
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Class Transformations for Transparent
Distribution of Java Applications

Phil McGacheya Antony L. Hoskingb J. Eliot B. Mossc

a. VMware, Cambridge, Massachusetts, USA

b. Purdue University, West Lafayette, Indiana, USA

c. University of Massachusetts at Amherst, USA

Abstract The indirection of object accesses is a common theme for target
domains as diverse as transparent distribution, persistence, and program
instrumentation. Virtualizing accesses to fields and methods (by redirecting
calls through accessor and indirection methods) allows interposition of
arbitrary code, extending the functionality of an application beyond that
intended by the original developer.

We present class modifications performed by our RuggedJ transpar-
ent distribution platform for standard Java virtual machines. RuggedJ
abstracts over the location of objects by implementing a single object
model for local and remote objects. However the implementation of this
model is complicated by the presence of native and system code; classes
loaded by Java’s bootstrap class loader can be rewritten only in a limited
manner, and so cannot be modified to conform to RuggedJ’s complex
object model. We observe that system code comprises the majority of a
given Java application: an average of 78% in the applications we study.
We consider the constraints imposed upon pervasive class transformation
within Java, and present a framework for systematically rewriting arbitrary
applications. Our system accommodates all system classes, allowing both
user and system classes alike to be referenced using a single object model.

Keywords distribution, partitioning, program transformation, object model

1 Introduction

Rewriting whole applications to augment them for transparent distribution or orthog-
onal persistence often relies on having all objects implement a single uniform object
model. For example, orthogonal persistence relies on all instances having the capability
to survive from one execution of the program to another, meaning that they must all
have the capability of being stabilized for persistent storage. Similarly, transparent
distribution relies on all instances having the capability of remote reference and invoca-
tion. Such rewrites most easily apply when extraneous barriers to transformation can

Phil McGachey, Antony L. Hosking, J. Eliot B. Moss. Class Transformations for Transparent Distribution
of Java Applications. In Journal of Object Technology, vol. 10, 2011, pages 9:1–35.
doi:10.5381/jot.2011.10.1.a9

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a9
http://dx.doi.org/10.5381/jot.2011.10.1.a9

2 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

be ignored, such as system dependencies that constrain what code can be rewritten
(e.g., Java system classes or native code).

Here, we consider how to transform Java applications such that the vast majority
of object instances can be manipulated via uniform object model that virtualizes
every direct field access or method invocation in the original program. We convert
those accesses and invocations into interface invocations in the transformed program.
Virtualized manipulation permits straightforward interposition of desired functionality
to implement extensions such as transparent distribution or orthogonal persistence.
The only exceptions to pervasive virtualization in our scheme are those instances
whose classes we determine need not be rewritten, either for optimization purposes
or due to domain-specific constraints. In the absence of such constraints, we are
able to handle all of the classes that comprise typical Java applications, including
classes that are imported from the standard Java run-time environment (JRE) libraries.
Handling these is particularly critical since the majority of classes that make up typical
Java applications (78% on average for the standard benchmarks we consider) belong
to the JRE. Yet, it is non-trivial to encompass these classes because Java’s class
loading restrictions and the presence of native code limit what parts of the JRE can
be rewritten. When direct rewriting is not possible we rely instead on a series of
transformation templates, tailored to the different characteristics of source classes,
which allow us to implement the uniform object model throughout an application
without directly modifying constrained classes.

We transform the classes of an application at class-load time, using a specialized
rewriting class loader. Deferring transformations until load time permits flexibility
in rewriting; we can transform classes differently depending on the circumstances.
We additionally perform our transformations so as to accomodate any standard Java
virtual machine (VM), and we can readily support a heterogeneous collection of host
Java virtual machines running a single application or manipulating a single persistent
store, so long as their class libraries offer the same APIs. We do not modify the VM
in any way, so our implementation is portable and easily-maintained.

2 Transparent distribution in RuggedJ

We apply the pervasive virtualization transformations described in this paper to
RuggedJ, our prototype transparent distribution framework for Java [MHM09b,
MHM09a, McG10]. RuggedJ rewrites and distributes standard Java applications
to run across a cluster of machines: we allow developers to deploy their applications
onto heterogeneous and dynamically-changing computing platforms, enabling those
applications to be re-targeted seamlessly for different distribution topologies. Our
focus with RuggedJ is to permit scaling of distributed applications in clusters. In
contrast, prior systems such as J-Orchestra [TS06] and Addistant have emphasized
partitioning of applications, mainly to exploit heterogeneity (such as a graphical user
interface running on a client while back-end computations execute on a server), though
RuggedJ also supports partitioning.

A RuggedJ network consists of a number of nodes, each comprising a single instance
of some Java virtual machine running on a hardware host in the cluster. Each node
contains a bytecode rewriting class loader and a RuggedJ run-time distribution library;
the class loader supplies classes rewritten on-demand, while the run-time system
interacts with other nodes to co-ordinate application distribution dynamically (e.g.,
encoding how instances of each class are to be striped across the nodes of a cluster

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 3

class X class X_local class X_stubclass X_proxy

interface X

interface X_static

class
X_static_stub

class
X_static_local

Original Application Transformed Classes

abstract class
X_static_proxy

Figure 1 – The RuggedJ object model (UML class diagram)

to ensure load balancing), as well as providing library functionality to the rewritten
bytecode.

Distributing an application requires transforming all of its classes; not only do we
add, remove, and modify code, we transform fields and method descriptors and generate
new classes. Program transformations of this scale require not only modification of user
code but also manipulation of system code. We distribute applications by abstracting
object location: transformed application code manipulates local and remote objects
transparently, executing the same code against those objects regardless of their location.
Our object virtualization transformations allow the same flexibility between user and
system classes; system and user objects can be manipulated in a uniform manner both
by local and remote code.

2.1 RuggedJ run-time system

Our focus in this paper is on the transformations that allow any application to be
distributed according to the design choices of the distribution developer, so we only
briefly describe the RuggedJ run-time system here. Naturally, the efficiency and
scalability of a distribution will vary widely depending on the policy choices of the
developer. These policy choices are enacted by the run-time system, which drives
the dynamic class transformations that distribute the application and manages the
objects manipulated by the application (whether to instantiate locally or remotely,
to migrate or replicate, etc.). The run-time system also handles communication and
provides utility code invoked by the transformed classes. Both transformation and
object management are dictated from a policy specification provided by the developer.
The policy specification allows the developer to express dynamically for any allocation
site where each instance is to be allocated, to control which instances can migrate,
and which operations (e.g., passing the instance as a method argument or returning
it) will cause it to migrate, and to where.

2.2 RuggedJ class transformations

Key to distribution of applications within RuggedJ is the bytecode transformation
library, which transforms the classes that make up an application to implement the
RuggedJ object model [McG10], as shown in Figure 1. Each class from the original
application spawns creation of three new classes and one interface to represent the
class’s instance protocol : the original method names and signatures, and additional
accessor methods for every instance field in the class. The static methods and fields of
the class similarly produce three new classes and an interface to represent the class’s
static protocol. Object references within RuggedJ are typed exclusively by interface;

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

4 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

abstracting out the protocol allows the concrete implementation of a class to vary
without altering client code that refers to instances of the class. We rewrite method
bodies within the class to refer to transformed objects, including redirecting method
and field accesses through interfaces, modifying the types of objects to account for the
object model, and so on.

The three classes X_local, X_stub and X_proxy provide these concrete implemen-
tations. A local object contains the instance fields and method implementations of
the original class; it can be thought of as the canonical representation of the object.
Local objects have a one-to-one relationship with objects in the original application,
so only one local instance exists in the RuggedJ system for every instance in the
original application. The second class, the stub, implements the interface by providing
remote method calls to the local object. Stubs have a many-to-one relationship to
local objects. Each node in the network (excluding the node that contains the local
object) may have up to one stub per object in the original application. This way, any
node can refer to any remote object in the system. Finally, the proxy object allows
objects to migrate. Should an object be migratable, a proxy object will be allocated
as well as the appropriate local or stub. The proxy holds a single reference to the
local or stub object, and all references to that object pass through the proxy. This
way if an object should migrate it is necessary only to update the reference within the
proxy to refer to the new implementation. Since the majority of objects within an
application never migrate, and we allocate proxies only for those that may migrate at
some point, the majority of accesses do not incur this indirection.

Additionally, we extract the static parts of the original application from their
rewritten counterparts. Static data is required to be unique within the system;
individual nodes must not maintain their own, possibly inconsistent, versions of static
state. To this end we create a static singleton object for each class that contains static
data. These singletons are managed by the run-time library, and are guaranteed to be
globally unique.

The second aspect of class rewriting involves copying and transforming the contents
of the original class to the new local class. All object references must be re-typed
to refer to rewritten interfaces rather than to the original classes. Additionally, field
accesses are transformed to call get and set methods on the interface, rather than
directly reading and writing fields. Finally, the method bodies are modified to call out
to the run-time library to perform any additional functions required for distribution.
These transformations are discussed in depth in Section 3.5.

When the RuggedJ class loader has rewritten a class, it presents only the trans-
formed version for loading into the Java VM. The VM never sees the original class,
which eliminates the possibility of conflicts between modified and unmodified classes.

3 Class transformation

Class transformation is key to our distribution system. Injecting distribution logic
into regular Java code allows classes to interoperate with remote objects and with the
RuggedJ run-time distribution library without modifying the underlying Java virtual
machine. We perform extensive transformations on each of the classes that make
up the original application: we generate an interface that encapsulates the protocol
of the class and three implementations of this interface to represent local, remote
and migratable objects. Additionally, for classes with static data we create a static
singleton that represents this content, generating a further interface and three classes.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 5

Finally, we rewrite the contents of the original classes to be aware of these new classes
and to work within a distributed environment.

We define two additional goals in the transformation process. First, we aim to
keep the rewritten bytecode as simple as possible. This stems from the practical
difficulties inherent to debugging bytecode; the simpler the rewritten bytecode the
more straightforward the debugging process. Additionally, overly-verbose bytecode
transformation sequences are more likely to lead to complex interactions where gen-
erated bytecode sequences are accidentally modified by subsequent transformations.
The second goal is to optimize transformed code for local execution. This is a result of
two constraints: the vast majority of object accesses in the distributed system should
be to local objects, and the overhead of remote invocations is such that optimizing
bytecode will do little to affect the overall performance penalty in these cases.

We perform class transformation at the bytecode level, using a custom Java
class loader. Bytecode transformation offers several advantages over source-level
modification. Modified Java source code would have to be compiled, which would
require that the whole program be rewritten ahead of time. Instead, we transform
our modified classes incrementally on-demand, without consideration for inter-class
dependencies. We take advantage of incremental transformation to optimize classes
for their location in the network. Additionally, bytecode is a significantly less complex
representation of an application, since Java constructs and variables are collapsed to
stack and local variable operations. This makes the transformation process simpler, as
there are fewer cases to handle.

