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Homework 6

1. RSA Assumption (5+12+5). Consider RSA encryption scheme with parameters
N = 55 = 5× 11.

(a) Compute φ(N) and write down the set Z∗N .
Solution.

(b) Use repeated squaring and complete the rows X,X2, X4 for all X ∈ Z∗N as you
have seen in the class (slides), that is, fill in the following table by adding as
many columns as needed.
Solution.

X

X2

X4
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(c) Find the row X7 and show that X7 is a bijection from Z∗N to Z∗N .
Solution.

X

X2

X4

X7

2



CS 355, FALL 2024 Name: Hemanta K. Maji

2. Answer the following questions (7+7+7+7 points):

(a) (7 points) By hand, compute the three least significant (decimal) digits of 9755993588804.
Explain your logic.
Solution.
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(b) (7 points) Is the following RSA signature scheme valid? (Justify your answer)

(r∥m) = 18, σ = 196, N = 699, e = 43

Here, m denotes the message, r denotes the randomness used to sign m, and σ
denotes the signature. Moreover, (r∥m) denotes the concatenation of r and m.
The signature algorithm Sign(m) returns (r∥m)d mod N where d is the inverse
of e modulo φ(N). The verification algorithm V er(m,σ) returns ((r∥m) == σe

mod N).
Solution.
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(c) (7 points) Remember that in RSA encryption and signature schemes, N = p× q
where p and q are two large primes. Show that in the RSA scheme (with public
parameters N and e), if you know N and φ(N), then you can efficiently factorize
N , i.e., you can recover p and q.
Solution.

(d) (7 points) Consider an encryption scheme where Enc(m) := me mod N where
e is a positive integer relatively prime to φ(N) and Dec(c) := cd mod N where
d is the inverse of e modulo φ(N). Show that in this encryption scheme, if you
know the encryption of m1 and the encryption of m2, then you can find the
encryption of (m1 ×m2)

5.
Solution.
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(e) (7 points) Suppose n = 11413 = 101 · 113, where 101 and 113 are primes. Let
e1 = 7777 and e2 = 3567.

i. (2 points) Only one of the two exponents e1, e2 is a valid RSA encryption
key, which one?
Solution.

ii. (3 points) For the valid encryption key, compute the corresponding decryp-
tion key d.
Solution.

iii. (2 points) Decrypt the cipher text c = 3233.
Solution.
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3. Euler Phi Function (30 points)

(a) (10 points) Let N = pe11 · pe22 · · · pett represent the unique prime factorization
of a natural number N , where p1 < p2 < · · · < pt are prime numbers and
e1, e2, . . . , et are natural numbers. Let Z∗N =

{
x : 0 ⩽ x < N − 1, gcd(x,N) = 1

}
and φ(N) =

∣∣Z∗N ∣∣. Using the inclusion exclusion principle, prove that

φ(N) = N ·
(
1− 1

p1

)
·
(
1− 1

p1

)
· · ·

(
1− 1

pt

)
.

Solution.
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(b) (5 points) For any x ∈ Z∗N , prove that

xφ(N) = 1 mod N.

Hint: Consider the subgroup generated by x and its order.
Solution.
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(c) Replacing φ(N) with φ(N)
2 in RSA. (15 points)

In RSA, we pick the exponent e and the decryption key d from the set Z∗φ(N).
This problem shall show that we can choose e, d ∈ Z∗φ(N)/2 instead.
Let p, q be two distinct odd primes and define N = pq.

i. (2 points) For any e ∈ Z∗φ(N)/2, prove that xe : Z∗N → Z∗N is a bijection.
Solution.

ii. (7 points) Consider any x ∈ Z∗N . Prove that x
φ(N)

2 = 1 mod p and x
φ(N)

2 = 1
mod q.
Solution.
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iii. (3 points) Consider any x ∈ Z∗N . Prove that x
φ(N)

2 = 1 mod N.
Solution.

iv. (3 points) Suppose e, d are integers that e · d = 1 mod φ(N)
2 . Show that

(xe)d = x mod N, for any x ∈ Z∗N .
Solution.
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4. Understanding hardness of the Discrete Logarithm Problem. (15 points)
Suppose (G, ◦) is a group of order N generated by g ∈ G. Suppose there is an
algorithm ADL that, when given input X ∈ G, it outputs x ∈ {0, 1, . . . , N − 1} such
that gx = X with probability pX .

