
Optimizing matrix multiplication
Amitabha Banerjee

abanerjee@ucdavis.edu

Present compilers are incapable of fully harnessing the processor architecture complexity.
There is a wide gap between the available and achieved performance of software.
Thereby, the need for performance tuning. Performance tuning of the simple matrix
multiplication has indeed been a very tough and challenging project. In this work, we
discuss some of the optimization techniques, which gave us substantial improvements.

Test Setup:
The machine used for the test had a Pentium IV processor with a 16KB L1 cache and 512
KB L2 cache. We started from the short sweet matrix multiply code, which we call basic
matrix multiply. We used the gcc version 3.2.1 compiler.
 Basic_matrix_multiple (A,B,C,m)

 for i= 1 to m
 for j= 1 to m
 for k= 1 to m
 C(i,j) = C(i,j)+ A(i,k)*B(k,j)

The optimization techniques were applied in the following steps:

1) L1 cache blocking optimizations : Here the idea is to partition the big matrices
into uniform blocks. Matrix multiplication is carried out block by block. Details
of the algorithm are in [1]. Choosing the optimal block size is very important as
well. The idea here is to fit the two blocks, which are being multiplied into the L1
cache so that the self- interference [2] misses are minimized. The optimal block
size can be calculated as:

2 * (blockSize)2* wordSize = L1 cache size.
In our case, the wordSize is 8 bytes because the matrix is of double data type.
Substituting the values, we calculate the blockSize to be 32. To verify, we plot the
performance of blocked matrix multiply on a 512 * 512 matrix while varying the
block sizes from 16 to 64 in Figure 1. Note that we choose only multiples of 2
here, the reason being that the L1 cache has a line size of 4 words, and therefore
non-multiples of 2, make the block matrix size non-multiples of 4, which tends to
be inefficient. As expected we observe that the performance peaks at block size of
32.

2) Compiler flag optimizations: gcc provides various compiling options to improve

performance. A detailed list of all the compiler options can be found using the
man command.
In our case we found the 3 compiler options: -O4 –funroll- loops –ffast-math
particularly useful in speeding up the performance. The –ffast-math options is not
recommended always, because it makes optimizations to the IEEE floating point

standard which may yield incorrect results in some cases. However in the case of
matrix multiply it worked pretty well.

Performance with varying block sizes. Matrix multiply of 2 512*512 matrices.

150

175

200

225

250

275

300

0 10 20 30 40 50 60 70

Block size

P
er

fo
rm

an
ce

 in
 M

F
lo

p
/s

 Figure 1: Performance with varying the block factor.

3) Software optimizations : There is a bunch of software optimizations that we
considered. Most of these are based on C performance coding guidelines, which
may be found in detail in [1, 3]. Over here, we shall elaborate on ideas relevant to
our context.

a) Software unrolling and register reuse: We unrolled the innermost loop
two times. This helped us load a common value used in an outer loop into
a register. It is important to spot data, which is used recurrently and store
them in registers explicitly, so that they do not have to be repeatedly
fetched from the L1 or L2 caches.

b) Avoiding pointer arithmetic in arrays: If c were an array, it is much more
efficient to address an element as c[10] instead of *(c + 10). The former
can be executed in one LOAD instructions, because LOAD instructions in
most processors allow address computations. The latter takes two
instructions.

c) Avoiding inequality comparisons: The BRNZ (Branch if Nonzero)
instruction is extremely efficient, so it helps make use of it as much as
possible. Therefore its is helpful to convert the inequalities to equality
operations. For example, a inequality based for-do loop may be replaced
by an equality based do-while loop.

d) Interspacing add-multiply operations: Typically add and multiply
operations are performed in different processing units. Placing a bunch of
multiply operations together reduces efficiency because the instructions

might be stalled because of unavailability of the multiplication unit, while
the addition unit is free. In this context, it is useful to remember that
multiplication operations typically have much higher latencies than
arithmetic operations. Therefore it is efficient to have add and multiply
operations interleaved.

4) Copy optimization: We observed that there were substantial dips in performance

on matrices of sizes of powers of 2. e.g. On 128 * 128, 256 * 256 and 512 * 512
matrices. This can be explained as follows. In matrix multiplication a column of
data multiplies a row of data. Assume that the matrix is stored in row-major
format. When the matrix is of size 2^N, the addresses of the elements in a column
are also separated by powers of 2. Since the L1 uses a direct mapped cache, all
these elements in a column map to the same cache line. This leads to an
extraordinary number of cache misses.
The remedy is a technique known as copy optimization. Before starting matrix
multiplication, the matrices are copied into memory locations, the first matrix
being stored in row-major format block-wise, while the second matrix is stored in
column major format block-wise. This also helps in achieving spatial locality.
Copy optimization thus helps reduce the dips in performance at powers of 2,
while improving performance also because of spatial locality. Because copy
optimization involves the additional overhead of copying data, it is not
recommended for small sized matrices for which the impact is much less but
overhead is more.