3.1 Bytecode rewriting

There exist several strategies to rewrite bytecode. Aspect oriented programming
(AOP) is a design methodology that aims to separate cross-cutting concerns from the
main logic of an application [KLM+97, KHH+01a, KHH+01b]. An aspect is a class
that collects reusable or related code in a modular fashion. The aspect can be used to
transform existing applications by weaving the elements of the aspect into the original
application code at specific, well-defined points (known as pointcuts), augmenting or
replacing the existing code. This way, aspects can be used to implement features such
as logging or error handling separately from the main application. AOP suffers from a
lack of low-level control; aspects are specified in terms of the classes that they modify,
and allow advice to insert or modify code that corresponds to specific pointcuts. This
matching process makes it difficult to design general aspects that perform specialized
context-specific rewrites on arbitrary classes. MetaAspectJ [HS06] aims to remedy
this issue by providing an aspect-generating framework that can create specific aspects
programatically. However, even with this additional tool, AOP is capable only of
modifying existing classes; it cannot be used to generate the new classes required by a
system such as RuggedJ.

A number of other tools permit lower-level transformation of Java applications.
Javassist [Chi00, CN03] allows specification of code transformations in Java syntax,
which is then compiled with a custom compiler, as well as an API for manipulating
bytecode directly, but we found Javassist’s on-demand compilation approach difficult
to apply for our whole-program transformations. Jinline [TSDNP02] is a related
project that allows load-time rewriting of bytecode. It provides a version of AOP
at the bytecode level, inlining a specified method body at a given bytecode location.
JMangler [KCA01, JMa] intercepts and rewrites bytecode at load-time. It is able to
work with user-level class-loaders by providing a modified version of the ClassLoader

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

6 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

System Boundary
java.util.HashMap

javax.swing.JPanel

sun.audio.AudioData

org.xml.sax.XMLReader

dacapo.jython.Main

org.eclipse.core.runtime.EclipseStarter net.sourceforge.pmd.PMD

spec.jbb.JBBmain

Bootstrap
Class Loader

User Classes
jbb.jar

dacapo.jar
...

System Classes
rt.jar

Classes.jar
...

System
Class Loader

Java Virtual Machine

Figure 2 – User and system classes

class. JMangler is currently limited to Java 1.4, making it unsuitable for our needs.
Barat [BS98] loads either bytecode or Java source and builds a complete AST. It
performs name and type analysis on the code, making the results available for use in
other rewriting systems. While the analyses provided by Barat would have been useful
in developing RuggedJ, the system is currently limited to analyzing Java 1.1 class files.

Ultimately, we determined that ASM [ASM, BLC] supports a good balance of
direct access to method bytecode while hiding awkward details such as management
of constant pools and the selection of instructions with hard-coded local variable slots.
These two abstractions vastly simplified the design of transformations and generated
bytecode, making ASM more useful to us than the similarly-featured BCEL [Dah98].
Additionally, ASM supports the class file extensions specified in Java 6, allowing us to
make use of the latest language features. As a result, we performed the vast majority
of our transformations using ASM.

Classes in RuggedJ are transformed on demand with ASM, using a rewriting class
loader on each node. This way we can transform classes differently on different nodes
(if we know in advance that a class will only ever be allocated upon a single node we
can rewrite all accesses from that node as purely local, and all accesses from any other
node as purely remote). In addition to the rewriting class loader, we also use a Java
Virtual Machine Tool Interface (JVMTI) agent implemented in C to perform limited
modifications to Java system code (see Section 3.6.2).

3.2 System and user classes

Figure 2 gives a simplified overview of class loading within our system. We split classes
into two sets, system and user classes, depending on the class loader that defines
them. System classes are those in the Java standard libraries, and so are loaded by
the virtual machine’s bootstrap class loader [LB98]. User classes, produced by the
application developer, form the remainder of the application and are loaded by the
user-defined system class loader. This distinction is vital when considering load-time
transformation, as a user-level class loader can modify only user classes. We discuss
Java’s class loading mechanism, and its implications for our system, in Section 3.6.1.

Within the Java VM itself we define the system boundary as a logical distinction
between the two sets of classes; user classes exist above the system boundary, while
system classes exist below. This abstraction is convenient when considering interaction
between rewritten user and non-rewritten system code. We can enumerate the ways
in which references can cross the boundary, and so ensure that rewritten references
are never passed to system code.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 7

System Boundary

Java Virtual Machine

UserClass

SystemClass

(a) Before transformation

SystemClassWrapper UserClassWrapper

System Boundary

Java Virtual Machine

UserClass

SystemClass

(b) After transformation

Figure 3 – An example of transforming classes using wrapping (UML class diagram)

3.3 Transformation

Figure 3 shows the implementation of wrapping ; our fallback approach to handling
any system class within a transformed application when there is no better alternative.
In 3a we see one system and one user class before applying any transformations.
3b shows the result of wrapping each object. Class SystemClassWrapper contains a
reference to the unmodified SystemClass. Since the wrapper was not generated by
the bootstrap class loader it exists above the system boundary, with the reference
crossing the boundary. In both cases, we refer to the original classes SystemClass
and UserClass as the base class, while the two generated classes are wrappers.

Additionally, within our system we refer to SystemClassWrapper and UserClass-
Wrapper as new types. They are generated at load-time by our rewriting class loader,
and thus can implement our object model. In contrast, SystemClass and UserClass
are old types, as they come from the original application. Both sets of types are
necessary; new types implement the uniform object model that allows all classes to
be referenced in the same manner (whether local or remote), while old types can be
passed safely to system or native code that has not been rewritten to be aware of the
presence of generated code. We maintain a strict separation of the two sets of types.
User code refers exclusively to new types, while system code refers exclusively to old.

As an example, consider the old Java system class FileInputStream whose in-
stances each have a tight binding to a local file. Such instances cannot migrate to a re-
mote host since their file is local. Yet it is still possible for remote references to instances
of FileInputStream to be connected to a local instance of BufferedInputStream,
at the cost of remote calls to the remote FileInputStream. We can wrap the local
FileInputStream instances with a new class so that they implement the RuggedJ
object model, allowing manipulation through the wrapper from both local and remote
references.

3.4 The RuggedJ object model

The ability to distribute an application in RuggedJ stems from the uniform object
model that we apply to all objects. Recall Figure 1, which shows the transformation
of a single user class X to conform to the RuggedJ object model. We discuss first the
instance parts of the transformed class, and defer the static parts to Section 3.4.5.

3.4.1 Generated classes

For each class within the original application we generate three classes and one interface.
The generated interface, X, encapsulates the instance protocol of the original class
X. It contains the signatures of all the original instance methods, along with new
accessor methods for all the original instance fields. It uses the same name as the

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

8 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

original class—this simplifies later rewriting of classes that refer to the original class
X, since we do not need to update type names in method signatures, field definitions,
or casts. Interface X is implemented by three concrete representations of the original
class. The first, X_local, contains rewritten implementations of the instance methods
of the original class, plus implementations of the new field accessor methods. In the
rewritten application, an instance of X_local corresponds to an instance of class X
from the original application: an X_local object holds all the data present in an old
instance of X.

The second implementing class is used to refer to remote instances on other nodes:
X_stub contains remotely forwarding implementations of all the methods of the new
interface X, which simply call the corresponding method on a remote X_local instance.
Within a distributed application, the local and stub instances have a 1 : n relation:
any local object can be remotely referred to and invoked by stubs from the n nodes in
the cluster.

The third (and final) new class is X_proxy. A proxy encapsulates a reference
to either a local or stub instance, and its methods simply forward all calls to the
target local/stub. Proxy indirection simplifies dynamic migration of instances to
different nodes: a migratable instance is referred to by proxy, so upon migration only
the reference in the proxy need be updated. Rewritten application code types all
references to the three implementing classes using interface X. However we can bypass
the proxy instance for objects that are known not to migrate. As all three classes
implement interface X we can use them interchangeably without modification to any
calling code. In RuggedJ we use programmer input to determine how to partition an
application across the network.

All of the classes in an application can be adapted to implement the RuggedJ
object model. We use several techniques to generate local classes. However, each
implementation strategy produces a class that implements the corresponding interface,
allowing proxy and stub classes to interact with any style of local class in the same
manner. As the designs of stubs and proxies do not vary across implementation
techniques, they are so straightforward as to be uninteresting. We therefore focus our
attention on the local classes.

3.4.2 Referring to transformed objects

Within rewritten code, we exclusively refer to values with generated interfaces using
that interface. This allows varying the implementations of these interfaces among
several alternatives (local, proxy, and stub classes) without affecting code elsewhere in
the system.

Additionally, we use interfaces as a means of maintaining the class hierarchy from
the original application. While some of the transformations we present in Section 3.6.3
do not maintain the original relationship between their local classes, we ensure that
their generated interfaces do. Thus, since we refer to such classes exclusively by
interface, we can perform subtype and instance checks correctly.

3.4.3 Inheritance

As well as providing a mechanism by which we can reference different versions of a
class uniformly, RuggedJ’s generated interfaces maintain the inheritance relationships
between original classes. Figure 4 shows the relationship between transformed classes
(omitting static parts).

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 9

class X

Original Application Transformed Classes

class Y

Interface A

class X_local class X_stub class X_proxy

interface X

Interface A

class Y_local class Y_stub class Y_proxy

interface Y

Figure 4 – Inheritance among transformed classes (UML class diagram)

S[]

T[]
Interface gen.Array_of_T_1

Class gen.Array_of_T_1_local

Class gen.Array_of_T_1_proxy

Class gen.Array_of_T_1_stub

Interface gen.Array_of_S_1

Class gen.Array_of_S_1_local

Class gen.Array_of_S_1_proxy

Class gen.Array_of_S_1_stub

Original
Application

Transformed Application

Figure 5 – Generated array types (UML class diagram)

The original application’s inheritance relationship between subclass Y of class X
appears as the transformed interface Y extending interface X. Since rewritten code refers
to objects exclusively by interface, this allows one to use any object that implements Y
when the original code required an instance of X. Similarly, checkcast or instanceof
operations operate over interfaces, and produce the same results in transformed code
as in the original application.

Each transformed class Y_local, Y_stub and Y_proxy extends the equivalent part
of class X. This is not necessary to preserve the inheritance relationships of the
original application. Other than when allocating instances, rewritten code never
refers to these individual classes. Rather, this subclassing works to simplify the
implementation of these classes. Without it, each class would have to contain the fields
and implementations for every method of the superclasses of its unmodified version,
which would lead to duplication of code and overly-complex classes.

We do not transform interfaces from the original application (in general—see
Section 3.6.3 for some exceptions) as they have no state that may be remotely accessed.
However we must capture the relationship between a class that implements an interface;
we do this by extending the original interface in the generated interface. This maintains
the inheritance structure through generated interfaces in the same way that we do for
class inheritance.

