support connection-oriented transport
protocols. Therefore, it supports TCP but not UDP or SCTP.

b) Kernel or eBPF-Based Security: An example cloud-
native security tool that operates at the kernel level using
eBPF is Cilium [1]. Cilium has visibility into all packets
regardless of the transport protocol, allowing it access to
all relevant data structures. Since it processes packets at the
kernel level, it does not need to reroute them, avoiding the
need for a proxy and preserving transport and application
protocol data structures.

Cilium utilizes IPSec or WireGuard encryption mechanisms
to secure packets. However, since microservices share the
host kernel to make system calls, this security implementation



operates at the host level. Consequently, communication be-
tween microservices on the same node remains unencrypted.

c) Node-Level Security Solutions: Istio’s ambient mode
introduces a proxy at the node level rather than using a sidecar
container. This node-level proxy intercepts all incoming and
outgoing traffic. However, it faces the same issue as Cilium’s
eBPF-based solution: traffic between microservices on the
same host is unencrypted, violating zero-trust security.

d) Envoy Proxy for UDP: Most industry standard tools
use Envoy [4] as a proxy for its packet interception mecha-
nism. Envoy provides limited UDP support in the form of a
UDP proxy, but it is a non-transparent proxy. As a result, the
communicating party will be aware that the packet has been
intercepted and rerouted by the proxy. Additionally, while
there is another socket option available to retrieve the original
IP address of a UDP packet, it does not address the issue of
routing to the correct process.

In summary, in cloud-native 5G core deployments, espe-
cially in public cloud environments where access and priv-
ileges can be restricted, there is no comprehensive solution
that fully supports all 5G core protocol stacks.

V. THE ZTX-SEM APPROACH

In the context of a cloud-native 5G control plane (core), the
ZTX-SEM solution follows a zero-trust security model that
effectively addresses the vulnerabilities outlined in Section II.
This section describes the components and workflow of the
ZTX-SEM solution based on Figure 1.

NSSF

SEM

NRF

SEM

UDM

SEM

PCF

SEM

UDR

SEM

AUSF

SEM

Interface between 
RAN and Control 

Plane (SCTP)

Interface between 
Control and User 

Plane (UDP)

Security 
Enforcement 
Microservice

SEM

UPF

AMF

SEM

SMF

SEM

ZTX-SEM Controller

Service-based 
Interface 

(TCP)

Fig. 1: ZTX-SEM solution for the 5G control plane.

A. Components of ZTX-SEM

The ZTX-Security Enforcement Microservice (SEM) is
depicted in Figure 1. ZTX-SEM functions in a manner
analogous to a transparent proxy, such as those found in the
service mesh-based security architectures Istio, Linkerd [8],
and Consul [3]. ZTX-SEM is deployed as a sidecar within the
same network namespace as the microservice, where it inter-
cepts all incoming and outgoing packets. In addition to the
ZTX-SEM sidecar, we develop a “ZTX-SEM-controller.” The
ZTX-SEM-controller orchestrates security across a cluster.

1) Authentication: 5G microservices and the ZTX-SEM
controller mutually authenticate using a public key infrastruc-
ture (PKI). The certificates and keys for this authentication are
distributed through a secure bootstrapping process, utilizing
external secret management systems to ensure zero trust. The
distribution process follows standard protocols to ensure that
only the correct entities receive them.

2) Shared Secret Derivation: Upon successful authentica-
tion, each microservice establishes a mutual TLS (mTLS)
tunnel with the ZTX-SEM controller, and they collectively
generate a shared secret. This shared secret serves as the
encryption and decryption key for secure data transfer. The
mTLS authentication channel acts as a control channel to
update the key or generate the shared secret used for data
channel encryption and decryption. The shared secret is
unique to each pair of microservices.

3) ZTX-SEM-controller: The ZTX-SEM-controller main-
tains two critical tables in its memory. The first table contains
a list of authenticated microservices and their identities, such
as IP addresses or Fully Qualified Domain Names (FQDNs).
The second table consists of the mapping between service or
virtual IPs and their corresponding endpoint IPs, also known
as pod or microservice IPs. This table is dynamically updated
whenever a new microservice is spun up and successfully
authenticates with the ZTX-SEM-controller. To keep these
entries current, the controller queries the upstream Kubernetes
API and updates the table accordingly. The table is essential
because a microservice may receive packets from either a
service IP or an endpoint IP, and must ensure the consistent
use of the same shared secret across the same process.

