2/7/2018

€S 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 3 due February 15 at 11:59PM

Fast Integer Division Too (1)

Integer division. Given two n-bit (or less) integerss and t,
compute quotient q=Ls/tland remainder r=smod t (such that s=qt-+r).

Fact. Complexity of integer division is (almost) same as integer
multiplication.
To compute quotient q: X = 2% — txje—_ using fast
. Approximate x = 1/t using Newton's method: multiplication
. After izlogn iterations, either g=Lsx] or q=Isx].
- IfLsxJ t > s then g =[s x] (1 multiplication)
- Otherwise q=|sx]
- r=s-qt (1 multiplication)

. Total: O(log n) multiplications and subtractions

Schénhage-Strassen algorithm

T(n) € O(n logn loglogn)
Only used for really big numbers: a > 22

State of the Art Integer Multiplication (Theory): 0(n logn g(n)) for
increasing small

g(n) < loglogn

Integer Division:
Input: xy (positive n bit integers)
Output: positive integers q (quotient) and remainder r s.t.
x=qy+r andr<y
Algorithm to compute quotient q and remainder r requires O(log n)
multiplications using Newton's method (approximates roots of a real-
valued polynomial).

Recap: Divide and Conquer

Framework: Divide, Conquer and Merge

Example 1: Counting Inversions in O(n log n) time.
Subroutine: Sort-And-Count (divide & conquer)
Count Left-Right inversions (merge) in time O(n) when input is
already sorted
Example 2: Closest Pair of Points in O(n log n) time.
Split input in half by x coordinate and find closest point on
left and right half (8 = min(3,;, 8,))
Merge: Exploits structural properties of problems
Remove elements at distance > 8 from dividing line L
Sort remaining points by y coordinate to obtain py,p; ...
Claim: |p; —pj| <6 =li—jl <12
Example 3: Integer Multiplication in time O(n!8%)
Divide each n-bit number into two n/2-bit numbers
Key Trick: Only need a=3 multiplications of n/2-bit numbers!

Toom-3 Generalization

n
——a=2""Pa, +23 a; +a
Split into 3 parts b =223 .p, +23 by +by

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts
T(n)=5-T (%) +0(n) > T(n) € o(nlﬂgi 5)

~ 1.465

Toom-Cook Generalization (split into k parts): (2k-1) multiplications
of n/k bit numbers.

T() = (@k—1)-T (%) +0(n) = T(n) € 0(n8kCk-D)

Jim (logx (2k ~ 1)) =1

T(n) € 0(n10000001) for large enough k

Caveat: Hidden constants increase with k

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen1969] oM7) =0n>*")

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971] o —0m)

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible. om™2)=0n>")

Begun, the decimal wars have. [Pan, Bini et al, Schénhage, ...]

- Two 20-by-20 matrices with 4,460 scalar multiplications. on)
« Two 48-by-48 matrices with 47,217 scalar multiplications. on>")
. Avyear later. om=™)
. December, 1979. O(n 28y
« January, 1980. o 2y

Copyright 2000, Kevin Wayne

Fast Matrix Multiplication: Theory

Best known. O(n>3%) [Coppersmith-Winograd, 1987]
Conjecture. O(n*%) for any & >0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

2/7/2018

Fast Matrix Multiplication: Theory

20—t N —
ET T RS

P

Best known. O(n>37) [Le Gall, 2014]
Conjecture. O(n**) for any &> 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems.

Fast Matrix Multiplication: Theory

Frle e

Best known. O(n?37) [Williams, 2014]
Conjecture. O(n*%) for any & > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Copyright 2000, Kevin Wayne

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
« Dynamic programming = planning over time.

- Secretary of Defense was hostile to mathematical research.

. Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

« Bioinformatics.

Control theory.

. Information theory.

Operations research.

. Computer science: theory, graphics, AL, compilers, systems,

Some famous dynamic programming algorithms.

Unix diff for comparing two files.

. Viterbi for hidden Markov models.

Smith-Waterman for genetic sequence alignment.

« Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free grammars.

2/7/2018

6.1 Weighted Interval Scheduling

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 \ i | | b

weight = 1 a

Computing Fibonacci numbers

On the board.

Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s;, finishes at f;, and has weight or value v;.
« Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

1

2
3
4
5
6
7
8
o 1 2 3 4 5 6 7 8 9 10 11

Time

Copyright 2000, Kevin Wayne

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1,2, .., j.

. Case 1: OPT selects job j.
- collect profit v
- can't use incompatible jobs { p(j) +1,p(j)+2, ... j-1}
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)
optimal substructure
. Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of
remaining compatible jobs 1,2, ..., j-1

opti ° if j=0
(= max { v; + OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force
Brute force algorithm.

Input: n, s;,.,s, .. vi,.,v,
Sort jobs by finish times so that f, < f, < ... < f_
Compute p(1), p(2), .., p(n)

Compute-0pt(j) {
it (= 0)

return max(v; + Compute-Opt(p(i)). Compute-0pt(i-1))

T(n) = T(n-1)+T(p(n)}+O(1)
T(1)=1

2/7/2018

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence (F, > 1.6").

2 T(n) = T(n-1)+T(n-2)+1
i T(1)=1

p(1)=0.p() = j-2

Key Insight: Do we really need
to repeat this computation?