3.4.4 Arrays

We convert array types to new array classes, which allow us to refer to them as we do any
other transformed class. The new array classes conform to the RuggedJ object model;
we generate an interface, local class, stub class, and proxy for each, as shown in Figure 5.
A one-dimensional array type T[] is represented by an interface Array_of_T_1, while
a two-dimensional array type T[][] is represented by Array_of_T_2. An array type

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

10 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

Original
Application

Transformed Application

V[][]

Interface gen.Array_of_V_2

Class gen.Array_of_V_2_local

Class V

Interface I

Class U

Interface gen.Array_of_V_1 []Interface gen.Array_of_I_2

Interface gen.Array_of_U_2

Class gen.Array_of_U_2_local

Interface gen.Array_of_U_1 []

Figure 6 – Multi-dimensional arrays with interfaces (UML class diagram)

comprises both an element type and the number of dimensions of the array, so we
encode both of these properties in the name of the new array types. Java defines
subtyping among array types having the same dimensions only if the element types are
subtypes. We capture this by making any generated array class for a subtype directly
extend the generated array class for its supertype (both having the same dimensions).

We implement arrays using wrapping: the generated array class wraps a regular
Java array having the same component type as the wrapping array class. The
implementation also provides methods to obtain the array length and to perform the
standard operations that arrays inherit from Object, such as clone.

Figure 6 expands on the handling of arrays, showing the classes generated for a
two-dimensional array type V[][] whose element type V extends U and also implements
an interface I. We omit the new stub and proxy classes for clarity. This example
highlights some interesting features of our generated classes.

Looking at the wrapped array within the local class, we see that the component
type of the wrapped array is the same as that of the wrapper, with one less dimension.
This mirrors the Java definition of arrays as a single dimension of components, where
each component can be a sub-array. A useful consequence of this approach is that we do
not place restrictions on the implementations of the components of the wrapped array,
so long as they implement the appropriate interface. Thus, in RuggedJ, sub-arrays
can be distributed across different nodes, regardless of the location of their enclosing
array.

Figure 6 also illustrates that the old subtyping relationships between array elements
and interfaces must also be represented in the new types. When passing array instances
as arguments it is necessary for Array_of_V_2 to implement Array_of_I_2. If an
original method signature expects an array argument whose elements implement a
given interface I, then in the rewritten new method we will expect an argument that
implements some interface Array_of_I_n (for some dimension n), so capturing the
proper type constraint. Within that new method all AALoad operations are rewritten
as get invocations on the argument. The type constraint ensures that any argument
passed to the new method will have an appropriate get method to return a value
implementing I.

3.4.5 Static data

A class’s static state presents a complication in a distributed setting, since an appli-
cation must see just one version of the static state. Simply rewriting class fields as
static fields in the transformed application will result in each node having a separate
loaded class with that field, whose states will not be coherent across the nodes. We

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 11

approach this issue through the use of static singletons. We extract the static parts of
each class to form a single instance, which we handle as any other object within the
system. The instance state of this singleton object represents the static state of the
original class, and can be accessed from any node.

Since static singletons are required only to maintain a canonical version of static
data, we do not need to create a singleton for a class that has no static fields.
Our analysis shows that static singletons are required in only 18% of classes in the
applications we studied.

Static singletons implement the RuggedJ object model as shown in Figure 1.
Interface X_static complements the instance interface X; it contains the static members
of original class X. We transform the static members of the original class into instance
members of X_static_local, and use the RuggedJ run-time distribution library to
ensure that only one instance of that class is ever created. Thus, simply rewriting all
static invocations to use the static singleton ensures that the static data is indeed
unique.

The stub class X_static_stub performs the same remote access function as its
instance counterpart. The final class in Figure 1, X_static_proxy, acts as a per-node
cache for the appropriate static local/stub object, and is never instantiated. Accesses
to static data in the original application (such as via the invokestatic bytecode) are
handled by the virtual machine, resolving the class name to access the appropriate
data. In our rewritten version, however, we need a static singleton object upon which
to invoke methods. Obtaining this reference through the RuggedJ run-time library
would be an expensive operation, requiring a hash table lookup for every static access.
Instead we store the reference as a static field in the X_static_proxy class, which can
be obtained through a regular static field access.

3.4.6 Hand-coded classes

A final, small, subset of classes within RuggedJ are hand-written and loaded unmodified
into the Java VM. These are classes that require specific, customized implementations
within the RuggedJ distribution network. For example, java.lang.System contains
several methods for which we define special semantics: we must redirect all refer-
ences to System.out to the console node, rather than to the local machine. Since
performing such one-off transformations would be laborious and would complicate the
transformation framework, we prefer instead simply to load a hand-coded version of
these classes.

3.5 Method and field transformations

The implementations for most of the generated classes within RuggedJ follow simple
templates: the stub and proxy classes each implement every method of the interface,
with a standard bytecode sequence that performs a remote method invocation in
the case of the stub, or forwards the method call to a referent in the case of the
proxy. In the run-time system we optimize the stub in some cases to cache immutable
values. The remaining classes, X_local and X_static_local contain methods and
fields copied from the original class. We rewrite the bodies of all copied methods to
refer to the RuggedJ object model. This involves several rewrites:

Refer to new types. The first modification that we perform is to update copied
method bodies (as well as copied fields) to refer to new types. In most cases this
does not require a change. We type values by interface, and have designed our

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

12 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

object model to re-use the original class’ name as the interface name. However,
there are some cases where we must update type names. As seen in Section 3.6,
we generate user-level equivalents for some system classes. In rewritten code
we refer exclusively to these user-level types, and so we update any references
in copied code. We also generate wrapper classes for arrays that make them
conform to the RuggedJ object model. We similarly update references to arrays
to correspond to these new types.

Call get and set methods. We generate get and set methods for the fields of each
transformed class, allowing us to hide the location of these fields behind the
interface. We rewrite the bytecode in copied method bodies to call these methods
rather than directly access fields through putfield and getfield instructions.
When calling these methods we take into account the different semantics of
superclass methods and fields: methods override, while fields hide. A naïve
implementation could access the wrong field if a subclass had a field of the same
name and type. We avoid this by naming get and set methods with both the
field name and the containing class.

Update method invocations. Since we type references by interface, we update
method invocations from invokevirtual to invokeinterface. The state of
the stack required for these bytecodes is identical, so we need only change the
operand. The exception to this rewrite is where we have declared a class to be
Direct (see Section 3.6.3), and so do not indirect through an interface.

Convert array operations. Array operations pose some difficulty when rewriting.
Unlike field instructions (such as getfield), array instructions (such as aaload)
do not encode the type of the array being operated upon (beyond whether
it contains objects or primitives). The type of an object array’s contents are
determined at run time based upon the contents of the stack, and so are not
available to us when we rewrite the class. Since we wrap arrays we need to
know the type of the content in order to call the correct get or set method.
We determine this information through a simple data flow analysis that tracks
the array type from its declaration. We use the same mechanism to convert
arraylength bytecodes to a method invocation on the wrapper object.

Convert static references. Since we extract static data to static singletons, we also
update any references to static methods and fields to use these singletons. This
transformation is similar to the method and field rewriting described above,
but with the minor complication that we must insert a reference to the static
singleton before the call. This requires obtaining the reference (which we do
through the static proxy class) and inserting it before any method parameters
(which we pop to and then restore from local variables).

Convert static methods to instance methods. We transform the bodies of the
static methods themselves to account for their change to instance methods.
Instance methods contain a reference to the containing object in their local
variable slot zero, while static methods have no containing object, and so do not
require this reference. When converting from static to instance, we increment
the target slot for all local variable accesses by one, creating space for the this
pointer. This could cause issues with offsets in the bytecode stream, since
Java contains shorthand bytecodes to load to and store from low-numbered

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 13

local variable slots. The toolkit we use to rewrite, ASM, bypasses this problem
by abstracting away the shorthand bytecodes until it produces a final output
sequence.

Rewrite monitor operations. Global synchronization in RuggedJ is handled in
the distribution library. When rewriting method bodies we convert all synchro-
nization bytecodes (monitorenter and monitorexit) to call out to the library,
which ensures that they are executed correctly.

Wrap and unwrap references. We make extensive use of wrapping both for arrays
and for system objects. When passing wrapped objects as arguments across
the system boundary from user to system code, or when returning them in the
opposite direction, we wrap or unwrap the reference to ensure that the correct
object is seen on either side of the boundary. Passing from user to system code
requires a simple unwrap operation to obtain the wrapped reference. Wrapping,
on the other hand, requires that we check whether the object has been wrapped
before to avoid creating two wrappers for a single object. We add a reference to
the wrapper in system classes using the JVMTI agent (discussed in Section 3.6.2)
which allows us to re-use existing wrappers. During the bytecode rewriting
phase we identify those points where references pass from one side of the system
boundary to the other, and perform compensating wrapping or unwrapping
operations.

A final function of the rewriting phase is to replace allocation sites with references to
our transformed classes. Allocation sites are the only occasion where we directly refer
to generated classes, rather than to interfaces. Where the original application allocates
an object of type X (using the New bytecode) the transformed version creates either an
X_local or X_stub object, depending on the node upon which the allocation occurs,
and a X_proxy object if the partitioning policy provided by the developer determines
that the object might migrate. We can use X_proxy, X_local, and X_stub objects
interchangeably in this manner because each implements the generated interface X.
We make all method calls within rewritten code in terms of the interface, and field
accesses go through the generated get and set methods. By calling methods through
interfaces, we minimize the transformation necessary on calling code, while maximizing
flexibility in the types of objects used.

The decision whether to allocate an object locally or remotely, as well as whether
to allocate a proxy, is determined at run time by the developer-supplied partitioning
policy. These decisions can be made statically (the classes to be allocated are hard-
coded into the method bytecode), or dynamically (the partitioning policy is queried
whenever the allocation site is reached). The majority of allocations are performed
statically, with local objects generated without proxies.

3.6 System classes

The transformations described to this point apply only to user classes, which can be
rewritten by a user-defined class loader. The presence of system classes within an
application complicates the implementation of the RuggedJ object model. In this
section we discuss the issues involved when handling system code, and present the
transformations that allow us to integrate system code into our object model.

We examine the restrictions imposed upon our system before we consider the
impact of those constraints upon user code, because we find that system code is

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

14 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

Bootstrap Class Loader

Java VM

User Code

System Class Loader

User-Defined
Class Loader A

User-Defined
Class Loader E

User-Defined
Class Loader D

User-Defined
Class Loader C

User-Defined
Class Loader B

Figure 7 – Classloading in the Java Virtual Machine

generally subject to more constraints than user code. Thus, as we will see in Section 4,
the majority of constraints on transforming user code are caused by dependencies on
system classes.

