
2

1 Submodular functions

Submodularity is a property of set functions, i.e., functions f : 2V ! R that assign each
subset S ✓ V a value f(S). Hereby V is a finite set, commonly called the ground set. In our
example, V may refer to the locations where sensors can be placed, and f(S) the utility
(e.g., detection performance) obtained when placing sensors at locations S. In the following,
we will also assume that f(;) = 0, i.e., the empty set carries no value. Submodularity has
two equivalent definitions, which we will now describe. The first definition relies on a notion
of discrete derivative, often also called the marginal gain.

Definition 1.1 (Discrete derivative) For a set function f : 2V ! R, S ✓ V , and e 2 V ,
let �f (e | S) := f(S [{e})� f(S) be the discrete derivative of f at S with respect to e.

Where the function f is clear from the context, we drop the subscript and simply write
�(e | S).

Definition 1.2 (Submodularity) A function f : 2V ! R is submodular if for every
A ✓ B ✓ V and e 2 V \B it holds that

�(e | A) � �(e | B) .

Equivalently, a function f : 2V ! R is submodular if for every A,B ✓ V ,

f(A \B) + f(A [B) f(A) + f(B).

For submodular maximization, the intuition provided by the first definition is often help-
ful: Suppose we interpret S ⇢ V as a set of actions which provide some benefit f(S). Then
the first definition says that for a submodular function f , after performing a set A of ac-
tions, the marginal benefit of any action e does not increase as we perform the actions in
B \A. Therefore, submodular set functions exhibit a natural diminishing returns property.
Figure 1 illustrates this e↵ect in our sensor placement application. In this example, the
marginal benefit provided by placing a sensor at a fixed location s0 given that we deployed
sensors at locations s

1

, s
2

does not increase as we deploy more sensors (s
3

and s
4

).

An important subclass of submodular functions are those which are monotone, where
enlarging the argument set cannot cause the function to decrease.

Definition 1.3 (Monotonicity) A function f : 2V ! R is monotone if for every A ✓ B ✓

V , f(A) f(B).

Note that a function f is monotone i↵ all its discrete derivatives are nonnegative, i.e., i↵
for every A ✓ V and e 2 V it holds that �(e | A) � 0. Further note that the important
subclass of monotone submodular functions can be characterized by requiring that for all
A ✓ B ✓ V and e 2 V it holds that �(e | A) � �(e | B). This is slightly di↵erent from
Definition 1.2 in that we do not require e /2 B.

Typically, and in most of this chapter, we will assume that f is given in terms of a value

oracle, a black box that computes4 f(S) on any input set S.

spongebob
Taken from http://www.cs.cmu.edu/~dgolovin/papers/submodular_survey12.pdf
Prepared by Andreas Krause & Daniel Golovin

6

functions f
min

(S) = min(f
1

(S), f
2

(S)) and f
max

(S) = max(f
1

(S), f
2

(S)) are not necessarily
submodular.
Interestingly, there are many natural connections between submodular functions and

both convex and concave functions. For example, for a function g : N ! R, the set function
f(S) = g(|S|) is submodular if and only if g is concave. In contrast, similar to convex
functions, which can be minimized e�ciently, (unconstrained) submodular minimization
is possible in (strongly) polynomial time (c.f., Schrijver 2003). See (Lovasz, 1983) for a
discussion about the relationship between submodular, concave and convex functions.
Submodular set functions can also be extended to continuous functions (defined over

the unit cube [0, 1]|V |) in several natural ways. See Section 3.2 for more details on such
extensions.

2 Greedy maximization of submodular functions

As argued in Section 1.1, submodular functions arise in many applications, and therefore it
is natural to study submodular optimization. There is a large amount of work on minimizing
submodular functions (c.f., Fujishige 2005; Schrijver 2003). In this chapter, we will focus
on the problem of maximizing submodular functions. That is, we are interested in solving
problems of the form

max
S✓V

f(S) subject to some constraints on S. (1)

The simplest example are cardinality constraints, where we require that |S| k for some k.
In our example, we may wish to identify the k best locations to place sensors. Unfortunately,
even this simple problem is NP-hard, for many classes of submodular functions, such as
weighted coverage (Feige, 1998) or mutual information (Krause and Guestrin, 2005). While
there are specialized branch and bound algorithms for maximizing submodular functions
(Nemhauser and Wolsey, 1981; Goldengorin et al., 1999; Kawahara et al., 2009), ultimately
their scalability is limited by the hardness of Problem 1. Therefore, in the remaining of this
chapter we focus on e�cient algorithms with theoretical approximation guarantees.

