Lecture 01: Mathematical Basics (Summations)

 4.171

一本 国 下

TE N

• I am assuming that you know asymptotic notations. For example, the big-O, little-O notations

イロト イ部 トイ 君 ト イ 君 トー

 2990

э

Let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^n 1
$$

 \bullet It is trivial to see that $S = n$

イロメ イ団メ イ君メ イ君メー

E

Now, let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^n i
$$

- We can prove that $S = \frac{n(n+1)}{2}$ 2
	- How do you prove this statement? (Use Induction? Use the formula for the Sum of an Arithmetic Progression?)
- Using Asymptotic Notation, we can say that $S = \frac{n^2}{2} + o(n^2)$

Now, let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^n i^2
$$

- We can prove that $S = \frac{n(n+1)(2n+1)}{6}$ 6
	- Why is the expression on the right an integer? (Prove by induction that 6 divides $n(n + 1)(2n + 1)$ for all positive integer n)
	- How do you prove this statement? (Use Induction?)
- Using Asymptotic Notation, we can say that $S = \frac{n^3}{3} + o(n^3)$

イロメ イ団メ イミメ イモメー

- Do we see a pattern here?
- Conjecture: For $k \geqslant 1$, we have $\sum_{i=1}^{n} i^{k-1} = \frac{n^k}{k} + o(n^k)$.

• How do we prove this statement?

イロメ イ団メ イ君メ イ君メー

 2990

- \bullet Let f be an increasing function
- For example, $f(x) = x^{k-1}$ is an increasing function for $k > 1$ and $x \geqslant 0$

 -990

Estimating Summations by Integration II

メロメ メタメ メミメ メミメ

つくへ

Estimating Summations by Integration III

- Observation: "Blue area under the curve" is smaller than the "Shaded area of the rectangle"
	- Blue area under the curve is:

$$
\int_{x-1}^x f(t)dt
$$

• Shaded area of the rectangle is:

 $f(x)$

• So, we have the inequality:

$$
\int_{x-1}^x f(t) \, \mathrm{d} t \leqslant f(x)
$$

• Summing both side from $x = 1$ to $x = n$, we get

$$
\sum_{x=1}^n \int_{x-1}^x f(t) dt \leqslant \sum_{x=1}^n f(x)
$$

[Basics](#page-0-0)

Estimating Summations by Integration IV

• The left-hand side of the inequality is

$$
\int_0^1 f(t) dt + \int_1^2 f(t) dt + \cdots + \int_{n-1}^n f(t) dt = \int_0^n f(t) dt
$$

 \bullet So, for an increasing f, we have the following lower bound.

$$
\int_0^n f(t) \, \mathrm{d}t \leqslant \sum_{x=1}^n f(x) \tag{1}
$$

メロメ メ御 トメ 君 トメ 君 トー

Estimating Summations by Integration V

Now, we will upper bound the summation expression. Consider the figure below

 QQ

B

Estimating Summations by Integration VI

- Observation: "Blue area under the curve" is greater than the "Shaded area of the rectangle"
- So, we have the inequality:

$$
\int_{x-1}^x f(t) \, \mathrm{d}t \geqslant f(x-1)
$$

- Now we sum the above inequality from $x = 2$ to $x = n + 1$
- We get

$$
\int_{1}^{2} f(t) dt + \int_{2}^{3} f(t) dt + \cdots + \int_{n}^{n+1} f(t) dt \geq f(1) + f(2) + \cdots + f(n)
$$

 \bullet So, for an increasing f, we get the following upper bound

$$
\int_{1}^{n+1} f(t) dt \geqslant \sum_{x=1}^{n} f(x)
$$
 (2)

イロト イ押 トイヨ トイヨト

 2990

[Basics](#page-0-0)

Summary: Estimation of Summation using Integration

Theorem

For an increasing function f , we have

$$
\int_0^n f(t) dt \leqslant \sum_{x=1}^n f(x) \leqslant \int_1^{n+1} f(t) dt
$$

Exercise:

- Use this theorem to prove that $\sum_{i=1}^{n} i^{k-1} = \frac{n^k}{k} + o(n^k)$, for $k \geqslant 1$
- Consider the function $f(x) = 1/x$ to find upper and lower bounds for the sum $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ $\frac{1}{n}$ using the approach used to prove [Theorem 1](#page-0-1)

