CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 3 due February 15 th at 11:59PM
Final Exam (Tentative): Thursday, May 3 @ 8AM (PHYS 203)

Recap: Divide and Conquer

Framework: Divide, Conquer and Merge

Example 1: Counting Inversions in $O(n \log n)$ time.

- Subroutine: Sort-And-Count (divide \& conquer)
- Count Left-Right inversions (merge) in time $O(n)$ when input is already sorted
Example 2: Closest Pair of Points in $O(n \log n)$ time.
- Split input in half by \times coordinate and find closest point on left and right half $\left(\delta=\min \left(\delta_{1}, \delta_{2}\right)\right.$)
- Merge: Exploits structural properties of problems

Remove elements at distance > δ from dividing line L
Sort remaining points by y coordinate to obtain $p_{1}, p_{2} \ldots$
Claim: $\left|p_{i}-p_{j}\right|<\delta \Rightarrow|i-j| \leq 12$
Example 3: Integer Multiplication in time $O\left(n^{1.585}\right)$

- Divide each n-bit number into two n/2-bit numbers
- Key Trick: Only need $a=3$ multiplications of $n / 2$-bit numbers!

Fast Integer Division Too (!)

Integer division. Given two n-bit (or less) integers s and t, compute quotient $q=\lfloor s / t\rfloor$ and remainder $r=s \bmod t($ such that $\mathrm{s}=\mathrm{qt}+\mathrm{r})$.

Fact. Complexity of integer division is (almost) same as integer multiplication.
To compute quotient q : $\quad x_{i+1}=2 x_{i}-t x_{i}^{2} \longleftarrow \quad$ using fast

- Approximate $x=1$ / t using Newton's method: multiplication
- After $\mathrm{i}=\log n$ iterations, either $q=\left\lfloor s x_{i}\right\rfloor$ or $q=\left\lceil s x_{i}\right\rceil$.
- If $\lfloor s x\rfloor t>s$ then $q=\lceil s x\rceil$ (1 multiplication)
- Otherwise $q=\lfloor s x\rfloor$
- $r=s-q \dagger$ (1 multiplication)
- Total: $O(\log n)$ multiplications and subtractions

Toom-3 Generalization

$$
\text { Split into } 3 \text { parts } \longrightarrow a=2^{2 n / 3} \cdot a_{2}+2^{\frac{n}{3}} \cdot a_{1}+a_{0}, ~ \begin{aligned}
a & 2^{\frac{n}{3}} \cdot b_{1}+b_{0}
\end{aligned}
$$

Requires: 5 multiplications of $n / 3$ bit numbers and $O(1)$ additions, shifts

$$
\begin{array}{r}
T(n)=5 \cdot T\left(\frac{n}{3}\right)+O(n) \Rightarrow T(n) \in O\left(n \int_{\log _{3} 5}\right) \\
\approx 1.465
\end{array}
$$

Toom-Cook Generalization (split into k parts): (2k-1) multiplications of n / k bit numbers.

$$
\begin{aligned}
& T(n)=(2 k-1) \cdot T\left(\frac{n}{k}\right)+O(n) \Rightarrow T(n) \in O\left(n^{\log _{k}(2 k-1)}\right) \\
& \lim _{k \rightarrow \infty}\left(\log _{k}(2 k-1)\right)=1
\end{aligned}
$$

$T(n) \in O\left(n^{1.0000001}\right)$ for large enough k
Caveat: Hidden constants increase with k

Schönhage-Strassen algorithm

$$
T(n) \in O(n \log n \log \log n)
$$

Only used for really big numbers: a $>2^{2^{15}}$
State of the Art Integer Multiplication (Theory): $O(n \log n g(n))$ for increasing small

$$
g(n) \ll \log \log n
$$

Integer Division:

- Input: x, y (positive n bit integers)
- Output: positive integers q (quotient) and remainder r s.t.

$$
x=q y+r \text { and } r<y
$$

- Algorithm to compute quotient q and remainder requires $O(\log n)$ multiplications using Newton's method (approximates roots of a realvalued polynomial).

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969] $\quad \Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.807}\right)$
Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]

- Two 20-by-20 matrices with 4,460 scalar multiplications. $O\left(n^{2.805}\right)$
- Two 48-by-48 matrices with 47,217 scalar multiplications. $O\left(n^{2.7801}\right)$
- A year later.
- December, 1979.

$$
O\left(n^{2.7799}\right)
$$

- January, 1980.

$$
O\left(n^{2.521813}\right)
$$

$$
O\left(n^{2.521801}\right)
$$

Fast Matrix Multiplication: Theory

Fig. 1. $\omega(t)$ is the best exponent announced by time τ.

Best known. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987]
Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.
Caveat. Theoretical improvements to Strassen are progressively less practical.

