Moaost of the work of John Horwon Conway, a distinguished
mathematician at the University of Cambridge, has been in
pure mathematics. For instance, in 1967 he discovered a new
group—some call it “Conway's constellation"—that includes all
but two of the then known sporadic groups. (They are called
“sporadic” because they fail to fit any classification scheme.) Tt
is a breakthrough that has had exciting repercussions in both
group theory and number theory. It ties in closely with an ear-
lier discovery by John Leech of an extremely dense packing of
unit spheres in a space of 24 dimensions where each sphere
touches 196,560 others. As Conway has remarked, “There is a
lot of room up there.”

In addition to such serious work Conway also enjoys recrea-
tional mathematics. Although he is highly pmclucti;‘e in this
field, he seldom publishes his discoveries. One exception was
his paper on “Mrs. Perkins’ Quilt,” a dissection problem dis-
cussed in my Mathematical Carnival. Another was sprouts, a to-
pological pencil-and-paper game invented by Conway and
M. S. Patevson. It is also the topic of a chapter in the same
book.

In this chapter we consider Conway’s most famous brain-
child, a fantastic solitaire pastime he calls “Life.” Because of its
analogies with the rise, fall and alterations of a society of living
organisms, it belongs to a growing class of what are called “sim-
ulation games”—games that resemble reallife processes. To
play Life without a computer you need a fairly large checker-
board and a plentiful supply of fat counters of two colors.
(Smail checkers or poker chips do nicely.) An Oriental tgo”
board can be used if you can find flat counters small enougl; w
fit within its cells, (Go stones arve awkward 1o use because thev
are not fat.) It is possible to work with pencil and graph papei‘
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but it is much easier, particularly for beginners, to use counters
and a board.

The Dbasic idea is to start with a simple configuration of
counters (organisms), one to a cell, then observe how it changes
as you apply Conway’s “genetic laws” for births, deaths and
survivals. Conway chose his rules carefully, after a long period
of experimentation, to meet three desiderata:

(1) There should be no initial pattern for which there is a
simple proof that the population can grow without limit.

(2) There should be initial patterns that apparently do grow
without limit.

(3} There should be simple inival patterns that grow and
change for a considerable period of time before coming to an
end in three possible ways: Fading away completely (from
overcrowding or from becoming too sparse), settling into a sta-
ble configuration that remains unchanged therealfter, or enter-
ing an oscillating phase in which they repeat an endless cycle
of two or more periods.

In brief, the rules should be such as to make the behavior of
the population both interesting and unpredictable.

Conway’s genetic laws are delightfully simple. First note that
each cell of the checkerboard (assumed to be an infinite plane)
has eight neighboring cells, four adjacent orthogonally, tour
adjacent diagonally, The rules are:

(1) Survivals. Every counter with two or three neighboring
counters survives for the next generation.

{2) Deaths. Each counter with four or more neighbors dies
(is removed) from overpopulation. Every counter with one
neighbor or none dies from isolation.

{3) Births. Each empty cell adjacent to exactly three neigh-
bors—no more, no fewer—is a birth cell. A counter is placed
on it at the next move.

It is important to understand that all births and deaths occur
simultaneously. Together they constitute a single generation or,
as we shall usually call it, a “tick” in the complete “life history”
of the initial configuration. Conway recommends the following
procedure for making the moves:

(1) Start with a pattern consisting of black counters.

() Locate all counters that will die. Identify them by putting
a black counter on top of each.

(3) Locate all vacant cells where births will occur. Put & white
counter on each birth cell.

(1) After the pattern has been checked and double-checked
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to make sure no mistakes have been made, remove all the dead
counters (piles of two) and replace all newborn white organ-
isms with black counters.

You will now have the first generation in the life history of

vour initial pattern. The same procedure is repeated to pro-
duce subsequent generations. It should be clear whv counters
ot two colors are needed. Because births and deaths occur si-
multaneously, newborn counters play no role in causing other
deaths or births. It is essential, therefore, to be able to distin-
guish them from live counters of the previous generation while
you check the pattern to be sure no errors have been made.
Mistakes are very easy to make, particularly when first plaving
the game. After playing it for a while you will gradually make
fewer mistakes, but even experienced players must exercise
great care in checking every new generation before removing
the dead counters and replacing newborn white counters with
black.

You will ind the population constantly undergoing unusual,
sometimes beautiful and always unexpected change, In a few
cases the society eventually dies out (ull counters vanishing), al-
though this may not happen umiil after a great many genera-
tions. Most starting patterns either reach stable figures—Con-
way calls them “still lifes"—that cannot change or patterns that
oscillate forvever. Patterns with no initial symmetry tend to he-
come symmetrical. Once this happens the symmetry cannot be
lost, although it may increase in richness.

Conway originally conjectured that no pattern can grow
without limit. Put another way, any configuration with a finite
number of counters canuot grow beyond a finite upper limit to
the number of counters on the field. This is probably the deep-
est and most difficult question posed by the game. Conway of-
tered a prize of $50 to the [irst person who could prove or dis-
prove the conjecture betore the end of 1970. One way (o
disprove it would be to discover patterns that keep adding
counters to the field: A “gun” (a configuration that repeatedly
shoots out moving objects such as the “glider,” 10 be explained
below) or a “puffer train™ (a confliguration that moves but
leaves behind a mail of “smoke™). The results of the contest for
Conway’s prize are discussed in the next chapter.

Let us see what happens to a variety of simple parterns.

A single organism or any pair of counters. wherever placed,
will obviously vanish on the first tick.

A beginning pattern of three adjacent counters also dies im-
mediately unless at least one counter has two neighbors. Figure
126 shows the five triplets that do not fade on the first rick.
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Figure 126
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{ Lheir orientation is ot course irrelevant) The.ﬁrst {.htfcc (e, b,
¢] vanish on the second tick. In connection with ¢ 1118 worth
noting that a single diagonal chain of counters, l}own‘ever lon.g.
loses its end counters on each tick until the chain f}n;tll;,* lll‘.j-
appears. The speed a chess king moves in any direction is
called by Conway (lor reasons to be made clear latcr) the
“speed of light.” We say, therefore, that a diagonal chain de-
cavs at each end with the speed of light.

Pattern d becomes a stable “block” {two-by-two square) on
the second tick. Pattern ¢ is the simplest of what arc called
“Hip-Hops™ (oscillating figures of period 2). It alternates Ibe-
tween horizontal and vertical rows of three. Conway calls 1t a
“blinker.” ‘ ‘ .

Figure 127 shows the life histories of the five tetrominoes
(four rookwise-conuected counters). The square [al] is, as we
have seen, a still-life figure. Tetrominoes b and ¢ re.ach 4 stable
figure, called a “beehive,” on the sefs.ond tick. Beehives are {fre-
quently produced patterns, Tetromino d .becmmt.s el befehn‘e on
the third tick. Letromino ¢ is the most interesting of t!w lot.
After nine ticks it becoemes four isolated I.)]inkers,.a ﬁl}‘)‘—ﬂup
called “traffic lights.” It 100 is a common configuration. Figure
128 shows 12 common forms of still life. .