3.6.1 Barriers to transformation

Java class loaders [LB98] are organized hierarchically, as shown in Figure 7. The
bootstrap class loader forms the root of a tree structure, with the system class loader
as its only child. The bootstrap class loader is implemented within the Java VM, while
the system class loader can be replaced with a user-defined class loader when the VM
starts up. Any other user-defined class loaders form a tree rooted at the system class
loader. A class loading request can explicitly specify the class loader by which it is
to be resolved (using the reflective ClassLoader class). When the class loader is not
explicitly specified, the class is loaded by the class loader responsible for the invoking
class. By default, class loaders delegate all class loading requests to their parent in
the tree. Thus, a class requested from User-Defined Class Loader E in Figure 7 would
be passed through each parent node in the tree to be resolved by the bootstrap class
loader. Should the bootstrap class loader fail to resolve the class then the request
would be passed back to the system class loader, and so on. If none of the class loaders
on the path through the hierarchy can load the class, a ClassNotFoundException is
thrown.

RuggedJ’s transforming class loader is loaded into the VM at boot time as the
system class loader. Thus, any class loading requests that are not fulfilled by the
bootstrap class loader are intercepted by our class loader, allowing us to rewrite all
user code. Due to the complexity incurred by composing multiple user-defined class
loaders, we do not allow applications to use custom class loaders.

This class loading structure poses two major problems for our transformation
system. The first is that all system classes will be loaded by the bootstrap class
loader, meaning that we do not have the opportunity to transform them. Further,
while we could override the delegation mechanism and transform the classes within
RuggedJ’s system class loader, Java’s security mechanism would not allow us to load
the transformed versions. User-defined class loaders may not load classes with reserved
package names (such as java.*).

The second, and more fundamental, problem is that the class loading hierarchy
imposes visibility constraints. A class can refer only to those classes loaded by the
same class loader as itself or by a parent class loader. Thus, classes loaded by any
user-defined class loader can refer to any system code (defined by the bootstrap class
loader), but system code cannot refer to user code. This means that, even were we

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 15

able to load transformed versions of system classes, they could not refer to user code
such as the RuggedJ run-time library.

A final barrier to transforming system classes is that some of these classes are
effectively hard-wired into the VM. The bytecode that represents classes contains
direct references to java.lang.String and java.lang.Class; both appear in the
constant pool of a class file, and can be directly accessed using the ldc bytecode (that
directly loads a constant to the stack). Again, changing the representation of these
classes would require modifying the VM to understand the modified versions, which
violates our goal for being able to run on any (unmodified) Java VM.

Interestingly, native and reflective code do not present any difficulty at the system
level. Both types of code could break a system that transforms classes (and, indeed,
must be accounted for within user code). However, since we do not rewrite system
code, native and reflective operations perform as they would in an unmodified system.

3.6.2 The RuggedJ JVMTI agent

The Java VM Tool Interface (JVMTI) specification [JVM] provides a set of native
interfaces that allow access to many aspects of the JVM’s operation. It allows debuggers
or profilers to interface with the VM. For example, an agent can extract performance
metrics, or could monitor the threads in a running VM. Of interest to us is the bytecode
modification functionality of the interface. There are two ways in which bytecode can
be modified using the JVMTI: at class-load time and at run time as a response to
a class rewriting event. Of the two, the former provides more flexibility. Run-time
rewriting is subject to more constraints than load-time, as the modified code must be
compatible with the running system.

While we cannot implement a custom class loader for system code, we are able to
perform limited rewrites on the majority of system classes. By implementing a JVMTI
agent we can intercept classes before they are loaded. However we cannot perform
the full range of transformations on these classes. For example, we can only modify
existing classes rather than generating multiple new classes. We do, however, make
use of a JVMTI agent to perform some minor modification to certain system classes
within the application. The implementation of some transformations, for example, is
complicated by Java’s access control mechanism; if we change the package to which a
class belongs, we can no longer access other classes with default access in the original
package. Our JVMTI agent modifies such classes to bypass these restrictions. Such a
modification does not require reference to any additional classes, and does not alter
program semantics, because the access control was checked statically at compile time.

Our JVMTI agent is implemented in C, using a custom bytecode modification
library. The bytecode rewriting must be implemented in C; simply calling back to our
ASM-based Java rewriting library would be tempting, but impractical. In order to
rewrite a class this way would require loading of the entire ASM framework, along
with the system classes upon which it depends. This would defeat the purpose of the
agent, since it would miss rewriting hundreds of system classes before ASM had fully
loaded.

The agent is called by the VM after a class is presented for loading by a class
loader, but before it is actually loaded. We modify the class and return a new bytecode
stream that is then loaded to the VM. This interface represents the major limitation
to rewriting with JVMTI—we can modify classes but we cannot create or rename
them.

A final limitation to class transformation is the presence of primordial classes.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

16 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

Class S Class UClass T

Interface gen.S Interface gen.UInterface gen.T

Class gen.S_local Class gen.U_localClass gen.T_local

System Boundary

Figure 8 – Wrapping class hierarchy (UML class diagram)

These are approximately seventy classes (with the exact number varying across VM
implementations) that cannot be modified at all. Primordial classes are intimately
tied to the VM, such as java.lang.Object or java.lang.String. Depending on the
VM implementation, these classes may be hard-coded or directly memory-mapped to
optimize startup times, and so cannot be intercepted.

3.6.3 Templates for rewriting

Our strategy when handling system classes is to abstract away the distinction between
system and user code, allowing rewritten code to refer to either without special cases.
Thus we ensure that all system classes can be made to conform to the RuggedJ object
model. Our class transformations use four basic techniques to obtain new types for
system classes:

• The local instance of a Wrapping class holds a reference to a paired instance of
the old type. This allows any system class to be remotely referenced, at the cost
of wrapping and unwrapping overheads.

• Extending classes implement the object model through subtyping, with the
generated local class extending the original system class.

• Promotable classes are not referenced by native code or by any other system
classes, and so can be turned into user classes.

• Direct classes are not transformed, and so do not conform to the object model,
solely because it does not make sense for the target domain (the other trans-
formations can be applied to such classes, but would result in unnecessary
overhead). In a distributed system, immutable objects such as Integer need not
be transformed, as its instances can be replicated as needs demand. Similarly,
classes whose instances are always local need not be transformed.

System Wrapping. Wrapping is the most straightforward of the transformation
templates and is shown in Figure 8. In this approach, a set of classes are generated
above the system boundary, in a special user-level package chosen to prevent name
conflicts. For conciseness we refer to this package as gen. The base class is loaded
by the bootstrap class loader, and is not modified. The local class contains new-type
implementations of all the methods of the base class, each of which translates the
arguments from new to old, invokes the method on the wrapped base object, then
performs an old-to-new translation on the return value if necessary. In this way a
given object can be referred to by new type above the system boundary, and by old
type below.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 17

Class S Class UClass T

Interface gen.S Interface gen.UInterface gen.T

Class gen.S_local Class gen.U_localClass gen.T_local

System Boundary

Figure 9 – Extending class hierarchy (UML class diagram)

Unwrapping objects when passing from user to system code is a trivial operation.
However, we must be more careful when performing the inverse; wrapping objects
that are passed from system to user code. In this case we need to ensure that a given
object that has previously been wrapped is reunited with its original wrapper; to
do otherwise would create two wrappers for a single base object, which would not
preserve identity. We avoid this by inserting a reference to the wrapper within each
wrapped system class, along with get and set methods to access it. Since this involves
the modification of system code, we perform this rewrite using the JVMTI agent. The
wrapper reference is typed as Object, as a system class cannot refer to a user class.
Finally, since we cannot add fields to primordial classes, we maintain a hash table for
these objects, against which we check for existing wrappers before generating a new
one.

As with all classes that conform to the RuggedJ object model, wrapping classes
maintain the inheritance hierarchy of the original through their generated interface.
That the local classes also subclass the relevant local class is merely a convenience—if
they did not, every wrapper would have to implement redirect methods for the methods
of every superclass, rather than just those in its base.

The System Wrapping template can be considered the “universal solvent” for
system classes. We can generate wrappers for any system class, which ensures that all
objects in the application can conform to our object model. Unfortunately, the System
Wrapping template also carries the highest overhead (as objects must be wrapped and
unwrapped, which can be expensive), making the other templates more desirable.

System Extending. The System Extending template is an alternative means of
handling system classes that eliminates the overhead of unwrapping. Under this
technique, the generated local class extends the original base class, as shown in
Figure 9. The generated interface and local class conform to our object model, while
the base class remains unchanged. Note that in this case there is no inheritance
relationship between the local classes; this is not important because the interfaces
maintain the class hierarchy above the system boundary, while the base classes maintain
it below.

An extending class can be passed to system or native code without any conversion
process, since it extends the unmodified base. However we cannot create a new instance
of an extending class within system code (as we cannot rewrite the allocation site
to refer to T_local rather than T). This limits the applicability of this template to
system classes that are only ever allocated above the system boundary. Further, while
we obviously cannot extend final classes, we can also not override final methods.
This may be an issue if a final method includes an old type as an argument or return
value; the object model requires that such methods be overridden in order to be called

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

18 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

Interface gen.S Interface gen.UInterface gen.T

Class gen.S_local Class gen.U_localClass gen.T_local

System Boundary

Figure 10 – Promotable class hierarchy (UML class diagram)

by user code, which only uses new types. Thus, while the System Extending template
is preferable to System Wrapping, due to its lower overhead it can be used only in
limited cases.

Promotable. Promotable classes are a subset of system classes that are not ref-
erenced by any other non-Promotable system class or by native code. In this case
we know that any reference to a Promotable class will either be in user code or in
other Promotable classes. We can therefore move Promotable classes above the system
boundary (by renaming their classes to form part of the gen package), and treat them
as we do any other user class. Since we can rewrite all references to the Promotable
class we can ensure that the original class is never referred to, and so is never loaded
by the bootstrap class loader.

Promotable classes often exist in cliques within the system libraries, with no
external uses from other classes in the libraries. An example that we have encountered
is the Java XML processing library. If an application uses XML processing, much of
the library is loaded into the VM. However these classes refer only to one another.
Thus, we can promote these classes en-masse.

The structure of a Promotable class is shown in Figure 10. This is the most straight-
forward implementation of the object model, with each local class implementing its
interface. While the inheritance hierarchy is maintained by generated interfaces, the
local classes retain the original relationship. In the System Wrapping and Extending
templates the actual method implementations were located in the base classes, Pro-
motable local classes contain complete implementations of all their methods. Thus,
Promotable classes must extend their parent so as to have their parent’s methods
available.

The Promotable template is similar to the Twin Class Hierarchy (TCH) approach
proposed by [FSS04], in that it loads system classes into the user space in order to
perform transformations. However there is one important difference: the TCH system
allows both modified and unmodified versions of the code to exist within a VM. We
promote only those classes that are not used by other system code, so the promoted
version is the only one in the system.

