Lecture 10: Shamir Secret Sharing (Lagrange Interpolation)

a mills

タト→ミト

÷

 QQ

We want to

Share a secret $s \in \mathbb{Z}_p$ to *n* parties, such that $\{1, \ldots, n\} \subseteq \mathbb{Z}_p$, Any two parties can reconstruct the secret s, and No party alone can predict the secret s

イロン イ団 メイミン イミン

SecretShare(s, n) Pick a random line $\ell(X)$ that passes through the point $(0, s)$ This is done by picking a_1 uniformly at random from the set \mathbb{Z}_p And defining the polynomial $\ell(X) = a_1X + s$ Evaluate $s_1 = \ell(X = 1), s_2 = \ell(X = 2), \ldots, s_n = \ell(X = n)$ Secret shares for party 1, party 2, ..., party n are s_1, s_2, \ldots , s_n , respectively

 $\mathsf{SecretReconstruct}(i_1, s^{(1)}, i_2, s^{(2)})$

Reconstruct the line $\ell'(X)$ that passes through the points $(i_1, s^{(1)})$ and $(i_2, s^{(2)})$

We will learn a new technique to perform this step, referred to as the Lagrange Interpolation

Define the reconstructed secret $s' = \ell'(0)$

イロト イ押 トイヨ トイヨト

We want to

Share a secret $s \in \mathbb{Z}_p$ to *n* parties, such that $\{1, \ldots, n\} \subseteq \mathbb{Z}_p$, Any t parties can reconstruct the secret s, and Less than t parties cannot predict the secret s

イロト イ団ト イミト イモト

SecretShare(s, n)

Pick a polynomial $p(X)$ of degree $\leq (t-1)$ that passes through the point $(0, s)$

This is done by picking a_1, \ldots, a_{t-1} independently and uniformly at random from the set \mathbb{Z}_p And defining the polynomial $\ell(X)=\mathsf{a}_{t-1}X^{t-1}+\mathsf{a}_{t-2}X^{t-2}+\ldots \mathsf{a}_1X+\mathsf{s}$ Evaluate $s_1 = p(X = 1), s_2 = p(X = 2), \ldots, s_n = p(X = n)$ Secret shares for party 1, party 2, ..., party n are s_1, s_2, \ldots , s_n , respectively

イロメ 不倒 メイモメ イモメー 毛

 η an

SecretReconstruct $(i_1,s^{(1)},i_2,s^{(2)},\ldots,i_t,s^{(t)})$

Use Lagrange Interpolation to construct a polynomial $p'(X)$ that passes through $(i_1,s^{(1)}),$ $\dots,$ $(i_t,s^{(t)})$ (we describe this algorithm in the following slides)

Define the reconstructed secret $s' = p'(0)$

Consider the example we were considering in the previous lecture

The secret was $s = 3$

Secret shares of party 1, 2, 3, and 4, were 0, 2, 4, and 1, respectively

Suppose party 2 and party 3 are trying to reconstruct the secret

Party 2 has secret share 2, and Party 3 has secret share 4

We are interested in finding the line that passes through the points $(2, 2)$ and $(3, 4)$

イロン イ団 メイミン イミン

Subproblem 1:

Let us find the line that passes through (2, 2) and (3, 0) Note that at $X = 3$ this line evaluates to 0, so $X = 3$ is a root of the line So, the line has the equation $\ell_1(X) = c \cdot (X - 3)$, where c is a suitable constant Now, we find the value of c such that $\ell_1(X)$ passes through the point (2, 2) So, we should have $c \cdot (2-3) = 2$, i.e., $c = 3$

 $\ell_1(X) = 3 \cdot (X - 3)$ is the equation of that line

K ロ ⊁ K 御 ≯ K 君 ≯ K 君 ≯ 一君

 QQ

Subproblem 2:

Let us find the line that passes through $(2, 0)$ and $(3, 4)$ Note that at $X = 2$ this line evaluates to 0, so $X = 2$ is a root of the line So, the line has the equality $\ell_2(X) = c \cdot (X - 2)$, where c is a suitable constant Now, we find the value of c such that $\ell_2(X)$ passes through the point (3, 4) So, we should have $c \cdot (3 - 2) = 4$, i.e. $c = 4$ $\ell_2(X) = 4 \cdot (X - 2)$

K ロ ⊁ K 御 ≯ K 君 ≯ K 君 ≯ 一君

Putting Things Together:

Define $\ell'(X) = \ell_1(X) + \ell_2(X)$ That is, we have

$$
\ell'(X) = 3\cdot(X-3) + 4\cdot(X-2)
$$

Evaluation of $\ell'(X)$ at $X = 0$ is

$$
s' = \ell'(X = 0) = 3 \cdot (-3) + 4 \cdot (-2) = 3 \cdot 2 + 4 \cdot 3 = 1 + 2 = 3
$$

イロメ イ団メ イミメ イモメー

Uniqueness of Polynomial

We shall prove the following result

Theorem

There is a unique polynomial of degree at most d that passes through (x_1, y_1) , (x_2, y_2) , ..., (x_{d+1}, y_{d+1})

If possible, let there exist two distinct polynomials of degree $\leq d$ such that they pass through the points (x_1, y_1) , (x_2, y_2) , ..., (X_{d+1}, Y_{d+1})

Let the first polynomial be:

$$
p(X)=a_dX^d+a_{d-1}X^{d-1}+\cdots+a_1X+a_0
$$

Let the second polynomial be:

$$
p'(X) = a'_d X^d + a'_{d-1} X^{d-1} + \cdots + a'_1 X + a'_0
$$

ス 何 ト ス ヨ ト ス ヨ トー

 Ω

Let $p^*(X)$ be the polynomial that is the difference of the polynomials $p(X)$ and $p'(X)$, i.e.,

$$
\rho^*(X) = \rho(X) {-} \rho'(X) = (a_d {-} a'_d) X^d {+} \dots (a_1 {-} a'_1) X {+} (a_0 {-} a'_0)
$$

Observation. The degree of $p^*(X)$ is $\leq d$

イロト イ団 トイ ヨト イヨト

 η a

For $i \in \{1, \ldots, d+1\}$, note that at $X = x_i$ both $p(X)$ and $p'(X)$ evaluate to y_i

So, the polynomial $p^*(X)$ at $X = x_i$ evaluates to $y_i - y_i = 0$, i.e. x_i is a root of the polynomial $p^*(X)$

Observation. The polynomial $p^*(X)$ has roots $X = x_1$, $X = x_2, \ldots, X = x_{d+1}$

 $(1 - 4)$ $(1 -$

We will use the following result

Theorem (Schwartz–Zippel, Intuitive)

A non-zero polynomial of degree d has at most d roots (over any field)

Conclusion.

Based on the two observations above, we have a $\le d$ degree polynomial $p^*(X)$ that has at least $(d+1)$ distinct roots x_1, \ldots, x_{d+1} This implies, by Schwartz–Zippel Lemma, that the polynomial is the zero-polynomial. That is, $p^*(X) = 0$. This implies that $p(X)$ and $p'(X)$ are identical This contradicts the initial assumption that there are two distinct polynomials $p(X)$ and $p'(X)$

(ロ) (個) (星) (星)

The proof in the previous slides proves that

Given a set of points (x_1, y_1) , ..., (x_{d+1}, y_{d+1})

There is a unique polynomial of degree at most d that passes through all of them!

