
Lecture 16: Encrypting Long Messages

Encrypting Long Messages



Objective

Earlier, we saw that the length of the secret key in a one-time
pad has to be at least the length of the message being
encrypted
Our objective in this lecture is to use smaller secret keys to
encrypt longer messages (that is, secure against
computationally bounded adversaries)

Encrypting Long Messages



Recall

Suppose f : {0, 1}2n → {0, 1}2n is a one-way permutation
(OWP)
Then, we had see that the function
G : {0, 1}n × {0, 1}n → {0, 1}2n+1 defined by

G (r , x) = (r , f (x), ⟨r , x⟩)

is a one-bit extension PRG

Let us represent f i (x) as a short-hand for

i-times︷ ︸︸ ︷
f (· · · f (f (x))· · ·).

f 0(x) shall represent x .
By iterating the construction, we observed that we could
create a stream of pseudorandom bits by computing
bi (r , x) =

〈
r , f i (x)

〉
(Note that, if we already have f i (x)

stored, then we can efficiently compute f i+1(x) from it)
So, the idea is to encrypt long messages where the i-th bit of
the message is masked with the bit bi (r , x)

Encrypting Long Messages



Encrypting Long Messages
Without loss of generality, we assume that our objective is to
encrypt a stream of bits (m0,m1, . . . )

Gen(): Return sk = (r , x)
$←{0, 1}2n, where r , x ∈ {0, 1}n

Alice and Bob shall store their state variables: stateA and
stateB . Initially, we have stateA = stateB = x

Encsk,stateA(mi ): ci = mi ⊕ ⟨r , stateA⟩, and update
stateA = f (stateA), where sk = (r , x)

Decsk,stateB (c̃i ) = m̃i = c̃i ⊕ ⟨r , stateB⟩, and update
stateB = f (stateB), where sk = (r , x)

Note that the i-th bit is encrypted with bi (r , x) and is also
decrypted with bi (r , x). So, the correctness holds. This
correctness guarantee holds as long as the order of the
encryptions and the decryptions remain identical.
Note that each bit bi (r , x) is uniform and independent of all
previous bits (for computationally bounded adversaries). So,
the scheme is secure against all computationally bounded
adversaries

Encrypting Long Messages