The reader may enjoy experimenting with the 12 pentomi-
noes (all possible patterns of bive rOOkW.]SC-C(JI"In(?(il.(:d counters)
to see what happens to each. He will find that ﬁ}*e vanish b.e-
fore the fitth tick, two guickly reach a stable loaf, and four in
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The life histories of the five tetrominoes
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Figure 128
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The commonest stable forms

a short time become traffic lights. The only pentomino that
does not end quickly (by vanishing, becoming stable or oscillat-
ing) is the R pentomino [“a” in Figure 129]. Conway has tracked
it for 460 ticks. By then it has thrown off a number of gliders.
Conway remarks: “It has left a lot of miscellaneous junk stag-
nating around, and has only a few small active regions, so it is
not at all obvious that it will continue indefinitely.” Its fate is
revealed in the addendum 10 this chapter.

Figure 129

The R pertomino (a) and exercises for the reader

¥or such long-lived populations Conway sometimes uses a
computer with a screen on which he can observe the changes.
The program was written by M. J. T. Guy and 5. R
Bourne. Without its help some discoveries about the game
would have been dithicult to make,

As easy exercises the reader is invited to discover the fate of

the Latin cross [*b" in Figure 129], the swastika fc], the letter #

38 ‘ZF.’1.NWHEEI:_ -
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{d]. the beacon [¢], the clock [f], the toad [g] and the pinwhcel

[%]. 'The last three figures were discovered by Simon Norton. If

the center counter of the H is moved up one cell 1o make an
arch (Conway calls it "pi”), the change is unexpectedly drastic.
‘The 77 quicklv ends but pi has a long history. Not until after
173 ticks has it setled down to five blinkers, six blocks and two
ponds. Conway also has tracked the life histories of all the hex-
ominoes, and all but seven of the heptominoes. Some hexorni-
noes enter the history of the R pemtomino; for example, the
pentomino becomes a hexomino on its first tick.

One of the most remarkable of Conway's discoveries is 1he
five-counter glider shown in Figure 130. After two ticks it has
shified slightly and been reflected in a diagonal line. Geome-
ters cull this a “glide reflection™; hence the figure's name. Afier
two more ticks the glider has righted itself and moved one cell
diagonally down and to the right from its initial position. We
mentioned earlier that the speed of a chess king is called the
speed of light. Conwuy chose the phrase because it is the high-
est speed at which any kind of movement can occur on the
board, No pattern can replicate itself rapidly enough to move
at such speed. Conway has proved that the maximum speed
diagonally is @ fourth the speed of light. Since the glider rep-
licates itself” in the same orientation after four ticks, and has
traveled one cell diagonally, one says that it glides across the
field at a fourth the speed of lighr.

Figure 130
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The “glider”

Movement of a finite higure horizontally or vertically into
empty space, Conway has also shown, cannot exceed hall’ the
speed of light. Can any reader find a relatively simple figure
that travels at such a speed? Remember, the speed is obtained
by dividing the number of ticks required to replicate a figure
by the number of cells it has shifted. If a figure replicates 1
tour ticks in the same orientation after wraveling two uvnit
squares horizontally or vertically, its speed will be hal{ that of

light. Figures that move across the field by self-replication are’

extremely hard to find. Conway knows of four, including the
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glider, which he calls “spaceships” (the glider is u “feather-
weight spaceship”; the others have more counters). 1 will dis-
close their patterns in the Answer Section.

Figure 131 depicts three beautiful discoveries by Conway
and his collaborators. The stable honey farm [¢ in Figure 131]
results after 14 ticks from a horizontal row of seven counters.
Since a five-by-five block in one move produces the fourth gen-
eration of this life history, it becomes a honey farm after 11
ticks. The “fligure 8" [b in Figure 131], an oscillator tound by
Norton, both resembles an 8 and has a period of 8. The form
¢, in Figure 131 called “pulsar P 48-56-72,” is an osallutor
with a life cycle of period 3. The state shown here has 48
counters, state two has 36 and state three has 72, after which
the pulsar returns to 48 again, It is generated in 32 ticks by a
heptomine consisting of’ a horizontal row of five counters with
one counter directly below each end counter of the row,

Figure 131

HONEY FAHM

T PULSAR CP 48-56-72

Three remarkable patterns, one stable and two oscillating

Conway has tracked the life histories of a row of n counters
through »=20. We have already disclosed what happens
through n=4. Five counters result in trathe lights, six fade
away, seven produce the honey farm, eight end with four bee-
hives and four blocks, nine produce two sets of trafhic lights,
and 10 lead to the “pentadecathlon,” with a life cycle of period
15. Eleven counters produce two blinkers, 12 end with two bee-
hives, 13 with two blinkers, {4 and 15 vanish, 16 give “big
traffic lights” (eight blinkers), 17 end with four blocks, 18 and
19 tude away and 20 generate two blocks.

Conway also investigated rows formed by sets of n adjacent
counters separdted by one empty cell. When #=23 the counters
interact and become interesting. Infinite rows with n=1 or

n="2 vanish in one tick, and if #=3 they turn into blinkers. IF

n=-1 the row rurns into a row of beehives.
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The 5-3 row (two sets of five counters separated by a vacant
cell) generates the pulsar CP 48-56-72 in 21 ticks. The 5-5-5
ends in 42 ticks with four blocks and two blinkers. The 5-3-5-5
ends in 95 ticks with four honey farms and four blinkers,
5-5-5-5-5 terminates with a spectacular display of eight gliders
and eight blinkers after 66 ticks. Then the gliders crash in
pairs to become eight blocks after 86 ticks. The form 5-5-3-5-
5-5 ends with four blinkers after 99 ticks, and 5-5-5-3-5-3-5,
Conway remarks, “is marvelous to sit watching on the com-
puter screen.” This ultimate destiny is given in the addendum.

ANSWERS

The Latin cross dies on the fifth tick. The swastika vanishes on
the sixth tick. The letter A also dies on the sixth tick. The next
three higures ure flip-flops: As Conway writes, “The toad pants,
the clock ticks und the beacon flashes, with period 2 in every
case.” ‘I'he pinwheel’s interior rotates 90 degrees clockwise on
each move, the rest of the pattern remaining stable. Periodic
figures of this kind, in which a fixed outer border is required
to move the interior, Conway calls “billiard-table configura-
tions” to distinguish them from “naturally periodic” figures
such as the wad, clock and beacon.

The three known spaceships (in addition to the glider, or
“featherweight spaceship” are shown in Figure 132, T'o be pre-
cise, each becomes a spaceship in 1 tick. (The patterns in Fig-
ure 132 never recur.) All three travel horizontally to the right
with half the speed of light. As they move they throw off
sparks that vanish immediately as the ships continue on their
way. Unescorted spaceships cannot have bodies longer than six
counters without giving birth to objects that later block their

Figure 132

Lightweight (feft}, middleweight (center),
and heavyweight (right) spaceships

motion. Conway has discovered, however, that longer space-
ships, which he calls “overweight” ones, can be escorted by two
or more smaller ships that prevent the formation of blocking
counters. Figure 133 shows a larger spaceship that can be es-
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Figure 133
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Overweight spaceship with two escorts

corted by two smailer ships. Except for this same ship, length-
ened by two units, longer ships require a lotilla of more than
Lwo c:();npanions. A spaceship with a body of IOQ counters,
Conwav finds, can be escorted safely by a fiotilla of 33 smaller

ships.

