Lecture 09: Shamir Secret Sharing (Conclusion)

Shamir Secret Sharing

御 と く ヨ と く

Shamir Secret Sharing: Recall

Setting

- Fix a finite field (ℤ_ρ, +, ×)
- There are n parties such that n < p
- Reconstruction threshold is t

Secret Sharing Algorithm:

- Objective: Share a secret $s \in \mathbb{Z}_p$
- Pick a random polynomial P(X) with Z_p coefficients and degree < t such that P(0) = s
- For $i \in \{1, 2, ..., n\}$, define the *i*-th secret share $s_i := P(i)$

Secret Reconstruction Algorithm:

- Objective: Given shares $(i_1, s_{i_1}), (i_2, s_{i_2}), \dots, (i_t, s_{i_t})$ where i_1, i_2, \dots, i_t are distinct, recover the secret
- Use Lagrange Interpolation to find the unique polynomial Q(X) of degree < t such that $Q(i_1) = s_{i_1}$, $Q(i_2) = s_{i_2}$, \ldots , $\overline{Q}(i_t) = s_{i_t}$
- Define the recovered secret to be Q(0)

ヘロト ヘ部ト ヘヨト ヘヨト

High-level Overview

- Use the Graph-theoretic Representation Strategy
- Left Partite Set: Set of "Things that we intend to hide"

$$\left\{ \ (0,s) \colon s \in \mathbb{Z}_p \ \right\}.$$

• Right Partite Set: Set of "Things that an adversary sees"

$$\begin{cases} 0 \leqslant k < t \\ \left((i_1, s_{i_1}), (i_2, s_{i_2}), \dots (i_k, s_{i_k}) \right) : \text{distinct } i_1, \dots, i_k \in \{1, 2, \dots, n\} \\ s_{i_1}, s_{i_2}, \dots, s_{i_k} \in \mathbb{Z}_p \end{cases}$$

• Witness: A polynomial (of degree < t) explaining an element of the left partite set and an element of the right partite set

Number of Witnesses

• The edge joining the following two vertices

You will prove this result in the homework

- Since the weight of any edge is independent of the left vertex, the scheme is secure
- Remark: The weight can depend on the vertex in the right partite set, which is permissible according to our security definition

Additional Clarifications on the Graph Representation

Vertices in the right partite set.

- Fix any $k \in \{0, 1, \dots, t-1\}$
- The total number of vertices of the form $((i_1, s_{i_1}), (i_2, s_{i_2}), \dots, (i_k, s_{i_k}))$ are

$$\binom{n}{k} \cdot p^k$$

Explanation: There are $\binom{n}{k}$ ways of choosing distinct i_1, \ldots, i_k . After that, there are p^k ways of choosing $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$

- In particular, if k = 0, then there is exactly one such vertex
- The total number of vertices in the right partite set, therefore, is:

$$\sum_{k=0}^t \binom{n}{k} \cdot p^k.$$

Shamir Secret Sharing

Example 1 for the weight of an edge.

- Suppose t = 3 (that is, any three parties can come together to reconstruct the secret)
- Shamir secret sharing uses polynomials with degree < t. So, any candidate polynomial f(X) is of the form

$$f_0 + f_1 \cdot X + f_2 \cdot X^2$$

Here, think of f_0, f_1, f_2 as "degrees of freedom." This polynomial has 3 degrees of freedom.

Consider a left vertex (0, s). For k = 1, consider the right vertex (i₁, s_{i₁}).

• The weight of the edge connecting this left and right vertex above is the number of polynomials f(X) that satisfy f(0) = s and $f(i_1) = s_{i_1}$. So, we have the following two linear constraints:

Ш

$$f_0 + f_1 \cdot 0 + f_2 \cdot 0^2 = s$$

$$f_0 + f_1 \cdot i_1 + f_2 \cdot (i_1)^2 = s_{i_1}.$$

There are two linear constraints. In homework, you will prove that in such linear systems, if you begin with 3 degrees of freedom and add 2 constraints, you are left with only one degree of freedom. Therefore, the total number of (f_0, f_1, f_2) satisfying these constraints is $p^{\text{remaining-degrees-of-freedom}} = p^1$.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Additional Clarifications on the Graph Representation

Example 1.1 for the weight of an edge.