4) ZTX-SEM Workflow: An authenticated microservice pe-
riodically receives data from the two tables maintained by the
ZTX-SEM-controller. Upon receiving the list of authenticated
microservices, ZTX-SEM initiates a mutual authentication
and shared secret derivation process with each authenticated
microservice, mirroring the process used between an individ-
ual microservice and the ZTX-SEM-controller.

ZTX-SEM employs an event-based mechanism to trigger
actions upon receiving the updates from the controller. Up-
dates may pertain to newly deployed microservices or up-
dated service-to-endpoint mappings. The controller sends this
information in two scenarios: first, when a new microservice
is deployed and authenticated, the information is sent to that
particular instance; second, when any information is updated,
it is broadcast to all authenticated microservices.

5) Proactive Authentication: ZTX-SEM drops all packets
until authentication with the destination peer is complete.
Other transparent sidecar proxies, such as Istio or Consul,
typically initiate peer authentication only upon the exchange
of the first packet. In contrast, each microservice in our case
proactively authenticates with all other microservices as soon
as it receives the list from the ZTX-SEM-controller, ensuring
readiness for data traffic exchange. While a particular mi-
croservice may unnecessarily authenticate with another, this
only occurs once at startup, not per packet, so the performance
impact is negligible. Proactive authentication is critical for 5G
use cases with millisecond-level latency requirements.

6) Accelerated Secret Key Lookup: Each microservice
maintains a unique shared secret key for communication with
every other microservice. Consequently, the table containing
IP addresses to shared secret key mappings can grow to
several hundred entries. ZTX-SEM is stateless and therefore
must perform a lookup for the appropriate key from memory



for every incoming or outgoing packet. ZTX-SEM utilizes
hash tables to reduce lookup latency. As soon as the IP-
to-shared-secret mapping table is updated, a corresponding
hashed entry is added or updated in a separate hash table
maintained in memory. This ensures O(1) lookup.

B. The ZTX-SEM Packet Handler

We use the libnetfilter_queue user space library [7]
to intercept incoming and outgoing packets from a 5G NF
container within a pod such that they can be forwarded
to ZTX-SEM where security policies are applied. We also
introduce an init container as a part of the Kubernetes
deployment workflow to install iptables rules in the pod
network namespace and set the packet filter for interception.

An API exposed by the OS is used to read packets that
have been queued by the kernel packet filter. Security policies
are defined in a callback function that is applied on every
packet. We use this callback function to read packets from
kernel space into the user space ZTX-SEM. Packets are sent
out using raw sockets as shown in Figure 2. This ensures
that the IP layer and port numbers remain intact and ZTX-
SEM can deliver packets to the correct destination service
and process without the need for NAT, rerouting, or other
socket options. This packet-interception approach reduces
exposure to network-based attacks by allowing programmatic
verification and filtering of each packet based on security
policies. In contrast, the traditional iptables redirection
method introduces risks such as service hijacking and IP
spoofing.

ZTX-SEM

Netfilter / NFQUEUE

Queue=0

Kernel 
Space

User 
Space

Encrypted Data

mark=15
Kubernetes Pod

Packet 
Filter

Queue=0

Encrypted Data
RawSocket()

mark=15
Decrypted 

DataPlaintext

Ingress
traffic
flow

Egress
traffic
flow

Init
container
syscall

NFiptables

Fig. 2: ZTX-SEM packet flow.

If a packet matches the set filter, ZTX-SEM encrypts
the outgoing packet or decrypts the incoming packet and
forwards it to the intended receiver. If either fails, it drops
the packet. Packets processed by ZTX-SEM are internally
marked, enabling the kernel to distinguish them from un-
processed packets. This marking prevents an infinite loop in
the packet interception mechanism by ensuring that processed
packets are not repeatedly intercepted and processed. For 5G
core deployment, we set the packet filter to capture all TCP,
UDP and SCTP packets except for DNS packets.

We keep the TCP header intact and encrypt all the payload
data that is present after the options header. Similarly, for
UDP traffic, the header field is left unencrypted since it is
required by the network stack to deliver packets, but we
encrypt the rest of the data. Since SCTP adds multiple chunks
in a packet, we combine all chunks and then encrypt under
a single “Data” chunk. On the receiver side, the decryption

module removes this additional chunk header and delivers the
original chunk to the 5G NF.