ADDENDUM

My 1970 column on Conway's “Life” met with such an instant
enthusiastic response among computer hackers around th.e
world that their mania for exploring “Life” forms was esti-
mated to have cost the nation millions of dollars in illicit com-
puter time. One computer expert, whom 1 shall _leave narme-
less, installed a secret switch under his desk. If one of‘hls
bosses entered the room he would press the button and switch
his computer screen from its “Life” program to one of the
company'’s projects. The next two chapters will go into more
details about the game. Here I shall comment only on some ot
the immediate responses to two questions left open in the first
column. ’ .

The troublesome R pentomino becomes a 2-tick oscllator
after 1,103 ticks. Six gliders have been produced anﬂ are trav-
eling outward. The debris left at the center [see Figure 134]
consists of four blinkers, one ship, one boat, one loaf, four bee-
hives, and eight blocks. This was first established at Case West-
ern Reserve University by Gary Filipski and Brad Morgan, and
later confirmed by scores of “Life” hackers here and abroad.

The fate of the 5-3-5-5-5-3-5 was first independently found
by Robert T. Wainwright and a group of hackers at Horuﬂey-
well's Computer Control Division, iater‘ by many mhe.rs. ‘lhe
pattern stabilizes as a 2-tick oscillator after ‘%25 ticks w.\-'nh tour
traffic lights, eight blinkers, eight loaves, cight beehives, and
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four blocks. Figure 135 reproduces a pnnmut of the final
steady state. Because symimetry cannot be lost in the history of
any llfe form, the vertical and horizontal axes of the or 1;.,111&]
symmetry are preserved in the final state. The maximum pop-
ulation (492 bits) is reached in generation 283, and the final
population ts 192.

Figure 135
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Cellular automata theory began in the mid-fifties when John
von Neumann set himself the task of proving that self-replicat-
ing m‘achines were possible. Such a machine, given proper in-
structions, would build an exact duplicate of itself. Each of the
two machines would then build another, the four would bhe-
come eight, and so on. (This proliferation of self-replicating
automata is the basis of Lord Dunsany’s amusing 1951 novel
Th:e Last Revolution.) Von Neumunn first proved his case with
“kinematic” models of a machine that could roam through a
warehouse of parts, select needed components and put to-
gether a copy of itself. Later, adopting an inspired suggestion
by his friend Stanislaw M. Ulam, he showed the possioilitv of
such machines in a more elegant and abstract way, f
Von Neumann’s new proot used what is now called a “uni-
form cellular space” equivalent to an infinite checkerboard.
Eaclh cell can have any finite number of “states,” including a
“quiescent” {or empty) state, and « finite set of “neighbor” cells
that can inAuence its state. The pattern of states changes in dis-
crete time steps according to a set of “transition rules” that ap-
ply simuitaneously to every cell. The cells symbolize the basic
parts of a finite-state automaton and a cooﬁguration of live
cells is an idealized model of such a machine, Conway's game
of “Life” is based on just such a space. His neighborhood con-
sists of the eight cells surrounding a cell; each cell has two
states (empty or filled}, and his transition rules are the birth,
death and survival rules I explained in the previous chapter.
Von Neumann, applying transition rules to a space in which
each cell has 29 states and four orthogonally adjdcent neigh-
bors, proved the existence ot a configuration of about 200,000

, cells that would self-reproduce.
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The reason for such an enormous configuration is that, for
yon Neumann’s proof to apply to actual automata, it was nec-
essary that his cellular space be capable of simulating a Turing
machine: an idealized automaton, named for its mventor, the
British mathematician A. M, Turing, capable of performing
any desired calculation. By embedding this universal computer
in his configuration, von Neumann was able to produce 4 uni-
versal constructor. Because it could in principle construct any
desired configuration by stretching “arms” into an empty re-
gion of the cellular space, it would self-replicate when given a
blueprint of itself. Since von Neumann's death in 1957 his ex-
istence proof (the actual configuration is too vast to construct
and manipulate) has been greatly simplified. The latest and
best reduction, by Edwin Roger Banks, a mechanical engineer-
ing graduate student at the Massachusetts Institute of Tech-
nology, does the job with cells of only four states.

Self-replication in a trivial sense—without using configura-
tions that contain Turing machines—is easy to achieve. A de-
lightfully simple example, discovered by Edward Fredkin of
M.LT. about 1960, uses two-state cells, the von Neumunn
neighborhood of four orthogonally adjacent cells and the fol-
lowing parity rule: Each cell with an even number of live
neighbors (U, 2, 4) at time ¢ becomes or remains empty at time
t+ 1, and each cell with an odd number of neighbors (1, 3) at
time ¢ becomes or remains live at time ¢+ 1. It is not hard to
show that after 27 ticks (n varying with different patterns) any
nitial pattern of live cells will reproduce itself four times—
above, below, left and right of an empty space that it formerly
occupied. The four replicas will be displuced 2" cells from the
vanished original. The new pattern will, of course, replicate
again after another 27 steps, so that the duplicates keep quad-
rupling in the endless series |, 4, 16, 64, . ... Figure 136 shows
two quadruplings of a right tromino. Terry Winograd, in a
1967 term paper written when he was an M.I.T. student, gen-
eralized Fredkin's rule to other neighborhoods, any number of
dimensions and cells with any prime number of states.

Ulam investigated a variety of cellular automata games, ex-
perimenting with different neighborhoods, numbers of states
and transition rules. In a 1967 paper “On Recursively Defined
Geometrical Objects and Patterns of Growth,” written with
Robert G. Schrandt, Ulam described a number of different
games. Figure 137 shows generation 45 of a history that began
with one counter on the central cell. As in Conway's game, the
cells are two-state, but the neighborhood is that of von Neu-
mann (four adjacent orthogonal cells). Births occur on cells
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Figure 136

The replication of a tromino

that have one and only one neighbor, and all live cells of gen-
cratton » vanish when generation n+4 2 is born. In other w(;rds.
only the last two generations survive at any step. In Figure 157
the 444 new births are shown as black cells. 'I'he 404 white cells
of the preceding generation will all disappear on the next tick.
Note the characteristic subpattern, which Ulam calls a “dog
bone.” Ulam experimented with games in which 1wo configu-
ratons were allowed to grow until they collided. In the ensu‘ing

THE GAME OF LIFE, PART Il

Figure 137

Generation 45 in a cellular game devised by
Stanislaw M. Ulam

“battle” one side would sometimes wipe out the other; some-
times both armies would be annihilated. Ulam also explored
games on three-dimensional cubical tesseliations. His major pa-
pers on cellular automata are in Essays on Cellular Automata, ed-
ited by Arthur W. Burks.