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
+ Computing p(-): O(n log n) via sorting by start time.

. M-Compute-Opt(j): each invocation takes O(1) time and either
- (i) returns an existing value M[j]
- (ii) fills in one new entry M[j] and makes two recursive calls
« Progress measure @ = # nonempty entries of M[].
- initially ® = 0, throughout ® <n.
- (i) increases ® by 1 = at most 2n recursive calls.

« Overall running time of M-Compute-Opt(n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

Input: n, s;,.,s, Fi,.,F vi,.,v,

Sort jobs by finish times so that f, < f, < ... < f_
Compute p(1), p(2), ... p(n)

for j=1ton
VL1 = empty
v[o] = o
™ global array
M-Compute-Opt(J) {
it (M[j] is empty)
M[3] = max(v; + M-Compute-Opt(p(3)). M-Compute-Opt(j-1))
return M[§]

Copyright 2000, Kevin Wayne

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {

it (j = 0)
output nothing

else if (v; + M[PGD]1 > MLi-11)
print j
Find-Solution(p(j))

else
Find-Solution(j-1)

. # of recursive calls <n = O(n).

2/7/2018

Segmented Least Squares

Weighted Interval Scheduling: Bottom-Up
Bottom-up dynamic programming. Unwind recursion.

Input: n, sp,..S,, Fi...fy vi,Lv,
Sort jobs by finish times so that f;, s f, < ... < f,.

Compute p(1), p(2), .., p(n)

Iterative-Compute-Opt {
M[O] = O

for

1ton
MO] = max(v; + M[pG)1. MO-11)

Segmented Least Squares

Least squares.
. Foundational problem in statistic and numerical analysis.

. Given n points in the plane: (x1,yy), (X2,y2), (Xn. Yo
. Find aliney = ax + b that minimizes the sum of the squared error:

"
SSE = X (yi-ax ~b)’
it

Solution. Calculus = min error is achieved when

b:ZYi —aXiX

: n

_nExy —Ex) Gy
nEX - (%)

Segmented least squares.
Points lie roughly on a sequence of several line segments.
. Given n points in the plane (x, y1), (X2, ¥2) , (Xp. Yp) With
Xy ¢ Xz < ... < Xp, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
+ Tradeoff function: E+c L, for some constant ¢ > 0.

6.3 Segmented Least Squares

Copyright 2000, Kevin Wayne

Dynamic Programming: Multiway Choice

Segmented Least Squares

Segmented least squares.
- Points lie roughly on a sequence of several line segments.

- Given n points in the plane (xy, y1), (X2, ¥2) (X, yn) with
« X1<¢Xp<...< Xy, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and
1
goodness of fit

Notation.
- OPT(j) = minimum cost for points py, pi1, pj-
- e(i,j) =minimum sum of squares for points p;, piy , ..., P

To compute OPT(j):
. Last segment uses points p;, pig , . . -
- Cost = e(i, j) + c + OPT(i-1).

, p; for some i.

parsimony?
number of lines $: 0 if j=0
e OPT(D=1 min { (i, j)+c+OPT(i-1)} otherwise
v op 15i<]
%
@
b
g
X
B x

2/7/2018

Segmented Least Squares: Algorithm

INPUTZ N, Py,.uPy, ©

Segmented-Least-Squares() {
M[o] =
for j 1ton

fori=1toj
compute the least square error e;; for
the segment p;,.., P;

for j =1 ton
MOT = min, ¢ cj (55 + ¢ + MLi-11)

return M[n]

can be improved to O(n?) by pre-computing various statistics
Running time. O(n3).-——
. Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair
using previous formula.

Knapsack Problem

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i weighs w; > O kilograms and has value v;> 0.
« Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: 3,4 has value 40.
1 1

1
2 6 2
3 18 5
w=11
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v, / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1} using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1} using this new weight limit

0 if i=0
OPT(i,w)=1OPT(i—1w) if w>w
max{OPT(i—1,w), V;+ OPT(i—1,w-w,)} otherwise

6.4 Knapsack Problem

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1: OPT does nhot select item i.
- OPT selects bestof {1, 2, .., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have
to reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: n, W, Wy,..,Wy Vi,.,Vy

for w=10 to W
M0, w] = 0

MLi-1, w]

return M[n, W]

max {M[i-1, wl, v; + M[i-1, w-w; 1}

Copyright 2000, Kevin Wayne

Knapsack Algorithm

o
(ol 1

net 2y [l 1
{1,2,3} 0 1
{1,2,3,4}) 1
{1,2,3,4,5} 1

oo O O =
NN NN~

(o]
(o]

OPT: {4,3})
value = 22 + 18 = 40

1
7
7
7
7

W1

1 1

77
[EORE)
18 22
18 22

D HEEED B EEEE
Bl o o o o o 0 o 0o 0 o0

1
7

24 25 25 25 25

24 28 29 29 [0l
28 29 34 34 [40)

G AW N e

LN IR)
7 7

1
6
18
22
28

()

1
7

1

2
5
6
7

Running time. O(n W).
« Not polynomial in input size!

+ "Pseudo-polynomial."

optimum. [Section 11.8]

- Only need log, W bits to encode each weight
- Problem can be encoded with 0(nlog, W) bits

Knapsack Problem: Running Time

. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of

Copyright 2000, Kevin Wayne

2/7/2018