Fast Matrix Multiplication: Theory

Fig. 1. $\omega(t)$ is the best exponent announced by time τ.

Best known. O($n^{2.373}$) [Williams, 2014]

Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

Fast Matrix Multiplication: Theory

Fig. 1. $\omega(t)$ is the best exponent announced by time τ.

Best known. $O\left(n^{2.3729}\right)$ [Le Gall, 2014]

Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

Dynamic Programming

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to subproblems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

> "it's impossible to use dynamic in a pejorative sense"
> "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Computing Fibonacci numbers

On the board.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.

- Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.

Ex: $p(8)=5, p(7)=3, p(2)=0$.

Dynamic Programming: Binary Choice

Notation. $\operatorname{OPT}(j)=$ value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: OPT selects job j.
- collect profit v_{j}
- can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
optimal substructure
- Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, j-1$

$$
O P T(j)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+O P T(p(j)),\right. & O P T(j-1)\} \\
\text { otherwise }
\end{array}\right.
$$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, si, .., sn, f}\mp@subsup{f}{1}{\prime},\ldots,\mp@subsup{f}{n}{},\mp@subsup{v}{1}{\prime},\ldots,\mp@subsup{v}{n}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(vi}+\mathrm{ Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

$$
\begin{aligned}
& T(n)=T(n-1)+T(p(n))+O(1) \\
& T(1)=1
\end{aligned}
$$

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence ($F_{n}>1.6^{n}$).

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
for j = 1 to n
    M[j] = empty
M[0] = 0
                                    global array
M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(vi}+M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
        return M[j]
}
```


Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot): O(n \log n)$ via sorting by start time.
- M-Compute-Opt(j): each invocation takes O(1) time and either
- (i) returns an existing value $M[j]$
- (ii) fills in one new entry $\mathrm{M}[\mathrm{j}]$ and makes two recursive calls
- Progress measure $\Phi=\#$ nonempty entries of $M[]$.
- initially $\Phi=0$, throughout $\Phi \leq n$.
- (ii) increases Φ by $1 \Rightarrow$ at most $2 n$ recursive calls.
- Overall running time of M-Compute-Opt(n) is $O(n)$. .

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.

What if we want the solution itself?
A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (vj + M[p(j)] > M[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

- \# of recursive calls $\leq n \Rightarrow O(n)$.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, si,\ldots, sn, f
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(vj + M[p(j)], M[j-1])
}
```


6.3 Segmented Least Squares

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Find a line $y=a x+b$ that minimizes the sum of the squared error:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

Solution. Calculus \Rightarrow min error is achieved when

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes $f(x)$.
Q. What's a reasonable choice for $f(x)$ to balance accuracy and parsimony?
number of lines

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
- Tradeoff function: $E+c L$, for some constant $c>0$.

Dynamic Programming: Multiway Choice

Notation.

- $\operatorname{OPT}(j)=$ minimum cost for points $p_{1}, p_{i+1}, \ldots, p_{j}$.
- $e(i, j)=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$.

To compute OPT(j):

- Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
- Cost $=e(i, j)+c+$ OPT $(i-1)$.

$$
O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}
$$

Segmented Least Squares: Algorithm

```
INPUT: n, p
Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
        for i = 1 to j
            compute the least square error e }\mp@subsup{e}{ij}{}\mathrm{ for
            the segment pi,\ldots, p}\mp@subsup{p}{j}{
    for j = 1 to n
        M[j] = min 1\leqi\leqj}(\mp@subsup{e}{ij}{}+c+M[i-1]
    return M[n]
}
```

can be improved to $O\left(n^{2}\right)$ by pre-computing various statistics
Running time. $O\left(n^{3}\right)$.-

- Bottleneck = computing e (i, j) for $O\left(n^{2}\right)$ pairs, $O(n)$ per pair using previous formula.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."

- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

$\#$	value	weight
1	1	1
1	6	2
2	18	5
	W $=11$	
4		6
5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}. Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy no \dagger optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items $1, \ldots, i$.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. $\operatorname{OPT}(i, w)=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit $=w-w_{i}$
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, W, W}\mp@subsup{\textrm{W}}{1}{},\ldots,\mp@subsup{W}{N}{},\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{N}{
for w = 0 to w
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
        if ( }\mp@subsup{w}{i}{}>w
        M[i,w] = M[i-1,w]
        else
            M[i,w] = max {M[i-1,w], vi}+M[i-1,w-wi]
return M[n, W]
```

Knapsack Algorithm
\qquad

		0	1	2	3	4	5	6	7	8	9	10
11												

OPT: $\{4,3\}$
value $=22+18=40$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(\mathrm{n} W)$.

- Not polynomial in input size!
- Only need $\log _{2} W$ bits to encode each weight
- Problem can be encoded with $O\left(n \log _{2} W\right)$ bits
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