Adding encryption can potentially increase the total packet
size, causing it to exceed the Maximum Transmission Unit
(MTU). We thus adjust the TCP Maximum Segment Size
(MSS) in TCP-SYN packets on the fly, to be a few bytes
less than the MTU. This ensures that the packet size remains
within the MTU limit even after encryption. SCTP is a
message-oriented protocol, so message-level fragmentation is
supported. If the payload size exceeds 85% of the MTU,
we first fragment the unencrypted packet, then encrypt each
fragment individually. This approach preserves the message
boundaries while accommodating the encryption overhead.

VI. EVALUATION

The objective of our evaluation is threefold: (1) to com-
pare the ZTX-SEM session setup time and per-transaction
completion time to the Istio case, (2) to micro-benchmark
the cost of adding security at each interface of the 5G
core, and evaluate the time added to the total session setup
time, compared to unsecured and Istio-based deployments,
and (3) to compare the overhead of ZTX-SEM in terms
of CPU and memory utilization to a deployment without
security and to a deployment with Istio-based security. While
these experiments focus on the performance impact, we have
verified the security of ZTX-SEM by mimicking several of
the attacks discussed in Section II.

A. Setup

We conduct experiments on CloudLab [14] where we create
a Kubernetes cluster with four nodes: one serves as the
manager and three serve as workers. Another node simulates
the RAN interfaces between gNodeB and the core, specifically
the N2 interface. All nodes are of type RS630, equipped with
an Intel Xeon E5-2660 processor (x86-64 architecture), con-
sisting of 40 CPUs with a maximum speed of 2.6 GHz. The
nodes run kernel version 5.15.0-86-generic with Ubuntu
22.04 operating system and Kubernetes version 1.30.3.

We deploy Open5GS v2.7.0 (an open-source 5G core im-
plementation in C) [9] on the cluster and use gnbsim v1.4.3

(an open-source tool in Go) [5] for simulating gNodeB. We
use Helm charts from [16] to deploy, manage, and upgrade
cloud-native Open5GS functions.

The ZTX-SEM security solution is implemented in C and
utilizes OpenSSL for cryptographic operations, including en-
cryption, decryption, and authentication. ZTX-SEM employs
general socket libraries and kernel-exposed APIs for packet
interception. The entire code is compiled and packaged as a
docker container, which is then pulled and installed via Helm
charts, transparently at runtime next to each microservice. The
security features are enabled based on flags selected for a
particular microservice and a specific interface of the 5G core
as shown in Table I.

We implemented ZTX-SEM independently of Istio because
modifying Istio to include ZTX-SEM’s security mechanisms



would require a fundamental redesign of Istio’s packet in-
terception and routing. We compare ZTX-SEM with a cus-
tomized deployment of Istio (v1.22.1) where non-essential
functionality (i.e., rate limiting and observability) is disabled
to ensure a fair comparison.

TABLE I: ZTX-SEM across 5G interfaces.

Interface Network Transport Application
Functions (NFs) Protocol Protocol

SBI Between Core NFs TCP HTTP
N2 RAN and Core NFs SCTP NGAP
N4 Control and User Plane UDP PFCP
N18 Any NF and Database TCP MongoDB Wire

B. Preliminary Results

We experiment with the User Equipment (UE) registration
procedure, which involves several transactions, including UE
registration, PDU session establishment, and other core net-
work processing tasks. We record three distinct time intervals:
the time to complete UE registration, the time to complete
the PDU session establishment procedure, and the time to
complete the entire session setup. These times are collected
using the gnbsim tool and represent the interval between the
first request being sent and the last response being received.

1) Comparing Latency of ZTX-SEM and Istio: We com-
pare individual transaction times and the time to complete the
entire procedure across two deployments: one with ZTX-SEM
security implemented and the other with Istio-based security
implemented. We show the mean values and 95% confidence
intervals, across three runs, for scenarios ranging from 100 to
1000 simultaneous requests. As shown in Figures 3, 4, and
6, the individual transaction times for UE registration, PDU
session establishment, and the total session setup procedure
completion time with ZTX-SEM are 28%, 26% and 32%
lower than with the Istio deployment, respectively. Proactive
authentication and the simple packet processing pipeline in
ZTX-SEM are part of the reason. ZTX-SEM, being stateless
in nature, operates on a per-packet basis and does not maintain
flow information as Istio does.