メロトメ 御 トメ 君 トメ 君 トー 君

Differentiation and Integration

- Differentiation: $f'(x)$ represents the slope of the curve $y = f(x)$ at x
- Integration: $\int_a^b f(t) dt$ represents the area under the curve $y = f(x)$ between $x = a$ and $x = b$
- Increasing function:
	- Observation: The slope of an increasing function is positive
	- So, "*f* is increasing at x" is equivalent to " $f'(x) > 0$," i.e. *f'* is positive at x
- Suppose we want to mathematically write "Slope of a function f is increasing"
	- The "slope of a function f'' is the function " f'''
	- So, the statement "slope of a function f is increasing" is equivalent to " $(f')' \equiv f''$ is positive"

 η an

Definition (Concave Upwards Function)

A function f is concave upwards in the interval $[a, b]$ if f'' is positive in the interval $[a, b]$.

- Example of functions that concave upwards: x^2 , $\exp(x)$, $1/x$ (in the interval $(0, \infty)$), x log x (in the interval $(0, \infty)$)
	- We emphasize that a "concave upwards" function need not be increasing, for example $f(x) = 1/x$ (for positive x) is decreasing

イロト イ押 トイヨ トイヨト

 200

Property of Concave Upwards Function I

- Consider the coordinates $(x 1, f(x 1))$ and $(x, f(x))$
- For a concave upwards function, the secant between the two coordinates is always (on or) above the part of the curve f between the two coordinates

[Basics](#page-0-0)

Property of Concave Upwards Function II

• So, the shaded area of the trapezium is greater than the blue area under the curve

4 17 18

つくい

• So, we get $f(x-1) + f(x)$ 2 $\geqslant \int^x$ x−1 $f(t)$ dt

- Now, use this new observation to obtain a better lower bound for the sum $\sum_{x=1}^{n} f(x)$
- Think: Can you get even tighter bounds?
- Additional Reading: Read on the "trapezoidal rule"

Estimating Products

- \bullet Consider the objective of estimating n! using elementary functions
- Note that one can convert this estimation of products into estimation of sums by taking log. For example,

$$
\ln(n!) = \sum_{i=1}^n \ln(i).
$$

Now, one can tightly upper and lower bound the expression $\sum_{i=1}^{n}$ In(*i*). Use the techniques in the previous slides to obtain meaningful upper and lower bounds of this expression. Suppose

$$
L_n \leqslant \sum_{i=1}^n \ln(i) \leqslant U_n.
$$

• Therefore, one concludes that

$$
\exp(L_n) \leqslant n! \leqslant \exp(U_n).
$$

Estimating Fractions

- Consider the objective of estimating a fraction A_n/B_n
- Suppose we have $A_n \leqslant U_n$ and $L'_n \leqslant B_n$. Note that

$$
\frac{1}{B_n} \leqslant \frac{1}{L'_n}.
$$

• Note that multiplying with $A_n \leq U_n$, one gets that

$$
\frac{A_n}{B_n} \leqslant \frac{U_n}{L'_n}.
$$

- To summarize, upper-bounding a fraction involves upper-bounding the numerator and lower-bounding the denominator
- Analogously, if $L_n \leqslant A_n$ and $B_n \leqslant U'_n$, then we get $\frac{L_n}{U'_n} \leqslant \frac{A_n}{B_n}$ B_n
- **Food for thought.** Provide meaningful upper and lower bound the expression $\binom{2n}{n}$ $\binom{2n}{n} := \frac{(2n)!}{(n!)^2}$ $\frac{(2n)!}{(n!)^2}$.

4 Abel Summation Formula:

- [Wikipedia](https://en.wikipedia.org/wiki/Abel%27s_summation_formula)
- [A lecture note](https://www.math.ucdavis.edu/~tracy/courses/AbelSummation.pdf)

2 Euler-Maclaurin Summation Formula:

- [Wikipedia](https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula)
- [Quick summary for applications](https://aofa.cs.princeton.edu/40asymptotic/)
- [Concrete Mathematics](https://www.amazon.com/Concrete-Mathematics-Foundation-Computer-Science/dp/0201558025) Chapter 9.5 (you can access the book through Purdue Library)

ヨメ マヨメー

 200