Similar games can be devised for triangular and hexagonal
tessellations but. although they fook ditterent, they are not es-
sentially so. All can be translated into equivalent games on a
square tessellation by a suitable definition of “neighborhood.”
A neighborhood need not be made up of touching cells. In
chess, for instance, a knight's neighborhood consists of the
squares to which it can leap and squares on which there are
pieces that can attack it. As Burks has pointed out, games such
as chess, checkers and go can be regarded as cellular automata
gatnes in which there are complicated neighborhoods and wan-
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sition rules and in which players choose among alternative next
states in an attemnpt to be first 1o reach a certain final state that
wins,

Among the notable contributions of Edward F. Moore to cel-
lular automata theory the best-known is a technique for prov-
ing the existence of what John W. Tukey named “Gurden of
Eden” patterns. These are configurations that cannot arise in
a game because no preceding generation can form them. They
appear only it given in the initial (zero) generation. Because
such a configuration has no predecessor, it cannot be self-
reproducing. 1 shall not describe Moore’s ingenious technique
because he explained it mformally in an article in Scientific
American (see “Mathematics in the Biological Sciences,” by Ed-
ward F. Moore; September, 1964) and more formally in a pa-
per that is included in Burks’s anthology.

Alvy Ray Smith TII, a cellular automata expert at New York
University's School of Engineering and Science, found a simple
application of Moore’s technique to Conway’s game. Consider
two five-by-five squares, one with all cells empty, the other with
one counter in the center. Because, in one tick, the central nine
cells of both squares are certain to become identical {in this
case all cells empty) they ave said to be “murtually erasable.” It
tollows from Moore's theorem that a Garden of Eden config-
uration must exist in Conway’s game. Unfortunately the proot
does not tell how o find such a pattern and so far none is
known. It may be simple or it may be enormously complex.
Using one of Moore’s formulas, Smith has been able to calcu-
late that such a pattern exists within a square of 10 hillien cells
on a side, which does not help much in finding one.

Smith has been working on cellular automata that simulate
pattern-recognition machines. Although this is now only of
theoretical interest, the time may come when robots will need
“retinas” for recognizing patterns. The speeds of scanning de-
vices are slow compared with the speeds obtainable by the
“parallel computation” of animal retinas, which simultanecusly
transmit thousands of messages to the brain. Parallel compu-
tation is the only way new computers can increase significantly
in speed because without it they are limited by the speed of
light through miniaturized circuitry. The cover of the Febru-
ary, 1971, issue of Scientific American [reproduced in Figure
138] shows a simple procedure, devised by Smith, by which a
finite one-dimensional cellular space employs parallel compu-
tation for recognizing palindromic symmetry. Each cell has
many possible states, the number depending on the number of
different symbols in the palindrome, and a cell's neighborhood
is the two cells on each side.
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Figure 138
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Cellular automaton

Smith symbolizes the palindrome ToO0 HOT TO HOOT with
four states: of cells in the top row. T, O and H are represented
by blue, red and yellow respectively, and black marks the pz‘lll-
ndrome’s two ends. Here we have indicated the colors by dit-
ferent shadings. The white cells in the other rows are in the
quiescent state. The horizontal rows hclu.w the top row are suc-
cessive generations of the 1op configuration when certain tran-
sition rules are followed in discrete time steps. In other words,
the picture is a space-time diagram nf.a single row, cach suc-
cessive row indicating the next generation.

1o the first transition each shade travels one cell to the lf:ft
and one cell to the right, except for the end shadings, which
are blocked by black: black moves inward at each step. Fach
cell on which two shadings land acquires a new state, symbol-
ized by a cell divided into four triangles. The lefl.triang.le huts
the shading that was previously on the left, the right tr.umglc
has the shading previously on the right. The result of this first
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move 1s shown in the second row. When an adjacent pair of

cells forms a tilted square in the center that is a solid shading,
it mdicates a “collision™ of like shadings and is symbolized by
black dots in the two white triangles of the left cell. Dots re-
main in that cell for all subsequent generations unless a colli-
sion of unlike shadings occurs to the immediate right of the
dotted cell. in which case the dots are erased. When collisions
ot unfike shadings occur, the left cell of the pair remains un-
dotted for all subsequent generations even though like shad-
ings may later collide on its right.

At cach move the shadings continue 1o travel one cell left or
right (the direction in which the shaded triangles point) and all
rules apply. If the palindrome has n letters, with 7 even as in
this example (the scheme is modified slightly if » is odd), it is
casy to see that afier #/2 moves only two adjacent nonquiescent
cells remain. If the left cell of this pair is dotted, the automaton
has recognized the initial row as being palindromic. Down the
diagram’s center you see the colliding pairs of like shadings in
the same order as they appear on the palindrome from the
center to cach end. As soon as recognition occurs the left cell
of the last pair is erased and the right cell is altered to an “ac-
cept” state, here symbolized by nested squares. An undoued
left cell would signal a noupalindrome, in which case the lefi
cell would become blank and the right cell would go into a “re-
ject” state.

A Turing machine, which computes serially, requires in gen-
eral n* steps to recognize a palindrome of length n. Although
recognition occurs here at step #/2, the accept state is shown
moving in subsequent generations to the right to symbolize the
cell-by-cell transmission of the acceptance to an output bound-
ary of the cellulur space. Of course it is easy to construct more
efficient palindrome-recognizing devices with actual clectronic
hardware, but the point here is to do it with a highly abstract,
one-dimensional cellular space in which information can pass
only trom a cell to adjacent cells and not even the center of the
mitial series of symbols is known ar the outset. As Smith puts it
anthropomorphically, after the first step each of the three dot-
ted cells thinks it is at the center of a palindrome. The dotted
cells at euch end are disillusioned on the next move because of
the collision of unlike shadings at their right. Not untif genera-
tion n/2 does the dotted cell at the center know it is at the center.

Now for some startling new results concerning Conway's
game. Conway was fully aware of carlier games and it was with
them in mind that he selected his recursive rules with great
care to avoud two exiremes: too many patterns that grow
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quickly without limit and too many that fade quick_]_\.'. By strik-
ing a delicate balance he designed a game of surprising unpre-
dictability and one that produced such remarkable figures s
oscillators and moving spaceships. He conjectured that no fi-
nite population could grow (in number of r_nemh‘ers) w!thgut
limit, and he offered $50 for the first proot or dlspront.‘ 1 }.le
prize was won in November, 1970, by a group in the A.mﬁcml
Intelligence Project at M.LT. consisting of (m ;1l[)hjil1etacal or-
der) Robert April, Michael Beeler, R. William (;.osper,' Jro
Richard Howell, Rich Schrocppel and Michael Speciner. .L-smg
a program devised by Speciner for dispiaying life }]isl.(yl'les on
an oscilloscope, Gosper made a truly asm}mdl.ng d15c{‘1\'eryz he
found a glder gun! The configuration n Flgurr‘e 139 grows
into such a gun, firing its first glider on tlti.( 40. The gun is an
oscillator of period 30 that ejects a new glider every 30 ticks.
Since each glider adds five more counters 1o the field, the pop-
ulation obviously grows without limit.