- Let us elaborate more on the previous example.
- Suppose the left vertex is (0,5) and the right vertex is (3,7).
- So, the constraints are:

$$f_0 + f_1 \cdot 0 + f_2 \cdot 0^2 = 5$$

$$f_0 + f_1 \cdot 3 + f_2 \cdot 3^2 = 7$$

• The simultaneous solutions must satisfy $f_0 = 5$ and $3 \cdot f_1 + 9 \cdot f_2 = 2$. So, the solutions are

$$\left(5, f_1, \frac{2-3 \cdot f_1}{9}\right).$$

For every choice of f_1 , we get one solution. There are p such choices possible. Therefore, there are a total of p solutions; as expected.

Additional Clarifications on the Graph Representation

Example 2 for the weight of an edge.

- Consider a left vertex (0, s). For k = 2, consider the right vertex ((i₁, s_{i1}), (i₂, s_{i2}))
- We are interested in counting the number of polynomials $f_0 + f_1 \cdot X + f_2 \cdot X^2$ that interpolate these three points.
- Any polynomial interpolating them must satisfy the following constraints.

$$f_0 + f_1 \cdot 0 + f_2 \cdot 0^2 = s$$

$$f_0 + f_1 \cdot i_1 + f_2 \cdot (i_1)^2 = s_{i_1}$$

$$f_0 + f_1 \cdot i_2 + f_2 \cdot (i_2)^2 = s_{i_2}$$

• So, the polynomial began with 3 degrees of freedom. After that, 3 constraints were added. Therefore, the remaining degrees of freedom is 3 - 3 = 0. Using the results proven in your homework, the number of solutions will be $p^0 = 1$.

Additional Clarifications on the Graph Representation VI

Example 2.1 for the weight of an edge.

- Consider the left vertex (0,5) and the right vertex ((3,7), (5,2))
- So, the constraints are:

$$f_0 + f_1 \cdot 0 + f_2 \cdot 0^2 = 5$$

$$f_0 + f_1 \cdot 3 + f_2 \cdot 3^2 = 7$$

$$f_0 + f_1 \cdot 5 + f_2 \cdot 5^2 = 2.$$

• You can verify that the solution is

$$\left(5,\frac{77}{30},-\frac{19}{30}\right)$$

• There is only $p^0 = 1$ solution, consistent with the calculation in example 2.

• • = • • = •

Extension to Correctness.

- Note that the right partite sets only contain vertices corresponding to k shares, where k ∈ {0, 1, ..., t − 1}
- It is natural to wonder what will happen if we have vertices in the right partite set with k = t shares!
- Suppose the right vertex is

$$((i_1, s_{i_1}), (i_2, s_{i_2}), \dots, (i_t, s_{i_t}))$$

Note that this vertex has t shares.

Note that those parties can reconstruct the unique secret polynomial of degree < t that interpolates these t points. After that, this reconstructed polynomial is either consistent with the left vertex (0, s) or not; there is no middle ground.

- So, there is a unique left vertex $(0, s^*)$ with which the reconstructed polynomial will be consistent. The weight of the edge joining that specific left vertex to the right vertex will be 1.
- For all left vertices (0, s), such that s ≠ s*, the reconstructed polynomial will be inconsistent. The weight of the edge joining any of these left vertices with the right vertex will be 0.
- So, it is apparent that the weight depends on the left vertex in this case! Therefore, the scheme is "insecure" when t shares are revealed. This phenomenon is expected because t parties can reconstruct the secret. Intuitively, "reconstruction" entails "insecurity."

(4 同) (4 回) (4 回)

Example 3 for correctness.

• Consider k = 3 and a right vertex

((1,0),(3,7),(5,2))

IX.

• These three points are sufficient to reconstruct the unique degree < 3 polynomial interpolating them. The constraints are

$$f_0 + f_1 \cdot 1 + f_2 \cdot 1^2 = 0$$

$$f_0 + f_1 \cdot 3 + f_2 \cdot 3^2 = 7$$

$$f_0 + f_1 \cdot 5 + f_2 \cdot 5^2 = 2$$

• Verify that the simultaneous solution is

$$(f_0, f_1, f_2) = \left(-8, \frac{19}{2}, -\frac{3}{2}\right)$$

Shamir Secret Sharing

向下 イヨト イヨト

• So, the reconstructed polynomial is

$$f(X) = (-8) + \frac{19}{2} \cdot X + \left(-\frac{3}{2}\right) \cdot X^2$$

X

This reconstructed polynomial is consistent only with the left vertex

$$(0, -8)$$

• So, the weight of the edge joining the left vertex (0, -8) with the right vertex will be 1. The weight of the edge joining the left vertex (0, s), where $s \neq -8$, with the right vertex will be 0

(4 同) ト (1 日) (1 日)