2) Micro-Benchmarking 5G Core Interfaces: We enable
security independently at different interfaces of the 5G core.
We compare the overhead of this security in terms of the total
session setup procedure completion time with a deployment
without any security, and a deployment with Istio-based secu-
rity. We use “unsecured” to refer to a deployment without any
security, “RAN secured” to indicate that ZTX-SEM security
is implemented between the RAN and the 5G core across
the N2 interface, “PFCP secured” to mean that ZTX-SEM
security is enabled across the interface between the control
and user plane of the 5G core, specifically the N4 interface
that runs over the UDP/PFCP protocol, “Core secured” to
mean ZTX-SEM security is enabled across the SBI interfaces
of the 5G core that runs over TCP, and “All secured” refers
to security being enabled across all interfaces of the 5G core.
“Istio” denotes that security is enabled using Istio across only
the SBI interface of the 5G core.

As illustrated in Figure 6, when ZTX-SEM security is
independently enabled across different interfaces, its effect
on total session setup time is negligible compared to the
deployment without any security. Further, when ZTX-SEM
security is enabled across all interfaces of the 5G core, the
session setup completion time is only 9% more than the
deployment without any security. In contrast, Istio incurs
around 34% higher session setup time than the deployment
without any security. The increased latency of Istio may stem
from its complex packet interception pipeline.

3) Resource Utilization: We analyze the resource utiliza-
tion of ZTX-SEM in Figure 5. For Istio, we measure the
CPU and memory utilization of the Istio transparent proxy.
We observe that the CPU utilization for ZTX-SEM is only
7% higher than the deployment without any security. We find
that the memory utilization remains the same. This is again
due to the stateless nature of ZTX-SEM, as it discards all
data structures as soon as the packet is processed and does not
maintain any information across packets, resulting in constant
memory utilization. In comparison, Istio exhibits 13% higher
CPU utilization and non-zero memory utilization due to its
flow-based packet interception and security policy application
mechanism. When comparing the core security functionality
between ZTX-SEM and Istio, ZTX-SEM yields 75% lower
average CPU utilization.

VII. DISCUSSION AND FUTURE WORK

Secure 5G network slicing: Operators are creating different
5G network slices based on specific use cases. Similarly,
ZTX-SEM can be deployed as a secure slice, particularly for
military, emergency, and critical service use cases, co-existing
with other slices.
Non-Cloud-Native deployments: Unlike industry solutions
discussed in Section IV, ZTX-SEM can be easily configured
to work with non-cloud-native deployments, such as mono-
lithic hardware. By passing an additional deployment type
flag, specific functionalities can be enabled or disabled to
support monolithic architectures.
Adaptive security control: We will extend ZTM-SEM with
dynamic and adaptive selection of security parameters. This
adaptation can consider the level of security threat.
Modular ZTX-SEM security framework: ZTX-SEM is highly
customizable, allowing packets received to traverse multiple
pipelines as needed. Currently, ZTX-SEM processes packets
through encryption, decryption, and authentication modules.
Additional modules, such as rate limiting, can be added to
mitigate DDoS attacks.
Post-Quantum cryptography: ZTX-SEM utilizes industry-
standard AES-GCM-256 encryption, which ensures integrity
through its tag header. An important direction for future
work is enhancing cryptographic operations to be quantum-
resistant.

VIII. RELATED WORK

Several approaches have been proposed to address 5G net-
work security, but many fall short in supporting cloud-native



200 400 600 800 1000
Simultaneous Requests

0

5

10

15

20
UE

 R
eg

ist
ra

tio
n 

Ti
m

e 
(s

) ZTX-SEM
Istio

Fig. 3: UE registration time

200 400 600 800 1000
Simultaneous Requests

0

1

2

3

4

5

6

PD
U 

Se
ss

io
n 

Es
ta

bl
ish

m
en

t T
im

e 
(s

)

ZTX-SEM
Istio

Fig. 4: PDU session establishment
time

RAN
Secured

PFCP
Secured

Core
Secured

All
Secured

Istio

Security Model

0

2

4

6

8

10

12

14

Av
er

ag
e 

CP
U 

Us
ag

e 
(%

)

0.31% 0.24%

7.14% 7.32%

12.46%

Fig. 5: CPU usage

100 200 300 400 500 600 700 800 900 1000
Simultaneous Requests

0

5

10

15

20

25

Se
ss

io
n 

Se
tu

p 
Ti

m
e 

(s
) UnSecured

RAN Secured
PFCP Secured
Core Secured
All Secured
Istio

Fig. 6: Security across different interfaces

deployments or zero-trust models. For example, Loureiro et
al. [17] explore the use of eBPF/XDP for rate-limiting control-
plane traffic within the 5G core. Similarly, the vEPC-vSDP
framework [13] enhances secure communications within the
mobile core through an authentication-based approach. Open-
Ziti [10], an open-source zero-trust security framework, de-
livers a range of network-layer solutions but lacks support
for 5G-specific transport protocols like SCTP due to TProxy
limitations. Zscaler, a closed-source enterprise security plat-
form, does not support service-to-service data security for
microservices deployed on the same node.

