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Recap

•Polynomial Time Reductions (X  P Y )
• Key Problems

• Independent Set, Vertex Cover, Set Cover, 3-SAT etc…
•Example Reductions

• Independent Set  P Vertex Cover (Simple Equivalence)
• Vertex Cover  P Independent Set  (Simple Equivalence)
• Independent Set  P Set Cover  (Special Case to General)
• 3-SAT  P Independent Set  (Gadgets)

•Decision Problems vs Search Problems
• Self-Reducibility
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Chapter 8

NP and Computational
Intractability

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



8.3  Definition of NP
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Decision Problems

Decision problem.
 X is a set of strings.
 Instance:  string s.
 Algorithm A solves problem X:  A(s) = yes iff s  X.

Polynomial time.  Algorithm A runs in poly-time if for every string 
s, A(s) terminates in at most p(|s|) "steps", where p() is some 
polynomial. 

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }
Algorithm.  [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s
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Definition of P

P.  Decision problems for which there is a poly-time algorithm.

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y? Grade school 
division 51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT-
DISTANCE

Is the edit distance between 
x and y less than 5?

Dynamic 
programming

niether 
neither

acgggt 
ttttta

LSOLVE Is there a vector x that 
satisfies Ax = b?

Gauss-Edmonds 
elimination
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NP

Certification algorithm intuition.
 Certifier views things from "managerial" viewpoint.
 Certifier doesn't determine whether s  X  on its own;

rather, it checks a proposed proof t that s  X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every 
string s,  s  X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time
certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and
|t|  p(|s|) for some polynomial p().

"certificate" or "witness"
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Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate 
exists iff s is composite.  Moreover |t|  |s|.

Certifier.  

Instance.  s = 437,669.
Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541  809

boolean C(s, t) {
if (t  1 or t  s)

return false
else if (s is a multiple of t)

return true
else 

return false
}
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Certifiers and Certificates:  3-Satisfiability

SAT. Given a CNF formula , is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in  has at least one true literal.

Ex.

Conclusion.  SAT is in NP.

x1  x2  x3   x1  x2  x3   x1  x2  x4   x1   x3   x4 

x1 1, x2 1, x3  0, x4 1

instance s

certificate t
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Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 
once, and that there is an edge between each pair of adjacent nodes in 
the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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P, NP, EXP

P.  Decision problems for which there is a poly-time algorithm.
EXP.  Decision problems for which there is an exponential-time algorithm.
NP.  Decision problems for which there is a poly-time certifier.

Claim.  P   NP.
Pf.  Consider any problem X in P.
 By definition, there exists a poly-time algorithm A(s) that 

solves X.
 Certificate: t = , certifier C(s, t) = A(s). ▪

Claim.  NP   EXP.
Pf.  Consider any problem X in NP.
 By definition, there exists a poly-time certifier C(s, t) for X.
 To solve input s, run C(s, t) on all strings t with |t|  p(|s|).
 Return yes, if C(s, t) returns yes for any of these. ▪
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The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 Is the decision problem as easy as the certification problem?
 Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P  NP If  P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)
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The Simpson's:  P = NP?

Copyright © 1990, Matt Groening
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Futurama:  P = NP?

Copyright © 2000, Twentieth Century Fox
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Looking for a Job?

Some writers for the Simpsons and Futurama.
 J. Steward Burns.  M.S. in mathematics, Berkeley, 1993.
 David X. Cohen.  M.S. in computer science, Berkeley, 1992.
 Al Jean.  B.S. in mathematics, Harvard, 1981.
 Ken Keeler.  Ph.D. in applied mathematics, Harvard, 1990.
 Jeff Westbrook.  Ph.D. in computer science, Princeton, 1989.



8.4  NP-Completeness
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Polynomial Transformation

Def.  Problem X polynomial reduces (Cook) to problem Y if arbitrary 
instances of problem X can be solved using:
 Polynomial number of standard computational steps, plus
 Polynomial number of calls to oracle that solves problem Y.

Def.  Problem X polynomial transforms (Karp) to problem Y if given any 
input x to X, we can construct an input y such that x is a yes instance 
of X iff y is a yes instance of Y. 

we require |y| to be of size polynomial in |x|

we abuse notation  p and blur distinction

Note.  Polynomial transformation is polynomial reduction 
with just one call to oracle for Y, exactly at the end of the 
algorithm for X.  Almost all previous reductions were of this 
form. 