Figure 139

A configuration that grows into a glider gun

The glider gun led the M.L'T. group to many other amazing
discoveries. A series of printouts (supplied by Rober‘t T. Wain-
wright of Yorktown Heights, N.Y.) shows how 13 glldcrr.s crash
to form a glider gun [see Figure 140]. The ‘laSI five printouts
show the gun in full action. The group also h)gnd a way 1o po-
sition a pentadecathlon [see Figure 141], an ().sclllal()r of period
15, so that it “eats” every glider that strikes it. A [)erltuFlecaFll-
lon can also reflect a glider 180 degrees, making i,t poss?b]e for
two pentadecathlons to shutde a glider l?a(tk a.nd forth torever.
Streams of intersecting gliders produce fantastic results. Strz:mge
patterns can be created that in turn emit gliders. Sometimes
collision configurations grow until they ingest all guns. In other
cases the collision mass destroys one or more guns by shoogng
back. The group's latest burst of virtuosity is a way of pl;a!(‘mg
eight guns so that the intersecling streams of gllders bulld.a
factory that assembles and fires a middleweight spaceship
about every 300 ticks.
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Figure 140
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Here and'on the facing page 13 gliders crash to
form a glider gun (generation 75) that oscillates
with a period of 30, firing a glider in each cycle
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The existence of glider guns raises the exciting possibility
that Conway’s game will allow the simulation of a Turing ma-
chine, a universal calculator capable in principle of doing any-
thing the most powertul computer can do. The wick would be
10 use gliders us unit pulses for storing and transmitting infor-
mation and performing the required logic operations that are
handled in actual computers by their cdrcuitry. If Conway’s
game allows a universal calculator, the next question will be
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Figure 141
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whether it allows a universal constructor, from which nontrivial
self-replication would follow. So far this has not been achieved
with a two-state space and Conway’s neighborhood, although it
has been proved impossible with two states and the von Neu-
mann neighborhood.

The M..T. group found many new oscillators [see Figure
142]. One of them, the barber pole, can be streiched to any
length and is a flip-flop, with each state a mirror image of the
other. Another, which they rediscovered, 1s a pattern Conway’s
group had found earlier and called a Hertz oscillator. Every
four ticks the hollow “bit” switches from one side of the central
frame to the other, making it an oscillator of period 8 The
tumbler, which was found by George D. Collins, Jr., of Mc-
Lean, Va., turns upside down every seven ticks.

Figure 142

Barber pole (left), Hertz oscillator {middie},
and tumbler (right)

The Cheshire cat [see Figure 143] was discovered by C. R
Tompkins of Corona, Calif. On the sixth tick the face vanishes,
leaving only a grin; the grin fades on the next tick and only a
permanent paw print (block) remains. The harvester was con-
structed by David W. Poyner of Basildon in Fngland. It plows
up an infinite diagonal at the speed of light, oscillating with
period 4 and ejecting stable packages along the way [see Figure
144]. “Unfortunately,” writes Poyner, “I have been unable to
develop a propagator that will sow as fast as the harvester will
reap.”

Wainwright has made a number of intriguing investigations.
He fGilled a 120-by-120 square field with 4,800 randomly placed
bits (a density of one-third) and tracked their history for 450
generations, by which time the density of this primordial soup,
as Wainwright calls it, had thinned steadily to one-sixth.
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Figure 143
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The C_heshire cat (0) faces to a grin (6}
and disappears, leaving a paw print (7)

Figure 144

The harvester, shown at generations (0) /eft
and 10 (right)

Whether it would eventually vanish or, as Wainwright says
percolate at 4 constant minimum density is anybody’s guess. At‘
any rate, during the 450 generations 42 shortlived gliders
were formed. Wainwright found 14 different patterns that be-
came glider states on the next tick. The pattern that pr()duccﬁ
the greatest number of gliders (14 in all) is shown [a in Figure
145]. A Z-pautern found by Collins and by Jeffrey Lund of Pe-
\\'auke.e, Wis., after 12 ticks becomes two lgIliders that sail off in
opposite directions [b in Figure 145]. Wainwright and others set
two gliders on a collision course that causes all bits to vanish ;)11
the fourth tick [¢ in Figurs 145]. Wallace W. Wagner (lf‘hAl’li-l-
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Two spawnars of gliders and two collision courses

heim, Calif., found a collision course for two lightweight space-
ships that also ends (on the seventh tick) in 1otal blankness [d
in Figure 145].

Wainwright has experimented with various infinite fields of
regular stable patterns, which he calls agars——rich culture me-
diums. When, for instance, a single “virus,” or bit, is placed in
the agar of blocks shown in Figure 146 so that it touches the
corners of four blocks, the agar eliminates the virus and re-
pairs itself in two ticks. 1f, however, the alien bit is positioned
as shown (or at any of the seven other symmetrically equivalent
spots), it initiates an inexorable disintegration of the parern.
The portion eaten away contains actve debris that has overall
bilateral symmetry along one axis and a roughly oval border
that expands, probably forever, in the four compass directions
at the speed of hght.

Figure 146

Agar doomed by a virus

The most immediate practical application of cellular auto-
mata theory, Banks believes, is likely to be the design of circuits
capable of self-repuir or the wiring of any specificd type of new
circuit. No one can sav how significan the theory may eventu-
ally become for the physical and biological sciences. It may
have important bearings on cell growth in embryos, the repli-
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cation of. DNA molecules, the operation of nerve nets, genetic
changes in evolving populations and so on. Analugics; ‘wgi}th lifé
processes are impossible to resist. 1f a primordial broth of
amino 2.1(_‘1(15 is large enough, and there is sufficient time, selt-
r.epllcatmg, moving automata may result from complex t;‘ansi—
ton rules built into the structure of matter and the laws ;)f
nature. There is even the possibility that space-time itseif is
g,:r;mu!ar, composed of discrete units, and that the universe il;i
Fredkin and others have suggested, is a vast cellular auluma;m;
run by an enormous computer. H so, what we call motion may
be. only simulated motion. A moving spaceship, on the ultimate
mlcrole\:’el, may be essentially the same as one of Conway’s
spaceships, appearing to move on the macrolevel whereas ac-
tually there is only an ulteration of states of basic space-time

c;?!ls in obedicnce to transition rules that have not vet been
discovered. ;

22

THE GAME OF LIFE, PART Iil

So much has been discovered about Conway's “Life” since |
first wrote the last two chapters, that it was impossible to sum-
marize the highlights in an addendum. A book could and
should be written about the game, an Encyclopedia of Life, or
Handbook of Life, that would put all the important known Life
forms on record and thereby save Lifenthusiasts the lubor of
rediscovering them. The eleven issues that appeared of Robert
Wainwright's periodical Lifeline continue 1o be the main repo-
sitory of such data. Wainwright is said to be working on a book,
and there are rumors of other books about “Lite” that are in
the making. In the meantime, T will try in this chapter to pull
together some of the significant developments in “Life” since
my second column on the game ran in Scieniific American in
1971. Because so many basic forms were independently discov-
ered by many people, I shall not often attempt to credit first
discoverers.