System Direct. The final set of classes, System Direct, do not conform to the
RuggedJ object model. This template exists as an optimization; as we have seen,
any class can conform to the object model through the System Wrapping template.
However there are classes for which it is not necessary to conform to the object
model. For example, when distributing an application with RuggedJ, we do not want
to transform immutable objects. If we know that an object will never change, we
can replicate it on multiple nodes, and eliminate the overhead of remote method

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 19

Class S Class UClass T

System Boundary

Figure 11 – Direct class hierarchy (UML class diagram)

Table 1 – Subclassing between templates

Wrapping Extending Promotable Direct

Wrapping Can subclass Cannot wrap Cannot wrap No interfacesuperclass superclass

Extending Cannot alter Can subclass Cannot alter No interfacebase hierarchy base hierarchy

Promotable Cannot extend Can subclass Can subclass No interfacewrapper

Direct No interface No interface No interface Can subclass

calls. Similarly, there are classes that are closely tied to the individual VM (such as
java.lang.Class) that do not make sense to reference remotely.

Those classes we designate to be System Direct are not transformed in any way
(as shown in Figure 11). As such they do not incur any overheads, and can be freely
passed between system and user code, as well as to native methods. However, since
they do not conform to the RuggedJ object model, they cannot be modified to extend
the original application’s functionality.

3.6.4 Subtyping

Since all of the transformation templates described above rewrite classes differently,
we cannot freely “mix and match” techniques between super- and subclasses. Each
rewriting technique therefore imposes restrictions on the classes of its hierarchy. The
relationships are shown in Table 1.

Since System Direct classes do not conform to the RuggedJ object model, we must
ensure that they have only other Direct classes in their hierarchy. To do otherwise
would violate our rule that inheritance is maintained through interfaces; a Direct class
has no interface, and so cannot fit into this scheme.

Likewise, System Wrapping classes can have only other Wrapping classes in their
hierarchies. A Wrapping class cannot extend an Extending or Promotable class in
case it is returned to user code from system code. There would be no way to produce
a new-type representation of the Extending or Promotable superclass. The argument
as to why a Wrapping class can only be extended by other Wrapping classes is similar.
An Extending class that extends a Wrapping class removes our ability to translate
from an old type to a new. In the case of a Promotable subclass, the local class would
have to subclass the Wrapping subclass (since a Promotable object does not have a
base class). This relationship would be lost when the base class was unwrapped.

A System Extending class can extend only another Extending class, since the
local class must directly extend the base, and we cannot change the superclass
hierarchy of the base class. However an Extending class can act as the superclass for

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

20 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

a Promotable class; the System Extending template does not require unwrapping, so
a Promotable local class can extend a System Extending local class without any loss
of information should the object be passed to system or native code. This further
indicates the usefulness of the System Extending template over System Wrapping.
Promotable classes offer more options when extending an application’s functionality,
and by increasing the number of Extending classes, we likewise increase the number of
potentially Promotable classes.

Our discussion of subtyping must also consider the original interfaces implemented
by classes (as opposed to those generated as part of the RuggedJ object model).
We rewrite interfaces in much the same way as classes: user-level interfaces contain
signatures using new types, while system-level interfaces contain old types. Thus,
system-level interfaces must be System Direct (if they contain only primitive or
Direct arguments and return values) or System Extending (if they contain Extending,
Wrapping, or Promotable arguments).

3.6.5 Classification

We refer to the process by which templates are chosen for each class as classification.
A given class’s classification may be determined by its subclasses or its references from
elsewhere in the system, so we require knowledge of the entire application. We run the
classification algorithm only on the classes that make up the application; analyzing the
entire Java class libraries would introduce false dependencies, and limit our flexibility
in transforming the application. We compute classification during a pre-processing
phase, which we run once per application for a given set of class libraries.

We arrange the various classification templates using a total ordering. Direct classes
are handled first, as they are an optimization and otherwise fall into at least one other
classification. Next we find Promotable classes, which maximize the flexibility of our
rewrites, then Extending classes that handle the remaining classes with less overhead.
Wrapping classes account for the remainder.

The algorithm is iterative, since changes to the classification of one class may affect
others. We present the algorithm as a decision graph, which produces the classification
for a given class, assuming that all other classes have already been correctly classified.
To generate a full classification, we simply run the algorithm until a fixed point is
reached. The decision graph for system classes is shown in Figure 12.

3.6.6 System class static singletons

Extracting static members from a class is a simple process when transforming user
code, but is not possible for system classes. Since we cannot rewrite system code,
we cannot change static references (invokestatic, getstatic, etc.) to use static
singletons. Thus, we implement the static local class differently for user and system
code.

We refer to the static local class generated for a user or Promotable class as a
mobile static singleton (MSS). This local class functions as described in Section 3.4.5,
and contains implementations of each static method from the original class, as well as
versions of each static field. The methods and fields are transformed from static to
instance members, allowing the singleton to implement the static interface. Addition-
ally, by transforming static methods to instance methods we remove the dependency
on a particular VM: static data is usually stored in a VM-specific manner and cannot
easily be moved from node to node, while instance data is stored in the heap and can
be migrated (hence mobile static singleton).

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 21

System Wrapping

System
Direct

Promotable

System Extending

Natives?

Yes

Yes

Direct in
hierarchy?

Yes
No

Hierarchy contains
Wrapping?

Yes

No

No

No

Referenced by
system code?

Yes

No

All superclasses
Extending or
Promotable?

No
All subclasses
Promotable?

Yes

Yes No

Passed to interface
implemented by or method
overridden by user class?

Yes

No

No

Yes

Returned by
native code?

No

Yes

Returned to user code
by system code?

No

Yes

Argument or
return value of
system class?

Yes
No

Yes
No

Extending in
Hierarchy?

No

Yes

Interface?Start Immutable or
VM-specifc?

Yes

No

Final?

Accessible field
of system class?

Figure 12 – Classifying system classes

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

22 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

While system classes cannot use static singletons themselves, we make their static
state available to remote user code by generating a pinned static singleton. This
implements the same interface as a mobile static singleton, but can exist on only one
node. The static local class contains an instance method with the signature of each
static method. In this case it simply acts as a redirector, calling the static method of
the system class, allowing that data to be accessed remotely.

Pinned static singletons pose a major barrier to distribution. Not only must all
objects of a class with a pinned static singleton be allocated on the same node, but so
must any other system classes that refer to the static parts of that class. Fortunately
static singletons are required only for classes with static data. As seen in Section 4.3,
we do not need static singletons in most cases; ultimately, only 12% on average of the
classes we consider require a pinned static singleton.

3.7 User classes

The transformation of system classes constrains that of user code. As discussed in
Section 3.6.4, the classification of a given type can affect the classification of its super-
and sub-classes. This requirement extends above the system boundary, meaning
that we need to create equivalent versions of the four templates within user classes.
Additionally, native code can be present in user as well as system code, which limits
our ability to rename and rewrite classes.

The four templates for rewriting user code closely mirror those for system code.
Classes can be User Wrapping, User Extending, User Unconstrained (the user-level
equivalent of Promotable), or User Direct. As might be expected, occurrences of user-
level native code or the subclassing of system classes are rare. As shown in Section 4,
the vast majority of user classes are either User Direct or User Unconstrained.

3.7.1 Rewriting

User code differs from system code in one important manner: the classes are loaded
by our user-level class loader, and so can be rewritten. This has implications for User
Direct classes, as well as the base classes for User Extending, and Wrapping.

When rewriting user code, we define two invariants:

1. Values with generated interfaces (User Wrapping, Extending or Unconstrained)
are always typed using that interface. This allows us to vary the implementations
of these interfaces among several alternatives (as discussed in Section 3.4). If
we know that these instances will always be manipulated through the interface
methods then any implementation of those interfaces is safely encapsulated and
we can freely decide on that implementation without worrying if that decision
impacts other code.

2. User code exclusively refers to new types. By strictly ensuring that all rewritten
code uses new types, we define a clear separation between old and new types.
We can maintain this invariant because instances cross the system boundary in
well-defined places (passed as arguments, returned from methods, etc.). Thus,
we never need to check dynamically if an instance is of an old or new type; the
context from which the instance is referenced (system or user) decides statically
if the instance has an old or new type.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 23

We occasionally break the second invariant to optimize base classes. However, these
violations are always localized transformations (an old-type reference never escapes
the method in which it is used), and so do not impact the system as a whole.

3.7.2 Native and reflective code

When transforming user code, we must make allowances for native code (for which
we do not assume that we have source code) and for reflective code. We observe that
either native or reflective code can break any large-scale series of transformations by
introspecting on any class in the system. Should a class, field, or method be renamed
or removed, hard-wired assumptions in native or reflective code may fail. We accept
that an adversarial programmer, or one that makes extensive use of such code, can
disrupt our system. We focus instead on permitting the widest possible range of
common usages of both native and reflective code.

In the case of reflection, we do this at run time by intercepting reflective methods
that refer to rewritten code and converting the results to the appropriate new types.
In the case of native code, we exploit the heuristics laid down in J-Orchestra [TS06]
that determine which classes are most likely to be accessed by native code. They
define classes with native methods to be unmodifiable, as well as the types of their
fields and superclasses (dynamic dispatch can result in calling an overridden method
indirectly from native code). These heuristics are adequate for the applications we
consider. We ensure that any classes that are likely to be exposed to native code
conform to the User Direct, Wrapping or Extending templates. This way they retain
a base object upon which native code can operate.

3.7.3 Base classes

User Wrapping and Extending classes are largely similar to their System equivalents,
with the difference that their base classes are above the system boundary and so can
be rewritten. Following the second invariant, we rewrite the method signatures and
bodies of the base class to use new types rather than old. This simplifies the local
classes that wrap or extend the base, since they do not have to translate between old
and new types.

However, since user-level base classes may be passed to natives or system code
(typed as system-level interfaces or superclasses), a base class must retain the signature
of its unmodified original. New fields and methods may be added and the bodies
of methods may be rewritten, but the class cannot be renamed, and its fields and
methods must retain their original names and types. This violates our second invariant,
that user code exclusively refer to new types.

We overcome this for methods by providing old-type implementations that simply
redirect to their new-type equivalents. For fields this is more difficult. We ensure that
any field that may be accessed by native code is not classified as User Unconstrained
by the definition of unmodifiable classes above; a field of an unmodifiable class is
itself considered unmodifiable, and so can not be classified as User Unconstrained.
We observe that system code cannot directly access the fields of user classes, since
they are loaded by different class loaders. Of the remaining templates, Direct and
Extending classes are trivially compatible with system and native code (although we
must type Extending classes as their base, and then cast upon use in user code). User
Wrapping classes are also typed by their base, but since the wrapper is a separate
object, we maintain a cached copy of the wrapper as an additional field. System or
native code use the base class, while user code uses the new wrapper field. Note that

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

24 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

the casting and wrapping of fields is required only in the base class itself; all other
user classes refer to the object by interface and so can never access the field directly.