Open question.  Are these two concepts the same with 
respect to NP?
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NP-Complete

NP-complete.  A problem Y in NP with the property that for every 
problem X in NP, X  p Y.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable 
in poly-time iff P = NP.
Pf.   If P = NP then Y can be solved in poly-time since Y is in NP.
Pf.   Suppose Y can be solved in poly-time.
 Let X be any problem in NP.  Since X  p Y, we can solve X in

poly-time. This implies NP   P.
 We already know P   NP. Thus P = NP. ▪

Fundamental question.  Do there exist "natural" NP-complete 
problems?
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



 


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1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT
gates, is there a way to set the circuit inputs so that the output is 1?
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sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf.  (sketch)
 Any algorithm that takes a fixed number of bits n as input and 

produces a yes/no answer can be represented by such a circuit.
Moreover, if algorithm takes poly-time, then circuit is of poly-size.

 Consider some problem X in NP.  It has a poly-time certifier 
C(s, t).
To determine whether s is in X, need to know if there exists 
a certificate t of length p(|s|) such that C(s, t) = yes.

 View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, 
certificate t) and convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s
– remaining p(|s|) bits represent bits of t

 Circuit K is satisfiable iff C(s, t) = yes.
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
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n inputs (nodes in independent set)hard-coded inputs (graph description)
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Example

Ex.  Construction below creates a circuit K whose inputs can be set so 
that K outputs true iff graph G has an independent set of size 2.

u
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n
2
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G = (V, E), n = 3
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Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
 Step 1.  Show that Y is in NP.
 Step 2.  Choose an NP-complete problem X.
 Step 3.  Prove that X  p Y.

Justification.  If X is an NP-complete problem, and Y is a problem 
in NP with the property that X  P Y then Y is NP-complete.

Pf.  Let W be any problem in NP.  Then W   P  X    P Y.
 By transitivity, W  P Y. 
 Hence Y is NP-complete.  ▪ by assumptionby definition of

NP-complete
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3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.
Pf.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.
 Let K be any circuit.
 Create a 3-SAT variable xi for each circuit element i.
 Make circuit compute correct values at each node:

– x2 =  x3  add 2 clauses:
– x1 = x4  x5    add 3 clauses:
– x0 = x1  x2    add 3 clauses:

 Hard-coded input values and output value.
– x5 = 0   add 1 clause:
– x0 = 1   add 1 clause:

 Final step:  turn clauses of length < 3 into
clauses of length exactly 3.  ▪







0 ? ?

output

x0

x2x1

  x2  x3  , x2  x3

x1  x4 , x1  x5  ,  x1  x4  x5

x0  x1 , x0  x2 , x0  x1  x2

x3x4x5

  x5

  x0
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Observation.  All problems below are NP-complete and polynomial 
reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic 
examples.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-
complete.

Notable exceptions.  Factoring, graph isomorphism, Nash 
equilibrium.
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 
 Prime intellectual export of CS to other disciplines.
 6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"
 Broad applicability and classification power.
 "Captures vast domains of computational, scientific, mathematical 

endeavors, and seems to roughly delimit what mathematicians and 
scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.
 1926:  Ising introduces simple model for phase transitions.
 1944:  Onsager solves 2D case in tour de force.
 19xx:  Feynman and other top minds seek 3D solution.
 2000:  Istrail proves 3D problem NP-complete.
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.
Biology:  protein folding.
Chemical engineering:  heat exchanger network synthesis.
Civil engineering:  equilibrium of urban traffic flow.
Economics:  computation of arbitrage in financial markets with friction.
Electrical engineering:  VLSI layout. 
Environmental engineering:  optimal placement of contaminant sensors.
Financial engineering:  find minimum risk portfolio of given return.
Game theory:  find Nash equilibrium that maximizes social welfare.
Genomics:  phylogeny reconstruction.
Mechanical engineering:  structure of turbulence in sheared flows.
Medicine:  reconstructing 3-D shape from biplane angiocardiogram.
Operations research:  optimal resource allocation. 
Physics:  partition function of 3-D Ising model in statistical mechanics.
Politics:  Shapley-Shubik voting power.
Pop culture:  Minesweeper consistency.
Statistics:  optimal experimental design.