The earliest and most important group of Lifenthusiasts was
at ML, centering around William Gosper who 1s now work-
ing for Xerox at thewr Stanford research headquarters. In the
mid-70s the most active “Life” group was in the computer con-
wrol division of Honeywell, Inc., Framington, Mass. It included
(alphabetical order) Thomas Holmes, Keith McClelland, Mi-
chael Sporer, Philip Stanley. Donald Woods, and his father
William Woods. In the late seventies, an active group of “Lite”
hackers formed at the University of Waterloo, in Canada, with
John Abbott, David Buckingham, Murk Niemiec, and Peter
Raynham as the leaders. Most of what 1 shall report comes
from these three groups.

All still lites with 13 or fewer bits have long becn known.
‘The block and tub are the only 4-bit stable forms, and the boat
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is the only one with 5 bits. Figure 128 caught four of the five
6-bit still Iifes, missing only the aircraft carrier shown in Figure
147. There are four 7-bit stable forms: the loaf, long boat, long
snake, and fshhook. The fishhook or “eater” is the smallest still
lite lucking any kind of symmetry. Note that forms such as the
boat, barge, ship, and sinking ship can be stretched to any
length, and lakes can be made as large as vou like, with any
number of barges, boats, and ships at anchor on the water.
There are nine B-bit still lifes, ten 9-bit forms, 25 with 10} bis,
46 with |1 bits, 121 with 12 bits, und 149 with 1% bits. The sta-
ble pool table in Figure 148 was constructed out of long sink-
ing ships and parts of ponds by William Woods.

Figure 148

.Q.:“z‘l. .

The stable pool table
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Figure 149
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Low-period oscillators

Hundreds of clegant oscillators have been found. Figure 119
shows a few of smull size, with short periods. The M.L'T.
group, early in the history of "Life,'j found easy wavs 0 comn-
struct giant flip-tlops (period-2 oscillators) such as the one
shown in Figure 130. It oscillates between the patterns shown
in black dots and circles.

Figure 150
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Another lurge class of “Life” forms that have been inten-
sively investigated arc what the Honevwell group named the
fuses. These are stems one or more bits wide, either diagonal
or orthogonal, wsually infinite in length. that burn steadily
from one end toward the other. The simplest is the {use shown
in Figure 151 «, a diagonal of bits that either rises 10 infinity or
has a stable top as shown. It simply burns itself out without
producing any sparks or stable smoke. If vou put another it
to the left of the lower end, it forms a tiny Hame that wravels
along with the burning.

Figure 151
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Fuse & in Figure 151 oscillates with a period of 4, giving off
sparks that fade quickly. A “dirty fuse,” like the one shown in
¢ in Figure 151, leaves clouds of debris behind as it burns. At
one point it shoots off a glider. Fuse d in Figure 151, named
the “baker” by its discoverer, McClelland, is a confused tuse
that bakes a string of stable loaves while it burns. The lust three
fuses all oscillate with periods of 4, and all four burn with the
speed of light.

Fuse ¢ in Figure 151, eventually becomes a clean fuse of pe-
riodd 4, but leaves behind a cloud consisting of three blocks,
three beehives, two blinkers, a ship, and four gliders. William
Woods calls 1t a “reverse fuse” because it explodes first, then
burns quictly for the rest of its endless life. The harvester, de-
scribed in the previous chapter, is of course a fuse.

Other unusual fuses are shown in Figure 152. Fuse «, found
by Steve Tower, has a period of 8. It leaves behind a trail of
beacons. Fuse # abandons a twin pair of boats every four ticks.
Orthogonal fuse ¢, which burns with a speed slower than lighrt,
consumes twe tubs every 18 ticks, then changes them to trafiic
lights (four blinkers). It was discovered by Earl Abbe. Wain-
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Figure 152
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wright’s fuse d consumes three ‘fenceposts every 12 genera-
tions, and turns them into a beehive. .

Two fuses of a more complicated nature, tllscover‘ed hy Don
Woods, are shown in Figure 153. The (l‘.m\-' bur.ns at light sEeed.
with period 8, slowly “chewing 1ts c1.1cl‘ by eating the bloc. s.on
either side, bringing them back again, tho;‘n caung them a ..xec(.—
ond time. The two-glider fuse throws off two gliders every 12
ticks. I resist the impulse to describe two close rs‘.lau\!es of
fuses, the wicks (inlinite in both directions) an(! the kmk‘hnmbsi
Kinkbombs come in three varietics: duds, hlje(:I‘ack(Iers_,_ anc
bombs, as detailed by Mark Horton in the 1 1th issue of Lifeline.

Figure 153
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Two remarkable fuses

There are 102 distinct patterns of bits }«'ilhin.a 3x3 r.squ;:tre
(excluding rotations and refections, but mcludmg‘ ':h-e~Pdue]‘\-T:
consisting of nine bits and no bits). Some of tile{»(. dlfARO yo
minoes, some not. All the letiers of the alphabet in By a1ke dl{ﬁ'
among the 102, The fates of all 102 are known. Also known

are the fates of all polyominoes through the order-7

heptominoes.
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4 .\'Ielllllst‘lé'll.'l patterns are those of fewer than 10 bits which
o not slablllze_ until after more than 50 generations. Two ex-
amples were given in the previous chapter: The 5-bit R-pen-

tomino and the pi-heptomino of 7 bits. The first generation of

the pr-heptomino, by the way, reappears in tick 31, but shifted
9 u:lls. Because of interaction with its exhaust, in generatio
61, 1t fails to make it as a spaceship. , i ’
()tthr cxamples of Methuselahs are shown in Figure 154
The‘ f'zrs‘t one, a is the smallest known. It becomes the R—p;n:
tomino m two ticks. giving it a life of 1,105 generations. Me-
thuselah & stabilizes (six blocks, twelve blinkers, one loufj ai‘tcr
608 generations, ¢ (the thunderbird) lasts 243 ticks, and # goes
to 1,108. The heptomino ¢ stabilizes after 148 1;cks ha"iiu ;
Pmduced three blocks, a ship, and two gliders. The ‘acom /E
found by Charles Corderman, is the most -amazing Methusel;ﬂ;
known. It lives for 5.206 generations! When it stabilizes as an
"na‘k" of 633 bits, it has produced numerous gliders 1‘;1 of
which escupe. o

Figure 154
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The Honeyweﬂ group tracked the life histories of the first
nlme m‘emb’ers of the 3-cell crosses, of which the simplest are
shown mn Figure 155. The first is « portion of an infinite trellis

Figura 155
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The five-cell cross series
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consisting of solid horizontal and vertical rows, two cells apart,
that surround an infinity of empty 2% 2 squares. Like the infi-
nite trellis, this cross vanishes in one tick. The next cross dis-
appears in 8 ticks. The third ends with many traffic lights in 0
ticks, and the fourth stabilizes after 34 ticks with eight hlinkers,
having produced a truly spectacular display of fireworks along
the way. (Its 19th generation is a beautiful ring of blocks with
4 checkerboard in the center.) Order-5 and order-7 crosses m
this sequence stabilize as four pulsars n 31 and 21 ticks re-
spectively, orders 6 and 8 go 10 four pulsars and a tub in 36
and 21 ticks respectively, and order-9 ends after 42 ricks with
16 blocks and 8 blinkers.