Another violation of our invariant occurs when a method accesses its this pointer.
The type of the this pointer in a base class is an old type. We must therefore convert
the reference to a new type, either by casting if it is a User Extending class or by
wrapping if it is User Wrapping. This way the invariant is maintained. There are,
however, some situations in which this is not desirable and some in which it is not
allowed. If the this reference is loaded to the stack in order to execute a field access,
for example, we would rather perform the access directly rather than going through the
get method of the interface. More importantly, if the pointer is loaded in preparation
for a superclass constructor call (as required in every constructor) it would be incorrect
to wrap the reference. Doing so would lead to the constructor being called on the
wrapper rather than the base, which would cause a run-time error.

We determine which this references to convert using a def-use analysis. If the
reference escapes the current method (by being passed as an argument or stored
as a field) we convert it, otherwise we do not. While this violates our invariant
that rewritten code exclusively refers to new types, it does so only in a localized
manner. Note that we can also use this optimization when accessing local fields within
Unconstrained classes.

3.7.4 Classification

The classification of user code follows a similar approach to that of system classes.
Figure 13 shows the decision graph for user classes. The user classification process uses
the same ordering as the system; Direct classes are handled first, then Unconstrained,
Extending, and Wrapping.

4 Evaluation

We evaluate our classification system using experimental results obtained from RuggedJ.
We examine the output of our classification algorithm on a variety of benchmark
applications, and provide some insight into the sources of overhead introduced by our
system.

4.1 Configuration

Since the focus of this paper is the rewriting process within RuggedJ rather than the
distribution process, we limit ourselves to describing performance on a single-node
network. This allows us to analyze the overheads of the rewriting process without
the additional complication of network interaction. We do not, however, optimize our
implementation based on this single-node configuration. While a single-node network
will never need to reference an object remotely or to perform migration, we do not
disable the generation of stubs and proxies, and we perform all rewrites as we would
in a distributed system, referring to objects via our new interfaces, etc.

All classifications were generated on an Apple computer, using Mac OS X 10.5.6,
and version 1.6.0_07 of Apple’s Hotspot-based Java VM. This affects the results of the
classification; different implementations of the standard class libraries may produce
slightly different classifications.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 25

Start

Exposed to
native code?

Yes

No

User
Wrapping

User
Direct

User
Unconstrained

User
Extending

Immutable?

No
Yes

All super and
subclasses

Direct?

YesNo

Superclass
Wrapping?

Yes
No

Superclass
Wrapping?

No

Yes

NoYes

Any Subclass
Wrapping?

Yes No

Final?

Yes

Interface?

Yes

No

Extending in
Hierarchy?

No

Yes

No

Returned by
class exposed

to native?

Yes

No

All subclasses
Unconstrained?

Figure 13 – Classifying user classes

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

26 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

721$

755$

1365$

781$

849$

783$

792$

750$

727$

796$

818$

2037$

1618$

1672$

1729$

1638$

1615$

1668$

1633$

1944$

1466$

709$

341$

387$

331$

140$

270$

302$

1847$

800$

145$

655$

112$

149$

557$

480$

297$

299$

288$

1146$

317$

288$

309$

396$

290$

69$

34$

21$

20$

7$

0%$ 10%$ 20%$ 30%$ 40%$ 50%$ 60%$ 70%$ 80%$ 90%$ 100%$

antlr$

bloat$

chart$

eclipse$

fop$

hsqldb$

jython$

luindex$

lusearch$

pmd$

xalan$

compiler$

compress$

crypto$

derby$

mpegaudio$

scimark$

serial$

sunflow$

xml$

SPECjbb2005$

SPECjbb2005*$

DNA$Database$

Monte$Carlo$

Mol.$Dyn.$

System$

User$

Figure 14 – Mix of system versus user classes (labels show absolute counts)

4.2 Classification

We ran the classification algorithm on applications from different benchmark suites,
shown in Figure 14: ten benchmarks from the DaCapo suite (version 2006-10-MR2
[BGH+06]), nine from the SPECjvm2008 suite [SPE08], plus SPECjbb2005 [SPE05].
In addition, we analyzed four distributable applications: a re-implemented distributable
version of SPECjbb2005 which we call SPECjbb2005*, a DNA database matching
application [KN05], and distributable versions of the Monte Carlo and Molecular
Dynamic benchmarks from the Java Grande suite [MCH99, Gra]. SPECjbb2005*
differs from SPECjbb2005 by distributing the contents of certain key data structures
across the “warehouses” of the benchmark to avoid unnecessary non-local accesses.

To obtain an accurate count of the classes referred to by the DaCapo applications,
we analyzed them without the DaCapo harness, to ensure that we classified only those
classes referred to by the benchmark application.

As Figure 14 shows, the majority of classes (78% on average) in an application
belong to the standard libraries. This is due to the degree of interaction between
system classes: a single reference can cause a large closure of classes to load. This
strongly demonstrates the need to handle system classes within a rewriting system.

Figure 15 shows that the majority of user classes are split between User Direct (42%
of user classes and 10% of the total application) and User Unconstrained (53% of user
classes and 13% of the total application). Very few classes are User Extending or User
Wrapping. There was no user-level native code in the applications we studied, so these
two classifications were used only for user classes that extended system classes. We
see that only four classes in any of the benchmarks were classified as User Extending.
While the number of User Extending classes seems insignificant, we must retain the

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 27

47#

74#

130#

770#

286#

54#

75#

43#

51#

260#

189#

151#

152#

147#

483#

164#

146#

161#

201#

147#

32#

15#

13#

8#

2#

90#

193#

153#

1019#

499#

84#

571#

66#

94#

291#

276#

122#

126#

120#

605#

132#

120#

126#

173#

121#

33#

19#

7#

12#

5#

4#

3#

3#

19#

58#

15#

7#

9#

3#

4#

6#

15#

24#

21#

21#

54#

21#

22#

22#

22#

22#

4#

1#

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

antlr#

bloat#

chart#

eclipse#

fop#

hsqldb#

jython#

luindex#

lusearch#

pmd#

xalan#

compiler#

compress#

crypto#

derby#

mpegaudio#

scimark#

serial#

sunflow#

xml#

SPECjbb2005#

SPECjbb2005*#

DNA#Database#

Monte#Carlo#

Mol.#Dyn.#

User#Direct#

User#Unconstrained#

User#Extending#

User#Wrapping#

Figure 15 – Classification of user classes (labels show absolute counts)

147$

152$

222$

209$

176$

164$

162$

149$

150$

199$

192$

339$

284$

297$

321$

290$

283$

290$

284$

338$

262$

158$

88$

84$

81$

10$

4$

10$

24$

19$

4$

5$

4$

4$

11$

34$

103$

98$

106$

103$

98$

98$

98$

98$

31$

157$

144$

1$

132$

136$

305$

138$

165$

153$

144$

136$

133$

139$

148$

442$

340$

342$

371$

348$

339$

360$

345$

403$

277$

89$

53$

55$

53$

432$

463$

828$

410$

489$

462$

481$

461$

440$

447$

444$

1153$

896$

927$

934$

902$

895$

920$

906$

1172$

770$

318$

199$

248$

197$

0%$ 10%$ 20%$ 30%$ 40%$ 50%$ 60%$ 70%$ 80%$ 90%$ 100%$

antlr$

bloat$

chart$

eclipse$

fop$

hsqldb$

jython$

luindex$

lusearch$

pmd$

xalan$

compiler$

compress$

crypto$

derby$

mpegaudio$

scimark$

serial$

sunflow$

xml$

SPECjbb2005$

SPECjbb2005*$

DNA$Database$

Monte$Carlo$

Mol.$Dyn.$

System$Direct$

Promotable$

System$Extending$

System$Wrapping$

Figure 16 – Classification of system classes (labels show absolute counts)

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

28 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

724$

764$

1334$

2106$

1502$

792$

857$

731$

737$

1062$

1086$

1950$

1560$

1599$

2357$

1591$

1547$

1616$

1665$

1858$

1263$

633$

305$

344$

282$

31$

151$

78$

391$

23$

18$

463$

20$

32$

185$

100$

94$

95$

93$

229$

97$

93$

93$

97$

80$

51$

1$

5$

106$

110$

255$

131$

124$

118$

127$

111$

107$

106$

112$

290$

262$

268$

289$

267$

263$

268$

267$

296$

221$

109$

57$

58$

56$

0%$ 10%$ 20%$ 30%$ 40%$ 50%$ 60%$ 70%$ 80%$ 90%$ 100%$

antlr$

bloat$

chart$

eclipse$

fop$

hsqldb$

jython$

luindex$

lusearch$

pmd$

xalan$

compiler$

compress$

crypto$

derby$

mpegaudio$

scimark$

serial$

sunflow$

xml$

SPECjbb2005$

SPECjbb2005*$

DNA$Database$

Monte$Carlo$

Mol.$Dyn.$

No$StaPc$Singleton$

Mobile$StaPc$Singleton$

Pinned$StaPc$Singleton$

Figure 17 – Elimination of static singletons (labels show absolute counts)

classification template for these classes. Recall that an Extending class cannot extend
a Wrapping class, so eliminating the User Extending template causes more system
classes to be Wrapping rather than Extending, which we wish to avoid due to the
wrapping overhead.

Figure 16 shows that, below the system boundary, System Wrapping classes are the
most common, representing 57% of the system classes and 42% of the total application
on average. This can be attributed to the need to wrap objects that are passed or
returned to user code. System Extending classes are less common, representing 18% of
system classes, while 20% of system classes are System Direct. Finally, 3% of classes
on average can be promoted.

4.3 Static singletons

While we present a mechanism for handling static data within a distributed system
in Section 3.4.5 and Section 3.6.6, we recognize that static singletons pose a major
source of overhead. At best, a local static method invocation requires additional work
to locate and insert a reference to the static singleton, while at worst every static
method invocation could become a remote call. We aim, therefore, to eliminate static
singletons in those cases where they are not strictly necessary (for classes that have
no static state, or for which static state is immutable). Figure 17 shows that we are
able to completely eliminate static singletons for 82% of classes on average across our
applications, 12% of classes require a pinned static singleton and the remaining 6% of
classes need a mobile static singleton.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 29

4.4 Performance

When considering the performance of our system, we focus upon steady-state behavior.
While start-up time (including class loading and hence rewriting time) is a major
factor for small applications, the usefulness of rewriting such applications is limited.
For example, with RuggedJ there is little to be gained by distributing an application
whose running time is dominated by start-up costs. Therefore, we will concentrate
here on SPECjbb2005. As well as being one of the more complex benchmarks that we
evaluated, it also exhibits measurable steady-state behavior.