The greedy algorithm. In the following, we will consider the problem of approximately
maximizing monotone submodular functions. A simple approach towards solving Problem 1
in the case of cardinality constraints is the greedy algorithm, which starts with the empty
set S

0

, and in iteration i, adds the element maximizing the discrete derivative �(e | Si�1

)
(ties broken arbitrarily):

Si = Si�1

[{argmax
e

�(e | Si�1

)}. (2)

A celebrated result by Nemhauser et al. (1978) proves that the greedy algorithm provides
a good approximation to the optimal solution of the NP-hard optimization problem.

Theorem 1.5 (Nemhauser et al. 1978) Fix a nonnegative monotone submodular function

f : 2V ! R
+

and let {Si}i�0

be the greedily selected sets defined in Eq. (2). Then for all

spongebob

Submodular Function Maximization 7

positive integers k and `,

f(S`) �
⇣

1� e�`/k
⌘

max
S:|S|k

f(S).

In particular, for ` = k, f(Sk) � (1� 1/e)max|S|k f(S).

Proof Nemhauser et al. only discussed the case ` = k, however their very elegant argument
easily yields the slight generalization above. It goes as follows. Fix ` and k. Let S⇤

2

argmax {f(S) : |S| k} be an optimal set of size k (due to monotonicity of f we can assume
w.l.o.g. it is of size exactly k), and order the elements of S⇤ arbitrarily as {v⇤

1

, . . . , v⇤k}. Then
we have the following sequence of inequalities for all i < `, which we explain below.

f(S⇤) f(S⇤
[Si) (3)

= f(Si) +
k
X

j=1

�
�

v⇤j | Si [
�

v⇤
1

, . . . , v⇤j�1

 �

(4)

 f(Si) +
X

v2S⇤

�(v | Si) (5)

 f(Si) +
X

v2S⇤

(f(Si+1

)� f(Si)) (6)

 f(Si) + k (f(Si+1

)� f(Si)) (7)

Eq. (3) follows from monotonicity of f , Eq. (4) is a straightforward telescoping sum, Eq. (5)
follows from the submodularity of f , Eq. (6) holds because Si+1

is built greedily from Si in
order to maximize the marginal benefit �(v | Si), and Eq. (7) merely reflects the fact that
|S⇤

| k. Hence

f(S⇤)� f(Si) k (f(Si+1

)� f(Si)) . (8)

Now define �i := f(S⇤) � f(Si), which allows us to rewrite Eq. (8) as �i k (�i � �i+1

),
which can be rearranged to yield

�i+1

✓

1�
1

k

◆

�i (9)

Hence �`

�

1� 1

k

�`
�
0

. Next note that �
0

= f(S⇤) � f(;) f(S⇤) since f is nonnegative
by assumption, and by the well-known inequality 1� x e�x for all x 2 R we have

�`

✓

1�
1

k

◆`

�
0

 e�`/kf(S⇤). (10)

Substituting �` = f(S⇤)� f(S`) and rearranging then yields the claimed bound of f(S`) �
�

1� e�`/k
�

f(S⇤).

The slight generalization allowing ` 6= k is quite useful. For example, if we let the greedy
algorithm pick 5k sensors, the approximation ratio (compared to the optimal set of size k)
improves from ⇡ .63 to ⇡ .99.
For several classes of submodular functions, this result is the best that can be achieved

with any e�cient algorithm. In fact, Nemhauser and Wolsey (1978) proved that any al-
gorithm that is allowed to only evaluate f at a polynomial number of sets will not be

spongebob

	Submodular Function Maximization
	Submodular functions
	Examples
	Properties of submodular functions

	Greedy maximization of submodular functions
	Beyond the greedy algorithm: Handling more complex constraints
	Knapsack constraints
	Submodular maximization using the multilinear extension
	Submodular optimization over graphs
	Robust submodular optimization
	Nonmonotone submodular functions

	Online maximization of submodular functions
	The no–regret setting
	Submodular maximization in the no–regret setting
	Applications of online maximization of submodular functions
	Online maximization with irrevocable choices: the submodular secretaries problem

	Adaptive submodularity
	The adaptive submodularity framework
	Example Applications
	Worst–Case Adaptive Optimization

	Conclusions