5) L2 cache blocking optimizations : The final step optimization involves an

additional level of blocking for the L2 cache. The L2 cache size is 512 KB. So the
maximum matrix size that it can hold may be computed by the formula:

2 * (blockSize)2* wordSize = L2 cache size
which gives the optimal block size to be 181. We found the optimal achieved at
the block size of 160.

Figure 2 shows the results of our optimizations. Note that the performance of basic
matrix-matrix multiply degrades heavily with huge dips at around powers of 2. The
factor improvements with each degree of optimization on a 479 * 479 size matrix are
indicated in Table 1. We note that substantial improvements are achieved at each step.
We also note that the dips in performance at powers of 2 are much less after the copy
optimizations.

Optimizations made in matrix multiply

0

400

800

1200

1600

2000

0 100 200 300 400 500

Size of matrix

P
er

fo
rm

an
ce

 in
 M

F
lo

p
/s

Basic matr ix mul t ip ly

Blocked for L1 caches with 32 size (Step 1)

Compiler optimizations (Step 2)

Software Optimizations (Step 3)

Copy optimization (Step 4)

Blocked for L2 caches with 160 size (Step 5)

BLAS

Figure 2: Performance tuning for matrix multiply.

Optimization Performance
improvement

Basic matrix multiply 1.0
L1 cache blocking optimizations (1) 1.8
Compiler flag optimizations (2) 3.1
Software optimizations (3) 3.8
Copy optimization (4) 4.6
L2 cache blocking optimizations (5) 4.7
BLAS from ATLAS 9.9

 Table 1: Performance improvement on a 479 * 479 matrix

After all these optimizations we compare the performance with that achieved using the
BLAS library supplied by ATLAS which can be downloaded at [4]. As can be seen in
Table 1, BLAS beats our best performance by greater than a factor of 2. BLAS has
advantages of taking into account the complete architecture of the machine, such as the
number of floating point and integer results, the number of buses available etc.

All these optimizations are tailored to our machine. We now run the optimizations on a
different machine. This time we choose a Pentium III processor. The results are plotted in
Figure 3. We observe that the improvements are not as much as we obtained on a
Pentium IV machine. Some of our optimizations like L1 block sizes and L2 block sizes

were considered particular to the Pentium IV processor and they are not tuned to the
Pentium III processor. Moreover the disparities between the achieved performances for
matrix multiply and available performance for a Pentium IV is huge, and thus our
optimizations kick in much better. This shows that with faster processors, the need for
performance tuning is very important to harness the full capacity of the processor.

Performance on a Pentium III

0

50

100

150

200

250

300

350

0 100 200 300 400 500

Matrix size

P
er

fo
rm

an
ce

 (
M

F
lo

p
/s

) Basic matrix multiply

Blocked with size 32

Compiler optimizations

Loop unrolling, register reuse,
code optimizations

Copy optimization

Some more optimizations, which have been documented in literature, which may lead to
marginal improvements, are as follows:

1) Fringe handling: Since the matrix size is not always a multiple of the block size,
some blocks are the left over fringes after all the blocks of block size have been
carved out. Some optimizations recommended for handling fringes are to have
fine-tuned code for 1* 2, 1 * 3, 2 * 3, 2 * 4, 3 * 4 etc. fringes, and call these when
required.

2) Memory pre-fetch: A lot of cache misses are intrinsic misses [2], during which the
L1, L2 caches are being loaded with data from the memory. Pre-fetch can help
reduce these latencies. Usually compilers do not support these techniques and
hence these operations have to be done in assembly level code, which makes it
difficult to implement them.

Important references:
[1] D. Parello, O. Temam and Jean-Marie Verdun, “On increasing architecture
awareness in program optimizations to bridge the gap between peak and sustained
processor performance – Matrix-Multiply revisited.”, Supercomputing, 2002.

[2] Monica S. Lam, Edward E. Rothberg and Michael E. Wolf, “The Cache Performance
and Optimizations of Blocked Algorithms”, ASPLOS IV, 1991.
[3] PHiPAC technical report available at:
http://www.icsi.berkeley.edu/~bilmes/phipac/tr-98-035.pdf
[4] ATLAS BLAS available at www.netlib.org/altas .