William Gosper, in 1971, found the eater (fishhook), the in-
credible 7-bit stable form shown with circles in Figure 136. I
has the ability to consume an enormous variety of “Life” forms,
then quickly repair itselt. The first four pictures show the cater
about to ingest a glider, blinker, pre-beehive, and a lightweight
spaceship. Tn the fifth picture two eaters are poised to devour
one another. This is prevented by their amazing ability 1o self-
repair. so the pattern oscillates with period 3. The last picture
shows how two gliders collide to produce an eater on the 13th
tick. In recent years caters of larger size have been discovered,
with a variety of bizarre feeding habits.

Figure 156
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The eater (circles} and some of its prey

Extensive investigations have been made of ditferent kinds
of agars (regular patterns that are infinite in two dimensions),
the procrastinators (forms that take morc than 50 ticks to
become a single simple stable form), and puffer trains. The
puifers leave a trail ol permanent smoke. Three are shown in
Figure 157. The first, discovered by Gosper, is an engine es-
corted between two lightweight spaceships. It pufls along at
half the speed of light until after more than 1,000 ticks 1t de-
velops a period of 140. Paul Schick discovered an entire family
of puffer trains, the simplest of which. shown in &, leaves noth-
ing behind. The pair of mirror-image lightweight spaceships

pull along the symmetrical heptomino engine with a period of
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Figure 157
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Puffer trains

12. The switch-engine puffer train ¢ in Figure 157, moves too
slowly (one-twelfth the speed of light) to be of much use. It
travels diagonally like a glider, eventually producing eight
blocks every 288 generations. No escortifng spaceships are
needed, but without the stabilizing block it's smoke catches u
with the engine and destroys it. b

_'I"he ﬁri:;t Garden of Eden pattern, reproduced in Figure
158, was found by Roger Banks in 1971. It required an enor-
mous computer scarch of all possible predecessor patterns.
I‘ he confining rectangle (9 x 33) holds 226 bits. The only other
.(:arden of Eden pattern known was found by a French group
in 1974, led by J. Hardouin-Duparc. at the I:Iniversitv of Bor-
deaux. It is inside a rectangle of 6x 122, '

Figure 158
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A garden of Eden

Although any “Life” patiern generates only one successor,
the converse is not true. A given pattern may have two or more
predert‘.essurs. This is why searching for Garden of Eden pat-
terns is so difficult—the computer has to look at all puossible
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predecessors at each backward tick. If the universe eventually
turns out to be one monstrous cellular automaton, one may
reasonably ask whether there is an initial Garden of Fden state
that required a creation because it has no predecessor pattern.
By the way, the fact that a “son” ot a Garden of Eden pattern
may have more than one “father” has led Conway to offer $50
to the first person who can find a pattern that has a father but
no grandfather. The existence of such a pattern is sull an open
question.

The most spectacular of the new developments in “Life” in-
volve gliders and their collisions. Gosper’s group found new
types of glider guns, more compact spaceship factories pro-
duced by glider crashes, and innumerable “Lifc” forms that eat
gliders or reflect them back at different angles. Before its
members broke up to go their separate ways, the M.} T. group
managed to complete a 17-minute film about their discoveries
that has become a classic.

A pure glider generator is one that gencrates one or more
gliders with no debris left over. Two elegant ones found by the
Honeywell group are shown in Figure 139. The biloaf lft in
four ticks produces two gliders going opposite ways. The 4-8-
12 diamond right in 15 ticks forms four gliders headed in four
different directions. Half a dozen 5-bit forms turn into a single
glider, and more than a hundred 6-bit forms do the same. A
search for predecessors of the onigmnal Gosper glider gun
turned up a pattern of 91 bits that is the smallest known,
though it seenis possible there may be a way of positioning just
four gliders (20 bits) so that they crash and form a gun.

Figure 159

Two glider-generators

I mentioned earlier Gosper's way of placing eight guns so
that their gliders crash to form a spaceship factory which fires
off a middleweight spaceship about every 300 generations,
Gosper soon improved this to four guns and one pentadecath-
lon. This pattern produces a factory that shoots off lightweight
or middleweight spaceships (depending on the timing) every
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60 ticks. Wainwright positioned three “newguns” that generate
a middleweight spaceship every 46 generations.

Lifenthusiasts have investigated thousands of ways that glid-
crs and spaceships can collide to produce an incredible variety
of stable patterns (including the null pattern of nothing at all),
as well as patterns that change, and patterns that produce new
gliders and/or spaceships. Figure 160 shows some unusual col-
lisions found by the Waterloo group. On the left is the pattern
Just betore che crash: on the right, the outcome after the indi-
cated number of ticks (# =ticks).

The breeder is one of the most remarkable life forms found
by the M.L'T. group: remarkable because its population growih
1s so rapid. Figure 161 is a photograph of a computer scope
that shows the breeder breeding gliders. The little dots are
gliders, about 1,000 of them inside the triangular region. The
breeder consists of ten puller truins moving east, their exhaust
carefully controlled so that they generate gliders that crash to
form guns that instandy spring into action along the horizontal
axis. The picture shows the breeder at generation $,333.
Thirty guns are firing northeast at a rate of one glider per tick.
The firing rate increases without limit until at about tick 6,500
the number of gliders starts to exceed the age of the breeder.
Seeing the breeder in action was one of the most awesome high
pomnts of my visit to M.IL'T.

When I wrote the previous chupter for the February 1971
issue of Srmmﬁr American, 1 raised the question of w hether the
rules of “Lite” permit the construction of a universal com-
puter. I had the pleasure of reporting the next month that
“Lite” is indeed universal. Gosper at M.L'T. and Conway at
Cambridge independentiy “universalized” the “Life” space by
showing how gliders could be used as pulses to simulate a Tur-
ing machine, Exactly how this is done is too complicated to go
into here, but you will find it clearly outlined by Conway in the
sccomd volume of Winning Ways, the book he coauthored with
Elwyn Berlekamp and Richard Guy.

‘The universality of “Life” means that it is possible in princi-
ple to use moving gliders to perform any calculation that can
be pertormed by the most powerful digital computer. For ex-
ample, one can arrange a formation of glider guns, eaters, and
other “Life” forms so that a streamn of gliders, with gapq in the
right places, will calculate pi, ¢, the square root of 2, or any
other real number to any number of decimal places. Of course,
1t would he a very inefficient way to do such calculations, none-
theless they are possible it you have a large enough field and
suthaent ingenuity to build the necded “machine.”