イロト イ団ト イミト イモト

Suppose we are interested in constructing a polynomial of degree $\leq d$ that passes through the points $(x_1, y_1), \ldots$, (x_{d+1}, y_{d+1})

[Shamir Secret Sharing](#page-0-0)

メロメ メタメ メミメ メミメ

Subproblem i:

We want to construct a polynomial $p_i(X)$ of degree $\leq d$ that passes through (x_i, y_i) and $(x_j, 0)$, where $j \neq i$ So, $\{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d+1}\}$ are roots of the polynomial $p_i(X)$ Therefore, the polynomial $p_i(X)$ looks as follows

$$
p_i(X)=c\cdot (X-x_1)\cdots (X-x_{i-1})(X-x_{i+1})\cdots (X-x_{d+1})
$$

Tersely, we will write this as

$$
p_i(X) = c \cdot \prod_{\substack{j \in \{1,\dots,d+1\}\\ \text{such that } j \neq i}} (X - x_j)
$$

→ 御き → 唐 → → 唐 →

Lagrange Interpolation and III

Now, to evaluate c we will use the property that $p_i(x_i) = y_i$ Observe that the following value of c suffices

$$
c = \frac{y_i}{\prod_{\substack{j \in \{1,\ldots,d+1\} \\ \text{such that } j \neq i}} (x_i - x_j)}
$$

So, the polynomial $p_i(X)$ that passes through (x_i, y_i) and $(x_j, 0)$, where $j \neq i$ is

$$
p_i(X) = \frac{y_i}{\prod_{\substack{j \in \{1,\ldots,d+1\} \\ \text{such that } j \neq i}} (x_i - x_j)} \cdot \prod_{\substack{j \in \{1,\ldots,d+1\} \\ \text{such that } j \neq i}} (X - x_j)
$$

Observe that $p_i(X)$ has degree d

メタトメ ミドメ ミドー

Putting Things Together:

Consider the polynomial

$$
p(X) = p_1(X) + p_2(X) + \ldots + p_{d+1}(X)
$$

This is the desired polynomial that passes through (x_i, y_i)

Claim

The polynomial $p(X)$ passes through (x_i, y_i) , for $i \in \{1, ..., d+1\}$

Proof.

Note that, for $j \in \{1, \ldots, d+1\}$, we have

$$
p_j(x_i) = \begin{cases} y_i, & \text{if } j = i \\ 0, & \text{otherwise} \end{cases}
$$

Therefore,
$$
p(x_i) = \sum_{j=1}^{d+1} p_j(x_i) = y_i
$$

[Shamir Secret Sharing](#page-0-0)

メロメ メ団 トメ 君 トメ 君 トー

E

Given points $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$

Lagrange Interpolation provides one polynomial of degree $\leq d$ polynomial that passes through all of them

[Theorem 1](#page-0-1) states that this $\leq d$ degree polynomial is unique

Let us find a degree ≤ 2 polynomial that passes through the points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) Subproblem 1:

We want to find a degree ≤ 2 polynomial that passes through the points (x_1, y_1) , $(x_2, 0)$, and $(x_3, 0)$ The polynomial is

$$
p_1(X) = \frac{y_1}{(x_1 - x_2)(x_1 - x_3)}(X - x_2)(X - x_3)
$$

母 > (ミ > (ミ >)

Subproblem 2:

We want to find a degree ≤ 2 polynomial that passes through the points $(x_1, 0)$, (x_2, y_2) , and $(x_3, 0)$. The polynomial is

$$
p_2(X) = \frac{y_2}{(x_2 - x_1)(x_2 - x_3)}(X - x_1)(X - x_3)
$$

Subproblem 3:

We want to find a degree ≤ 2 polynomial that passes through the points $(x_1, 0)$, $(x_2, 0)$, and (x_3, y_3) . The polynomial is

$$
p_2(X) = \frac{y_3}{(x_3 - x_1)(x_3 - x_2)}(X - x_1)(X - x_2)
$$

[Shamir Secret Sharing](#page-0-0)

 QQ

Putting Things Together: The reconstructed polynomial is

$$
p(X) = p_1(X) + p_2(X) + p_3(X)
$$

イロン イ団ン イミン イモン

This completes the description of Shamir's secret-sharing algorithm. In the following lectures, we will argue its security.

イロン イ押ン イヨン イヨン