Think of it this way: The algorithm ADL solves the discrete logarithm problem;
however, for different inputs X ∈ G, its success probability pX may be different.

Let p =
(
∑

X∈G pX)
N represent the average success probability of ADL solving the

discrete logarithm problem when X is chosen uniformly at random from G.

Construct a new algorithm B that takes any X ∈ G as input and outputs x ∈
{0, 1, . . . , N − 1} (by making one call to the algorithm ADL) such that gx = X with
probability p. This new algorithm that you construct shall solve the discrete logarithm
problem for every X ∈ G with the same probability p.

(Remark: Intuitively, this result shows that solving the discrete logarithm problem for any X ∈ G

is no harder than solving the discrete logarithm problem for a random X ∈ G. )

Solution.
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5. Concatenating a random bit string before a message. (15 points)

Let m ∈ {0, 1}a be an arbitrary message. Define the set

Sm =
{
(r∥m) : r ∈ {0, 1}b

}
.

Let p be an odd prime. Recall that in the RSA encryption algorithm, we encrypted
a message y chosen uniformly at random from this set Sm.

Prove the following
Pr

y
$←Sm

[p divides y] ⩽ 2−b ·
⌈
2b/p

⌉
.

(Remark: This bound is tight as well. There exists m such that equality is achieved in the probability
expression above. Intuitively, this result shows that the message y will be relatively prime to p with
probability (roughly) (1− 1/p). )

Solution.
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6. Properties of xe when e is relatively prime to φ(N) (20 points)

In this problem, we will partially prove a result from the class that was left unproven.
Suppose N = pq, where p and q are distinct prime numbers. Let e be a natural
number that is relatively prime to φ(N) = (p− 1)(q− 1). In the lectures, we claimed
(without proof) that the function xe : Z∗N → Z∗N is a bijection. The following problem
is key to proving this result.

Let N = pq, where p and q are distinct prime numbers. Let e be a natural number
relatively prime to (p − 1)(q − 1). Consider x, y ∈ Z∗N . If xe = ye mod N , then
prove that x = y.

Hint: You might find the following facts useful.

• Every α ∈ ZN can be uniquely written as (αp, αq) such that α = αp mod p
and α = αq mod q, using the Chinese Remainder theorem. We will write this
observation succinctly as α = (αp, αq) mod (p, q).

• For α, β ∈ ZN , and e ∈ N we have αe = β mod N if and only if αe
p = βp mod p

and αe
q = βq mod q. We will write this succinctly as αe = (αe

p, α
e
q) mod (p, q).

• From the Extended GCD algorithm, if u and v are relatively prime then, there
exists integers a, b ∈ Z such that au+ bv = 1.

• Fermat’s little theorem states that xp−1 = 1 mod p if x is a natural number
that is relatively prime to the prime p.

Solution.
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7. Challenging: Inverting exponentiation function. (20 points)

Fix N = pq, where p and q are distinct odd primes. Let e be a natural number such
that gcd(e, φ(N)) = 1. Suppose there is an adversary A running in time T such that

Pr
[
[A([xe mod N ]) = x]

]
= 0.01

for x chosen uniformly at random from Z∗N . Intuitively, this algorithm successfully
finds the e-th root with probability 0.01, for a random x.

For any ε ∈ (0, 1), construct an adversary Bε (which, possibly, makes multiple calls
to the adversary A) such that

Pr
[
[Bε([x

e mod N ]) = x]
]
= 1− ε,

for every x ∈ Z∗N . The algorithm Bε should have a running time polynomial in T, logN,
and log 1/ε.

Solution.
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Collaborators :
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