We ran an unmodified version of SPECjbb2005 in single-user mode ten times,
using the server version of the Hotspot VM. The benchmark was configured to use
four-minute timing runs for eight warehouses. We averaged the ten benchmark scores,
representing the steady-state throughput. We then ran the transformed code (working
from the classification for SPECjbb2005 reported earlier) using the same setup. Overall,
transformed SPECjbb2005 produces 64% of the throughput of the untransformed
benchmark. By running the transformed SPECjbb2005 under the YourKit Java profiler
[You] we found that the overheads of the transformations come from two sources:
Wrapping classes and proxies.

By far the largest overhead came from wrapping those classes that were passed
or returned from system to application code. 19% of the execution time within the
timing periods was spent wrapping instances of system classes for use by application
code. Of that time, 67% was spent in hash-table lookups determining whether an
object had been wrapped previously. Additionally, 10% of the wrapping time was
spent reflectively creating wrappers for objects that had not previously been wrapped.

Another 10% of the timing period was spent executing proxies, particularly the
proxy objects for one-dimensional int arrays. SPECjbb2005 contains several methods
that iterate over large arrays, making the overhead for indirection particularly obvious
for these objects. However the majority of the performance overhead came from the
proxy, rather than the local class. Methods of local array classes represented less than
1% of the execution time. Therefore this overhead could be substantially reduced by
eliminating proxies for arrays that are known to be local.

Our focus in this paper is the transformation strategy to deploy the RuggedJ
object model. For space reasons we are unable here to provide full performance
results for distributed execution with the RuggedJ run-time system. Full details can
be found in McGachey’s PhD dissertation [McG10], which considers several realistic
benchmark applications and how to distribute them. In brief, we have been able to
show that the rewritten distributable SPECjbb2005* version of SPECjbb2005 scales
similarly to the original, though at the cost of some degradation in throughput due to
transformation plus the overhead for communicating among distributed warehouses.
Moreover, whereas scaling the number of warehouses beyond the number of cores
available on a single node saturates the cores for untransformed SPECjbb2005 and
SPECjbb2005*, distributed SPECjbb2005* exploits cores on additional nodes to pro-
duce further scaling for larger numbers of warehouses. Figure 18 shows the performance
of the untransformed benchmarks running on a single 16-core node against that of
distributed SPECjbb2005* running on a cluster of two 16-core nodes. Interestingly,
the non-distributed SPECjbb2005* outperforms the original SPECjbb2005 because it
decentralizes key data structures and avoids some contention present in the original
benchmark. We have also demonstrated that naturally distributable parallel bench-
marks such as the DNA Database matching benchmark scale only slightly less than
perfectly up to 48 cores on a 3-node cluster of 16-core machines.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

30 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

0 4 8 12 16 20 24 28 32
warehouses

0

20

40

60

80

100

120

th
ro

ug
hp

ut
 (1

0³
 tr

an
sa

cti
on

s/
se

co
nd

)
SPECjbb2005* (distributable)

SPECjbb2005
SPECjbb2005* distributed

Figure 18 – SPECjbb2005* performance (with 95% confidence intervals)

5 Related Work

The issue of rewriting system code has been considered in the past. The Twin Class
Hierarchy (TCH) approach [FSS04] copies relevant system classes into a user-level
package, which can then be rewritten, and is referred to by rewritten user code. Because
the original system classes remain unchanged, any instrumentation inserted into the
rewritten versions can safely refer to system classes without affecting the statistics
gathered or causing an infinite loop. The TCH system does not allow rewritten system
classes to interact with the original classes below the system boundary, making it too
limited for our needs. Additionally, the TCH approach requires custom wrappers for
all native methods. This approach does not scale, and could require that separate
wrappers be written for different implementations of the standard class libraries,
compromising ease of deployment over heterogeneous Java VMs.

The Automatic Test Factoring system [SAPE05] produces “mock” versions of objects
which return memoized results from a previous measuring run, allowing developers to
speed up the testing of individual application components. Their system uses the same
interface technique that allows us to refer to proxy and local stubs transparently; in
their case the interfaces allow them to switch real classes with their mock equivalents,
determining which parts of an application are to be tested. The Test Factoring system
differs in the way it handles system code. Rather than redirecting through wrappers
or extending classes, they directly rewrite the system library to include mock objects.
This is not feasible in our system, due to the limitations of visibility between class
loaders. Such rewrites are possible only if classes are not renamed, and any referenced
libraries are stored in the boot class path.

We present our work in the context of the transparent distribution of Java applica-
tions. The closest work in that area is J-Orchestra [TSH05, TS02, TS09], which also

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 31

performs transparent distribution, though targeted at a different domain. J-Orchestra
partitions the classes of an application for heterogeneity across a predetermined set of
hosts while RuggedJ distributes the instances of the application dynamically across
an arbitrary number of hosts in a cluster to enable scaling. This difference is vis-
ible in our rewriting approach: RuggedJ performs all rewriting at class load time,
taking advantage of the particular configuration (e.g., number of available nodes) to
distribute the work of the application scalably, while J-Orchestra is able to use its
advance knowledge of the platform to generate a customized jar file ahead of time for
each site to partition the application to take advantage of heterogeneous capabilities.

Thus, J-Orchestra allocates all instances of a given class at a single pre-defined node.
Distribution of instances in J-Orchestra requires subsequent migration. In contrast,
RuggedJ enables instance allocation to be controlled via run-time allocation policies.
Simple policies often work very well. For example, RuggedJ generally allocates work
units of the application (implementers of java.lang.Runnable) on remote nodes,
with subsequent allocations by those work units on the local node. Allocation policies
can be refined on a per-node plus per-allocation-site basis, statically at rewrite time,
or dynamically (via policy call-backs) at run time. Policy choices (both at per-node
class load time and at run time) have access to cluster metadata (such as the number
of nodes and their capabilities) to decide how to handle each allocation site.

The RuggedJ distribution policies also allow dynamic declaration of instance
immutability, allowing them to replicated once they have reached their point of
immutability. This mechanism is useful for initializing instances locally (for efficiency)
and then allowing their state to be replicated across nodes once they have been
initialized. We must be careful here to preserve identity of the replicas. For example,
synchronizing on a replica requires synchronizing on the original at its home node.

J-Orchestra assumes that any instance of a mobile class can migrate from the
node on which it was allocated. Instances of anchored classes (similar to our system
classes) must remain at their home node. In RuggedJ migration is controlled by the
distribution policy, which declares which classes may have migrating instances (and so
must be proxied), while avoiding the run-time overhead of proxies for instances that
never migrate. The policy specification allows migration of an object to be triggered
when it is returned from a method, after some number of remote invocations on it,
or at call/return of arbitrary methods. The latter mechanism specifies the class and
method into which a policy callback is inserted at the start or end, along with a local
variable to be passed to the callback at run-time holding the object to migrate.

In summary, while J-Orchestra shares many similarities to RuggedJ, the flexibility
of our distribution policies allows more refinement of the ways in which different classes
are rewritten. For example, in RuggedJ, non-migratable classes can always be referred
to directly if local, whereas J-Orchestra treats all remotely accessible classes uniformly.

Addistant [TSCI01] enables the distribution of “legacy” Java applications (the
developers define legacy as any Java software written without distribution). Similarly
to RuggedJ, the system makes use of load-time bytecode rewriting using the Javassist
transformation tool, and provides a run-time system. It requires no modification to the
Java VM. Developers are constrained to partitioning by class (instances of the class
will either all be local or all be remote) unless they explicitly request heterogeneous
transformation allowing instances to reside both locally and remotely. RuggedJ infers
this classification automatically based on the origin of the class (system or user) and
the ways in which its instances are used (passed to system code or not), and always
generates heterogeneous code matching the inferred classification. The Addistant

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a9

32 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

run-time system has the interesting feature that it automatically delivers rewritten
source code to the respective nodes, simplifying application deployment.

The major contribution of the Addistant system is its object model. Like RuggedJ,
Addistant uses proxies to forward remote references to the appropriate objects. Its
classification scheme allows system code to integrate into distributed applications, based
on two properties. Modifiability refers to the capacity of their tool to rewrite bytecode;
this is similar to our differentiation between user and system code. Heterogeneity
refers to the references that a class holds; a heterogeneous class can refer to both local
and remote instances. Based on these two criteria, Addistant defines four approaches
to developing proxies. The Replace approach is usable when a class is modifiable and
non-heterogeneous. It assigns the class to one node and generates a proxy with the
same name on all remote nodes. The Rename approach is used when the class is
unmodifiable, but is referred to only by modifiable classes. In this case the system
creates a proxy with a different name, and rewrites all references to point to this proxy.
The Subclass approach allows heterogeneity: the proxy is a subclass of the base class.
References pointing to the base class can instead refer to the proxy. Finally the Copy
approach is used for primitive and immutable objects, with replicas passed around the
network.

Addistant takes the same approach to object equality as RuggedJ; equality is
guaranteed by ensuring that exactly one proxy object per host refers to any given
master object. It also uses a similar thread affinity system to RuggedJ, ensuring that
callbacks from remote methods are handled by the same thread.

6 Conclusion

Bytecode transformation allows RuggedJ to integrate original application code within
its distribution run-time. We have described a series of virtualizing transformations
that can be applied to the various classes that comprise an application to allow them to
conform to a uniform object model for distribution, as well as the classification process
to determine which transformation template should be applied to each class. The
RuggedJ object model is flexible and supports remote referencing, remote invocation,
and migration. The run-time system ensures proper Java behavior for synchronization,
threads, and object identity. Finally, we have described the implementation of our
prototype system, and presented an analysis of the classification process when applied
to several benchmarks. We have demonstrated the feasibility and generality of our
transformations, and shown that their performance overheads are low enough for prac-
tical use: 36% on SPECjbb2005. The RuggedJ transformation techniques presented
here offer a complete and flexible strategy for distributing Java applications to achieve
scalability in clusters of many Java virtual machines.

References

[ASM] ASM [online]. Available from: http://asm.ow2.org.

[BGH+06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.

Journal of Object Technology, vol. 10, 2011

http://asm.ow2.org
http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 33

The DaCapo benchmarks: Java benchmarking development and analy-
sis. In ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 169–190, Portland, Ore-
gon, October 2006. doi:10.1145/1167473.1167488.

[BLC] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation
tool to implement adaptable systems. Available from: http://asm.ow2.
org/current/asm-eng.pdf.

[BS98] Boris Bokowski and André Spiegel. Barat — a front-end for Java.
Technical Report B 98-09, Institut für Informatik, Freie Universität
Berlin, December 1998. Available from: http://www.inf.fu-berlin.
de/inst/pubs/tr-b-98-09.abstract.html.

