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Abstract. In this paper, we investigate the problem of minimizing p-th order
controversy within a network, assuming a framework of opinion evolution based
on the well-established Friedkin-Johnsen (FJ) model. We define p-th order con-
troversy as fp(L) = sT (I+L)−ps, where s represents the vector of users’ fixed
albeit undisclosed initial opinions, I is the identity matrix, and L is the graph
Laplacian associated with the underlying network. Notably, for the case of p = 1,
this function transforms into the widely recognized polarization-disagreement in-
dex, and for p = 2, it aligns with the standard polarization [1,2]. We focus on
minimizing fp(L) within a novel and realistic framework, where users’ initial
opinions s are undisclosed. Due to the undisclosed nature of users’ initial opin-
ions, achieving the exact minimization of fp(L) proves unattainable within our
innovative and practical framework. To address this challenge, we introduce a
novel semidefinite programming formulation designed to enable the minimiza-
tion of the upper bound of fp(L) without the need for knowledge of initial opin-
ions. Furthermore, our empirical findings demonstrate its effectiveness, surpass-
ing current state-of-the-art methodologies.

Keywords: Controversy, Polarization, Polarization-Disagreement, Friedkin-Johnsen
Dynamics

1 Introduction

Polarization within social networks denotes the emergence and intensification of di-
vergent opinions or perspectives within a community, signifying the creation of dis-
tinct clusters comprised of like-minded individuals. Paradoxically, the intended goal
of social media to foster closeness among individuals has resulted in the divergence
of opinions [3]. This phenomenon results in diminished interaction and understand-
ing between various ideological groups as the individuals are exposed to others who
reinforce their existing beliefs [4]. Disagreement, an integral element of polarization,
represents the discord and divergence in opinions among members of the network. In
social networks, the amplification of polarization often stems from echo chambers and
filter bubbles, where individuals are exposed predominantly to information that aligns
with their existing beliefs [5]. Understanding the dynamics of polarization and disagree-
ment is essential for devising strategies that promote diverse perspectives and mitigate
the negative impacts of filter bubbles in online social spaces.
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Notation: Let G = (V,E,W ) be an undirected network with the vertex set V =
{1, . . . , n} and the edge set, E ⊆

(
n
2

)
. The natural and real numbers set is denoted

by N and R, respectively. The cardinality of the set V and E is denoted by n and
m, respectively. Let si denote the ith entry of vector s. Every real symmetric matrix
M ∈ Rn×n can be decomposed as M = UΛUT where U ∈ Rn×n is orthonormal
(i.e., UTU = UUT = I) and Λ is a diagonal matrix, whose diagonal elements are the
corresponding eigenvalues Λii = λi, λ1 ≤ λ2 ≤ ... ≤ λn. A matrix M is normal if
it commutes with its conjugate transpose, i.e., MTM = MMT . A symmetric matrix
is positive definite (PD) if all its eigenvalues are positive (i.e., λ > 0). The set PD
and PSD matrices are denoted by Sn

++ and Sn
+, respectively. vec(A) represents the

vectorized form of the matrix A. The algebraic connectivity of a given Laplacian matrix
is provided by its second smallest eigenvalue, λ2. We use Tr to denote the trace of the
matrix. For a vector s, ∥s∥1 and ∥s∥2 denote the ℓ1 and ℓ2 norm respectively. Unless
required, we omit the dimensions when they are clear from the context.

1.1 Polarization and Controversy

In this paper, we assume that the underlying opinions adhere to one of the prominent
averaging models, Friedkin-Johnsen’s (FJ) opinion formulation model [6], which in-
tegrates individuals’ initial opinions into the evolutionary process. The FJ model is a
popular averaging model that incorporates individuals’ prejudices or initial opinions
within the network. Let s ∈ Rn represent the immutable innate opinions of actors in
the network. The expressed opinions are denoted by z ∈ Rn. Let wij ≥ 0 represent the
weight on the edge (i, j) ∈ E. The fixed point iteration of the Friedkin-Johnsen opinion
dynamics model is then expressed as

z
(t)
i =

si +
∑

j∈N(i) wijz
(t−1)
j∑

j∈N(i) wij + 1
.

At each time step, each actor embraces an expressed opinion proportionate to the av-
erage of its individual innate opinion and the opinions of its neighbors. It is established
that the Friedkin-Johnsen dynamics, as defined above, converge to a set of equilibrium
opinions z∗ [7], as given by: z∗ = (I + L)−1s , where L = D −A is the graph Lapla-
cian - with D, a diagonal matrix of (weighted) degrees associated with each node and A
is the (weighted) adjacency matrix) - and I is the identity matrix. Note that (I +L) is a
positive definite matrix (i.e., all the eigenvalues are positive), ensuring the existence of
its inverse. It can be observed that zi represents a convex combination of innate opin-
ions of all nodes, including node i in the network. Now, we formally define the p-th
order polarization.