Additionally, a number of studies develop threat detec-
tion mechanisms but do not incorporate robust encryption
or authentication strategies. For instance, Hu et al. [15]
explore security vulnerabilities in cellular emergency services.
5GCVerif [11] conducts a formal analysis of the 5G core
access control mechanism. PROV5GC [19] detects attacks
using provenance graphs.

IX. CONCLUSIONS

This paper presented ZTX-SEM, a versatile and practical
zero-trust security solution designed for cloud-native de-
ployments. ZTX-SEM introduces a protocol-agnostic packet
interception mechanism, proactive authentication to ensure
minimal latency, and an optimized secret key lookup pro-
cess for efficient encrypted communication. Our preliminary
results confirm that ZTX-SEM significantly reduces resource
utilization and improves session setup times compared to tra-
ditional solutions such as Istio. These findings demonstrate the
potential of ZTX-SEM to enhance security, while maintaining
high performance, in cloud-native environments.

REFERENCES

[1] Cilium. https://cilium.io/.
[2] Cloud-native service framework for 5G. https://www.3gpp.org/news-

events/partner-news/openapis-for-the-service-based-architecture.
[3] Consul. https://www.consul.io/.
[4] Envoy. https://www.envoyproxy.io/.
[5] gnbsim. https://github.com/omec-project/gnbsim.
[6] Istio. https://istio.io/.
[7] libnetfilter queue: firewalling, nat and packet mangling for linux.

https://netfilter.org/projects/libnetfilter queue/.
[8] Linkerd. https://linkerd.io/.
[9] Open5gs. https://github.com/open5gs/open5gs.

[10] Openziti is a programmable network overlay and associated
edge components for application-embedded, zero-trust networking.
https://github.com/openziti.

[11] Mujtahid Akon, Tianchang Yang, Yilu Dong, and Syed Rafiul Hussain.
Formal analysis of access control mechanism of 5G core network. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, page 666–680, 2023.

[12] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5G authentication. In
Proceedings of the 2018 ACM SIGSAC CCS, page 1383–1396, 2018.

[13] Yahuza Bello, Ahmed Refaey Hussein, Mehmet Ulema, and Juanita
Koilpillai. On sustained zero trust conceptualization security for mobile
core networks in 5G and beyond. IEEE Transactions on Network and
Service Management, 19(2):1876–1889, 2022.

[14] Dmitry Duplyakin et al. The design and operation of CloudLab. In
Proceedings of the USENIX (ATC), pages 1–14, July 2019.

[15] Yiwen Hu et al. Uncovering insecure designs of cellular emergency
services (911). In Proceedings of the MobiCom ’22, page 703–715,
2022.

[16] Umakant Kulkarni, Amit Sheoran, and Sonia Fahmy. The cost of
stateless network functions in 5G. In Proceedings of the Symposium
on Architectures for Networking and Communications Systems, ANCS
’21, page 73–79, 2022.

[17] Luı́s Loureiro, Vasco Pereira, Tiago Cruz, and Paulo Simões. Enhancing
5G core security with eBPF/XDP. In NOMS 2024-2024 IEEE Network
Operations and Management Symposium, pages 1–6, 2024.

[18] Shiyue Nie, Yiming Zhang, Tao Wan, Haixin Duan, and Song Li.
Measuring the deployment of 5G security enhancement. In Proceedings
of the 15th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec ’22, page 169–174, 2022.

[19] Harsh Sanjay Pacherkar and Guanhua Yan. PROV5GC: Hardening 5G
core network security with attack detection and attribution based on
provenance graphs. In Proceedings of the WiSec ’24, page 254–264,
2024.

[20] Altaf Shaik, Ravishankar Borgaonkar, Shinjo Park, and Jean-Pierre
Seifert. New vulnerabilities in 4G and 5G cellular access network
protocols: exposing device capabilities. In Proceedings of the WiSec
’19, WiSec ’19, page 221–231, 2019.

[21] V Stafford. Zero trust architecture. NIST special publication, 800:207,
2020.

[22] Yaru Yang et al. Uncovering security vulnerabilities in real-world im-
plementation and deployment of 5G messaging services. In Proceedings
of the 17th ACM Conference on WiSec ’24, page 265–276, 2024.