[Chi00] Shigeru Chiba. Load-time structural reflection in Java. In Elisa Bertino,
editor, European Conference on Object-Oriented Programming, volume
1850 of Lecture Notes in Computer Science, pages 313–336, Cannes,
France, June 2000. Springer. doi:10.1007/3-540-45102-1_16.

[CN03] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient
Java bytecode translators. In International Conference on Generative
Programming and Component Engineering, volume 2830 of Lecture
Notes in Computer Science, pages 364–376, Erfurt, Germany, Septem-
ber 2003. Springer. doi:10.1007/978-3-540-39815-8_22.

[Dah98] Markus Dahm. Byte code engineering with the JavaClass API. Tech-
nical Report B 98-17, Institut für Informatik, Freie Universität Berlin,
1998. Available from: http://www.inf.fu-berlin.de/inst/pubs/
tr-b-98-17.abstract.html.

[FSS04] Michael Factor, Assaf Schuster, and Konstantin Shagin. Instrumentation
of standard libraries in object-oriented languages: The Twin Class
Hierarchy approach. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 288–300,
Vancouver, Canada, October 2004. doi:10.1145/1028976.1029000.

[Gra] Java Grande benchmark suite [online]. Available from: http://www.
epcc.ed.ac.uk/research/java-grande.

[HS06] Shan Shan Huang and Yannis Smaragdakis. Easy language extension
with Meta-AspectJ. In 28th ACM International Conference on Software
Engineering, pages 865–868, Shanghai, China, May 2006. doi:10.1145/
1134285.1134436.

[JMa] The JMangler project [online]. Available from: http://roots.iai.
uni-bonn.de/research/jmangler.

[JVM] The JVM tool interface [online]. Sun Microsystems, Inc. Available from:
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti.

[KCA01] Günter Kniesel, Pascal Costanza, and Michael Austermann. JMangler—
a framework for load-time transformation of Java class files. In Pro-
ceedings of the IEEE International Workshop on Source Code Analysis
and Manipulation, pages 100–110, Florence, Italy, November 2001.
doi:10.1109/SCAM.2001.972671.

[KHH+01a] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G. Griswold. Getting started with As-

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1145/1167473.1167488
http://asm.ow2.org/current/asm-eng.pdf
http://asm.ow2.org/current/asm-eng.pdf
http://www.inf.fu-berlin.de/inst/pubs/tr-b-98-09.abstract.html
http://www.inf.fu-berlin.de/inst/pubs/tr-b-98-09.abstract.html
http://dx.doi.org/10.1007/3-540-45102-1_16
http://dx.doi.org/10.1007/978-3-540-39815-8_22
http://www.inf.fu-berlin.de/inst/pubs/tr-b-98-17.abstract.html
http://www.inf.fu-berlin.de/inst/pubs/tr-b-98-17.abstract.html
http://dx.doi.org/10.1145/1028976.1029000
http://www.epcc.ed.ac.uk/research/java-grande
http://www.epcc.ed.ac.uk/research/java-grande
http://dx.doi.org/10.1145/1134285.1134436
http://dx.doi.org/10.1145/1134285.1134436
http://roots.iai.uni-bonn.de/research/jmangler
http://roots.iai.uni-bonn.de/research/jmangler
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti
http://dx.doi.org/10.1109/SCAM.2001.972671
http://dx.doi.org/10.5381/jot.2011.10.1.a9

34 · Phil McGachey, Antony L. Hosking, J. Eliot B. Moss

pectJ. Communications of the ACM, 44(10):59–65, October 2001.
doi:10.1145/383845.383858.

[KHH+01b] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In Knudsen
[Knu01], pages 327–353. doi:10.1007/3-540-45337-7_18.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jeanmarc Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the Eleventh European Conference
on Object-Oriented Programming, volume 1241 of Lecture Notes in
Computer Science, pages 220–242, Jyväskylä, Finland, June 1997. doi:
10.1007/BFb0053381.

[KN05] T. M. Keane and T. J. Naughton. DSEARCH: sensitive database
searching using distributed computing. Bioinformatics, 21(8):1705–1706,
2005. doi:10.1093/bioinformatics/bti163.

[Knu01] Jørgen Lindskov Knudsen, editor. European Conference on Object-
Oriented Programming, volume 2072 of Lecture Notes in Computer
Science, Budapest, Hungary, June 2001. Springer. doi:10.1007/
3-540-45337-7.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java
virtual machine. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 36–44,
Vancouver, Canada, October 1998. doi:10.1145/286936.286945.

[McG10] Philip McGachey. Transparent Distribution for Java Applications. PhD
thesis, Purdue University, West Lafayette, IN, May 2010.

[MCH99] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and
development of Java Grande benchmarks. In ACM Conference on Java
Grande, pages 72–80, San Francisco, CA, June 1999. doi:10.1145/
304065.304101.

[MHM09a] Phil McGachey, Antony L. Hosking, and J. Eliot B. Moss. Classi-
fying Java class transformations for pervasive virtualized access. In
International Conference on Generative Programming and Compo-
nent Engineering, pages 75–84, Denver, CO, October 2009. doi:
10.1145/1621607.1621620.

[MHM09b] Phil McGachey, Antony L. Hosking, and J. Eliot B. Moss. Pervasive
load-time transformation for transparently distributed Java. Elec-
tronic Notes in Theoretical Computer Science, 253(1):47–64, Decem-
ber 2009. Workshop on Bytecode Semantics, Verification, Anal-
ysis and Transformation (BYTECODE), York, UK (March 2009).
doi:10.1016/j.entcs.2009.11.014.

[SAPE05] David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst. Auto-
matic test factoring for Java. In International Conference on Automated
Software Engineering, pages 114–123, Long Beach, CA, November 2005.
doi:10.1145/1101908.1101927.

[SPE05] Java server benchmark (SPECjbb2005) [online]. 2005. Standard Perfor-
mance Evaluation Corporation. Available from: http://www.spec.org/
jbb2005.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1145/383845.383858
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1093/bioinformatics/bti163
http://dx.doi.org/10.1007/3-540-45337-7
http://dx.doi.org/10.1007/3-540-45337-7
http://dx.doi.org/10.1145/286936.286945
http://dx.doi.org/10.1145/304065.304101
http://dx.doi.org/10.1145/304065.304101
http://dx.doi.org/10.1145/1621607.1621620
http://dx.doi.org/10.1145/1621607.1621620
http://dx.doi.org/10.1016/j.entcs.2009.11.014
http://dx.doi.org/10.1145/1101908.1101927
http://www.spec.org/jbb2005
http://www.spec.org/jbb2005
http://dx.doi.org/10.5381/jot.2011.10.1.a9

Class Transformations for Transparent Distribution of Java Applications · 35

[SPE08] Java virtual machine benchmarks (SPECjvm2008) [online]. 2008.
Standard Performance Evaluation Corporation. Available from:
http://www.spec.org/jvm2008/.

[TS02] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Automatic Java
application partitioning. In Boris Magnusson, editor, European Confer-
ence on Object-Oriented Programming, volume 2374 of Lecture Notes in
Computer Science, pages 178–204, Málaga, Spain, June 2002. Springer.
doi:10.1007/3-540-47993-7_8.

[TS06] Eli Tilevich and Yannis Smaragdakis. Transparent program transfor-
mations in the presence of opaque code. In International Conference
on Generative Programming and Component Engineering, pages 89–94,
Portland, OR, October 2006. doi:10.1145/1173706.1173720.

[TS09] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Enhancing Java
programs with distribution capabilities. ACM Transactions on Software
Engineering and Methodology, 19(1):1–40, 2009. doi:10.1145/1555392.
1555394.

[TSCI01] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A
bytecode translator for distributed execution of “legacy” Java software.
In Knudsen [Knu01], pages 236–255. doi:10.1007/3-540-45337-7_13.

[TSDNP02] Éric Tanter, Marc Ségura-Devillechaise, Jacques Noyé, and José M.
Piquer. Altering Java semantics via bytecode manipulation. In Inter-
national Conference on Generative Programming and Component Engi-
neering, volume 2487 of Lecture Notes in Computer Science, pages 283–
298, Pittsburgh, PA, October 2002. doi:10.1007/3-540-45821-2_18.

[TSH05] Eli Tilevich, Yannis Smaragdakis, and Marcus Handte. Appletizing:
Running legacy Java code remotely from a Web browser. In IEEE Inter-
national Conference on Software Maintanance, pages 91–100, Budapest,
Hungary, September 2005. doi:10.1109/ICSM.2005.25.

[You] The YourKit Java profiler [online]. Available from: http://www.
yourkit.com.

About the authors

Phil McGachey is Senior Member of technical staff at VMware. Contact him at
pmcgachey@vmware.com.

Antony L. Hosking is Associate Professor of Computer Science at Purdue Univer-
sity. Contact him at hosking@cs.purdue.edu, or visit http://www.cs.purdue.edu/
~hosking.

J. Eliot B. Moss is Professor of Computer Science at the University of Massachusetts.
Contact him at moss@cs.umass.edu, or visit http://www.cs.umass.edu/~moss.

Acknowledgments This work is supported by the National Science Foundation un-
der grants Nos. CNS-0720505/0720242, CNS-0551658/0509186, and CCF-0540866/05-
40862, and by Microsoft, Intel, and IBM. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect those of the sponsors.

Journal of Object Technology, vol. 10, 2011

http://www.spec.org/jvm2008/
http://dx.doi.org/10.1007/3-540-47993-7_8
http://dx.doi.org/10.1145/1173706.1173720
http://dx.doi.org/10.1145/1555392.1555394
http://dx.doi.org/10.1145/1555392.1555394
http://dx.doi.org/10.1007/3-540-45337-7_13
http://dx.doi.org/10.1007/3-540-45821-2_18
http://dx.doi.org/10.1109/ICSM.2005.25
http://www.yourkit.com
http://www.yourkit.com
mailto:pmcgachey@vmware.com
mailto:hosking@cs.purdue.edu
http://www.cs.purdue.edu/~hosking
http://www.cs.purdue.edu/~hosking
mailto:moss@cs.umass.edu
http://www.cs.umass.edu/~moss
http://dx.doi.org/10.5381/jot.2011.10.1.a9

	Introduction
	Transparent distribution in RuggedJ
	RuggedJ run-time system
	RuggedJ class transformations

	Class transformation
	Bytecode rewriting
	System and user classes
	Transformation
	The RuggedJ object model
	Generated classes
	Referring to transformed objects
	Inheritance
	Arrays
	Static data
	Hand-coded classes

	Method and field transformations
	System classes
	Barriers to transformation
	The RuggedJ JVMTI agent
	Templates for rewriting
	Subtyping
	Classification
	System class static singletons

	User classes
	Rewriting
	Native and reflective code
	Base classes
	Classification

	Evaluation
	Configuration
	Classification
	Static singletons
	Performance

	Related Work
	Conclusion
	Bibliography
	About the authors

