
Course Business

• Midterm is on March 1 (Wednesday next week)
• Allowed to bring one index card (double sided)

• Final Exam is Monday, May 1 (7 PM) 
• Location: Right here
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Cryptography
CS 555

Topic 20: Assumptions for Private-Key Cryptography + Computational 
Indistinguishability
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Recap

Last Class:
• One Way Functions, PRGs, PRFs

• Today:
• Assumptions for Private Key Cryptography
• Computational Indistinguishability
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Definition: A function f: 0,1 ∗ → 0,1 ∗ is one way if it is 
1. (Easy to compute) There is a polynomial time algorithm (in |x|) for 

computing f(x).
2. (Hard to Invert) Select x ← 0,1 𝑛𝑛 uniformly at random and give the 

attacker input 1n, f(x). The probability that a PPT attacker outputs x’ such 
that f 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥) is negligible.
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From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a 
strong pseudorandom permutation.
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From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs 
and strong PRPs all exist. 

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs. 
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Are OWFs Necessary for Private Key Crypto

• Previous results show that OWFs are sufficient.

• Can we build Private Key Crypto from weaker assumptions?

• Short Answer: No, OWFs are also necessary for most private-key 
crypto primitives
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PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Question: why can we assume that we have an PRG with expansion 
2n?
Answer: Last class we showed that a PRG with expansion factor 
ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Implies the existence of a PRG with expansion p(n) for 
any polynomial.

8



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.

Claim: G is also a OWF!
(Easy to Compute?) ✓
(Hard to Invert?) 

Intuition: If we can invert G(x) then we can distinguish G(x) from a 
random string. 

9



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible 
probability.
Reduction: Assume (for contradiction) that A can invert G(s) with non-
negligible probability p(n).  
Distinguisher D(y): Simulate A(y) 
Output 1 if and only if A(y) outputs x s.t. G(x)=y. 
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PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible 
probability.
Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random. 
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such 
that G(x)=y.

Why not?
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PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.
Intuition: If we can invert G(x) then we can distinguish G(x) from a random string. 
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that 
G(x)=y.

• Why not? Simple counting argument, 22n possible y’s and 2n x’s. 
• Probability there exists such an x is at most 2-n (for a random y)
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What other assumptions imply OWFs?

• PRGs  OWFs
• (Easy Extension) PRFs  PRGs  OWFs

• Does secure crypto scheme imply OWFs?
• CCA-secure? (Strongest)
• CPA-Secure?  (Weaker)
• EAV-secure?  (Weakest)

• As long as the plaintext is longer than the secret key
• Perfect Secrecy?  X (Guarantee is information theoretic)
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EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Recap: EAV-secure. 
• Attacker picks two plaintexts m0,m1 and is given c=EncK(mb) for 

random bit b.
• Attacker attempts to guess b.
• No ability to request additional encryptions (chosen-plaintext attacks) 
• In fact, no ability to observe any additional encryptions

14



EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝒓𝒓 = 𝑬𝑬𝑬𝑬𝑬𝑬𝒌𝒌 𝒎𝒎; 𝒓𝒓 ‖𝒎𝒎. 
Input: 4n bits
(For simplicity assume that Enck accepts n bits of randomness)

Claim: f is a OWF
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EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝒓𝒓 = 𝑬𝑬𝑬𝑬𝑬𝑬𝒌𝒌 𝒎𝒎; 𝒓𝒓 ‖𝒎𝒎. 
Claim: f is a OWF
Reduction: If attacker A can invert f, then attacker A’ can break EAV-
security as follows. Given c=Enck(mb;r) run A(c‖𝑚𝑚0). If A outputs 
(m’,k’,r’) such that f(m′, k′, r′) = c‖𝑚𝑚0 then output 0; otherwise 1;
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MACs OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against 
an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private 
key cryptography.

OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing? 
• OWFs are known to be necessary
• Not known (or believed) to be sufficient.
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Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from 

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are 
computationally indistinguishable if for all PPT distinguishers D, there is a negligible 
function negl(n), such that we have 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)
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Computational Indistinguishability

The advantage of a distinguisher D is 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

• Looks similar to definition of PRGs
• Xn is distribution G(Un) and 
• Yn is uniform distribution 𝑈𝑈ℓ(n) over strings of length ℓ(n).
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Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT 

distinguishers D, there is a negligible function negl(n), such that we 
have 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

Theorem 7.32: Let t(n) be a polynomial and let 𝑃𝑃𝑛𝑛 = 𝑋𝑋𝑛𝑛
𝑡𝑡(𝑛𝑛) and 𝑄𝑄𝑛𝑛 =

𝑌𝑌𝑛𝑛
𝑡𝑡(𝑛𝑛) then the ensembles 𝑃𝑃𝑛𝑛 𝑛𝑛∈ℕ and 𝑄𝑄𝑛𝑛 𝑛𝑛∈ℕ are computationally 

indistinguishable
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Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT 

distinguishers D, there is a negligible function negl(n), such that we 
have 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

Fact: Let 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ be  computationally indistinguishable
and let 𝑍𝑍𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ be  computationally indistinguishable
Then
𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑍𝑍𝑛𝑛 𝑛𝑛∈ℕ are  computationally indistinguishable
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Next Class

• Review for Midterm
• Review Homework Solutions
• Review Key Definitions and Results

• Perfect Secrets/EAV-Security/CPA-Security/CCA-Security + Constructions
• Primitives: PRGs, PRFs, MACs, Collision Resistant Hash Functions

• Multiple Choice Questions
• Allowed to bring index card
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