In Wanning Wavs Conway uses Fermar's last theorem 1o illus-
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trate “Life’s” computing power as well as its limitations. A
“Lite” machine can be constructed that will steadily test the val-
ues of the four variables in Fermat’s famous formula. The pro-
gram could be designed to halt, say by fading away, if it found
a counterexample to Fermat's conjecture. On the other hand,
if the conjecture s true, the “Life” machine will keep searching
torever for the right combination of values. We know from un-
decidability thcory that there is no way to know in advance
whether any given problem is solvable, therefore there is no
way to know in advance whether any given pattern in “Life”
will continue 1o change or to reach a stable end.

In 1981, in a letter telling me he had found “Life” to be uni-
versal, Conway added a note on the buck of the envelope, “If
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(ask Gosper) gliders can crash 1o form d pentafi‘ecalhlolnj(;'hsln
I can produce self-replicating macbme‘s, a,r‘1d it's undecidable
whether a given machine is self-replicating.” . '

I cannot remember if [ asked Gosper this guestion, but. at
any rate, gliders can ¢rash to form pemadcca!,hlqns, dT'ltl‘ 90n
way states flatly, in Wnning Ways, that self-replicating rr.mrhhmesf
can be constructed in “Life” space. We are not §peaklng mr).v.;i
of moving forms like spaceships, but 0{. tfmachmes_ 1‘hat “,1,
build exact copies of themselves. The original machine 1‘11;?
either remain in the space or it can be programmed to se -
destruct afrer it has replicated isell. So far as 1 kn‘mw m)‘m'u
has built such a machine, but if Conway 1s right (his prool has
not been published), 1115 possible to build them.
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Conway also asserts in Winning Ways that he has proved that
“Life” patterns exist which move steadily in any desired ra-
tional direction, recovering their inital {orms after a fixed
number of moves, As for spaceships {(which move without pro-
ducing smoke), no new ones have been discovered other than
those already known 10 Conway in 1970.

Conway goes on to speculate that if you imagine a sufli-
ciently large broth of randomly placed bits, one would SN
that by pure chance self-replicating creatures would arise, and
those hest adapted to survive would live longer than the others,
Interactions with the environment would produce mutations.
As in organic cvolution, most mutations would be harmful, but
some would have survival value. “It's probable,” Conway
writes, “given a large enough “Life” space, initially in a random
state, that after a long time, intelligent sclf-reproducing ani-
mals will emerge and populate some parts of the spuce.”

I would prefer the word “possible” here to “probable,” but
there 1s no question that “Life's” analogy with biological evolu-
tion on earth is remarkable. One science fantasy writer, the
widely read Piers Anthony, plays with this theme in his 1976
novel, Ox. Diagrams of “Life” patierns head each chapter, and
the book’s plot involves intelligent. sentient beings called “pat-
tern entities” or “sparkle clouds” that have evolved by just the
process Conway imagines, in a cellular space of dimensions
higher than our spacetime. Their behavior is totally deter-

mined by transition rules, but like us they imagine themselves
to have free wills, 'there is an amusing Chapter 11 in which
Cal explains the rules of “Life" to Aquilon and she experi-
ments with some simple patierns.

“Try this one,” Cal suggests, giving her the R-pentomino:

“That's similar to the one I just did. You've just tilied it
sideways, which makes no topological difterence, and added
one dor.”

“Try i,” he repeated.

She tried it, humoring him. But soon it was obvious that
the solution was not a simple one. Her numbered patterns
grew and changed, taking up more and nore of the working
area. The problem ceased 10 be merely intriguing; it became
compuisive. Cal well understood this: he had been through it
himself. She was oblivious 1o him now, her hair tathing across
her face in atiractive disarray, teeth biting lips. “What a dif-
lerence a dot makes!™ she muttered.

It Chapter 13 Aquilon, still tracking the parttern’s fate, ex-
claims: “This R-pentomino is a menace! I'm getting a head-
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ache! It just goes on and on.” (}ospe‘r once saﬁd that to him the
most impressive aspect of Cnr{\\'e}ys game 1s how i defnfr.n-‘
strates the impossibility of predicting the outcome of prm.c_s.scs_
that are rigidly determined by extremely ‘Slmplt;‘ rules 0[‘
change. After Aquilon has learned about ghders and glld‘ea
guns, she remarks: “l 1 were a pattern, I'd be very ca:ciul
where I fired my gliders! That game plays a rough game!

“It does,” Cal replies. “As does all nawre.” ‘

Much work has been done on variants of “Life™: playing by
other rules, and on other lanices such as triangulur' or he.xag—
onal, and in dimensions higher than two. One-dimensional
“Life” has also been cxplored—see the article’s by zlonelthan
Miller and Munemi Miyvamoto. “Life” has been investigated on
wraparound fiekds that are cylinders and t.oruscs..and cven‘
Moebius surfaces and Klein bottles. Some 111}§r.ffs.t111g results
have emerged, but nothing compares \«'1[1} “Life” the c(_)m-
bination of richness ol interesting forms with such simple tran-
gition rules. This is a wribute to Conway's inufiti.o‘n, and 1o the
thoroughness with which he and his trle.nds 1llltlall}=.explm ed‘
hundreds of alternate possibilities, including games with two o1
more sexes, Attempts have also been made to mnvent compe‘{l-‘
tive games based on “Life,” for two or more plavers, but so tat
without memorable results.

“Life” mav have some practical uses. There have been at-
tempts to ap;ply it to socioeconomic systems, and a‘generall‘m-'
rion of “Lile” has been suggested as an explanatmn 'of why
some ncbulas have spiral arms (see the. article by h‘enneth
Brecher). Arthur Appel and Arth}l_r Stein, at IBM, h)l}nd a
way of applying rules similar to “Lite’s” in programs (ieglgngd
to identify the hidden edges in computer drawings of solid
shapes. o N

I spoke carlier of the possibility that the universe 1s a \rds
cellular automaton, operated by the movements of ultimate
particles {perhaps not yet discovered) accm-c!mg o unknf)\m‘
transition rules. Physicists are now searching for a GUI
(Grand Unification Theory) that will bring together all the
forces of nature into onc unified theory l)an;d on a gauge
structure. As physicist Claudio Rebbi explained in _hls .;1.111(:16 on
“The Lattice Theory of Quark Con[incmen}" (.Srm:..'.:_fur Ameri-
can, February 1983), a popular approach 1s 1o think of the
gauge game as being played by pauua}es on 4n ah‘szlr.a‘ctuld_tpc'f‘f
ot four-dimensional cubes—a sort of spacetime Life.” ['his
suggestion was made in 1974 by Kenneth Wilson, and 1s now
known as lattice gauge theory. . o o

The gume metaphor tor GUT carries with it the implication

255



2586

CHAPTER 22

that the basic particles of the universe {pieces), the fundamen-
tal laws (transition rules), und spacetime (board) are not logical
necessities, They are simply given. It is folly, as Hume and the
positivists have taught us, to ask why they are what thev are.
Like chess players, physicists should accept the game and enjov
their {endless?) task of trying to guess how it is plaved. not
waste energy speculating on why the game is designed the way

it 15, Now we are buck to Leibniz and his stupendous vision of

a transcendent Mind, contemplating all possible games, then
choosing for our universe the Game that best suits the Mind's
incomprehensible purposes.
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