8.9  co-NP and the Asymmetry of NP
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Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1.  SAT vs. TAUTOLOGY.
 Can prove a CNF formula is satisfiable by giving such an assignment.
 How could we prove that a formula is not satisfiable? 

Ex 2.  HAM-CYCLE vs. NO-HAM-CYCLE.
 Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
 How could we prove that a graph is not Hamiltonian?

Remark.  SAT is NP-complete and SAT  P TAUTOLOGY, but how do we 
classify TAUTOLOGY?

not even known to be in NP
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NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.
Ex.  SAT, HAM-CYCLE, COMPOSITES.

Def.  Given a decision problem X, its complement X is the same problem 
with the yes and no answers reverse.

Ex.  X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, … }
Ex.  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP.  Complements of decision problems in NP.
Ex.  TAUTOLOGY, NO-HAM-CYCLE, PRIMES.
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Fundamental question.  Does NP = co-NP?
 Do yes instances have succinct certificates iff no instances do?
 Consensus opinion:  no.

Theorem.  If NP  co-NP, then P  NP.
Pf idea.
 P is closed under complementation.
 If P = NP, then NP is closed under complementation.
 In other words, NP = co-NP.
 This is the contrapositive of the theorem.

NP = co-NP ?
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Good Characterizations

Good characterization.  [Edmonds 1965]   NP   co-NP.
 If problem X is in both NP and co-NP, then:

– for yes instance, there is a succinct certificate
– for no instance, there is a succinct disqualifier

 Provides conceptual leverage for reasoning about a problem.

Ex.  Given a bipartite graph, is there a perfect matching.
 If yes, can exhibit a perfect matching.
 If no, can exhibit a set of nodes S such that |N(S)| < |S|.
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Good Characterizations

Observation.  P  NP   co-NP.
 Proof of max-flow min-cut theorem led to stronger result 

that max-flow and min-cut are in P.
 Sometimes finding a good characterization seems easier than 

finding an efficient algorithm.

Fundamental open question.  Does P = NP   co-NP?
 Mixed opinions.
 Many examples where problem found to have a non-trivial 

good characterization, but only years later discovered to be 
in P.

– linear programming [Khachiyan, 1979]
– primality testing [Agrawal-Kayal-Saxena, 2002]

Fact.  Factoring is in NP   co-NP, but not known to be in P.

if poly-time algorithm for factoring,
can break RSA cryptosystem
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PRIMES is in NP  co-NP

Theorem.  PRIMES is in NP  co-NP.
Pf.  We already know that PRIMES is in co-NP, so it suffices to prove 
that PRIMES is in NP.

Pratt's Theorem.  An odd integer s is prime iff there exists an integer 
1 < t < s  s.t. t s1  1 (mod s)

t (s1) / p  1 (mod s)
for all prime divisors p of s-1

Certifier.
- Check s-1 = 2  2  3  36,473.
- Check 17s-1 = 1 (mod s).
- Check 17(s-1)/2  437,676 (mod s).
- Check 17(s-1)/3  329,415 (mod s).
- Check 17(s-1)/36,473  305,452 (mod s).

Input.  s = 437,677
Certificate.  t = 17, 22  3  36,473

prime factorization of s-1
also need a recursive certificate
to assert that 3 and 36,473 are prime

use repeated squaring
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FACTOR is in NP  co-NP

FACTORIZE.  Given an integer x, find its prime factorization.
FACTOR.  Given two integers x and y, does x have a nontrivial 
factor less than y?

Theorem.  FACTOR  P FACTORIZE.

Theorem.  FACTOR is in NP  co-NP.
Pf.
 Certificate:  a factor p of x that is less than y.
 Disqualifier:  the prime factorization of x (where each prime 

factor is less than y), along with a certificate that each 
factor is prime.
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Primality Testing and Factoring

We established:  PRIMES  P COMPOSITES  P FACTOR.

Natural question:  Does FACTOR  P PRIMES ?
Consensus opinion.  No.

State-of-the-art.
 PRIMES is in P.
 FACTOR not believed to be in P.

RSA cryptosystem.
 Based on dichotomy between complexity of two problems.
 To use RSA, must generate large primes efficiently.
 To break RSA, suffixes to find efficient factoring algorithm.

proved in 2001