Definition 1 (p-th Order Controversy). For a network, G with innate opinions de-
noted by s, and the expressed opinions z, the p-th order controversy is defined as

fp(L) = sT (I + L)−ps (1)

Definition 2 (Polarization). The function fp(L), for p = 2, is called polarization
(P(z)) and is defined as the measure of variation in expressed opinions among the
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users in the network. It is calculated as follows:

P(z) = zT z = sT (I + L)−2s = f2(L) (2)

Chen et al. [2] defined the above equation as controversy. P(z) is known to be non-
convex [8]. The disagreement in the network reflects the difference in the expressed
opinion of a user/node with neighbors. For a vector of expressed opinions, z, the dis-
agreement for the given network G is defined as D(z) =

∑
(i,j)∈E wij(zi − zj)

2 =

zTLz = sT (I + L)−1L(I + L)−1s .

Definition 3 (Polarization-Disagreement). In equation (1), when p = 1, the function
f1(L) evaluates to polarization-disagreement index [1,2] and is given by:

P(z) +D(z) = sT (I + L)−1s = f1(L). (3)

Polarization-Disagreement index is a convex function [9].

p-th order controversy (for p ≥ 3) arises in computing multi-period scenarios,
where controversy is assessed across different time epochs. In multi-period contro-
versy, the final opinions (z) of one epoch become initial opinions (s) of the next, i.e.,
st = zt−1, where t is the epoch or time step. Thus, for epoch t, the final opinion be-
comes zt = (I +L)−ts, and the corresponding polarization is zTt zt = sT (I +L)−2ts,
which can be regarded as p-th order polarization, where p = 2t.

Definition 4 (Average Conflict Risk (ACR)). Assuming that the initial opinions are
sampled from a uniform distribution, the Average Conflict Risk (ACR) for p-th order
polarization is defined by taking the expectation of all possible initial opinions and is
defined as follows:

ACR = E[sT (I + L)−ps] = E[Tr(sT (I + L)−ps)] = E[Tr(ssT (I + L)−p)] (4)

= Tr[E(ssT )(I + L)−p] = Tr((I + L)−p) . (5)

Thus the ACR for polarization (p = 2) and polarization-disagreement (p = 1) is
given by Tr((I + L)−2) and Tr((I + L)−1) respectively [2].

In this research, we aim to investigate how a social networking platform administra-
tor can alter the network topology within a specified budget to minimize fp(L). While
expressed or external opinions can be empirically quantified, a significant constraint of
this model is the near impossibility of prior knowledge about initial opinions. In our
study, we posit that the network administrator is only aware of opinionated clusters but
lacks access to individuals’ initial opinions. Towards this, in this paper, we are interested
in minimizing the following:

Definition 5 (Minimizing p-th order Polarization). Given an adjacency matrix A0

and a budget k, the network administrator, being agnostic to the initial opinions s, aims
to find an adjacency matrix A and its associated graph Laplacian L = D − A with
expressed opinions z that has minimum fp(L). Mathematically, it is expressed as:

min
A

fp(L) = sT (I + L)−ps

subject to ∥ vec(A)− vec(A0)∥1 ≤ 2k .
(6)
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Current methodologies for minimizing fp(L) (equation 6) primarily revolve around
the premise of having insight into the distribution of initial opinion vectors, as described
in Definition 4 of ACR and in Section 2. However, in this paper, we operate under the
assumption of lacking any knowledge about the distribution of initial opinions s.

2 Related Work

In recent years, there has been a surge in formulating and exploring optimization prob-
lems related to opinion dynamics models, each addressing diverse objectives. A sub-
stantial body of research has concentrated on enhancing collective opinion by employ-
ing various strategies. These strategies encompass adjustments to actors’ initial opin-
ions [10] and the modulation of individuals’ susceptibility to persuasion [11,12]. An
increasingly pivotal area of investigation involves the optimization of social phenomena
within networks. [1] tackled the challenge of identifying an undirected graph topology
with a specified edge cardinality, aiming to minimize both polarization and disagree-
ment. Their study showcased that minimizing the Polarization-Disagreement index in
a network is convex concerning the Laplacian matrix L. Furthermore, they established
the existence of a graph topology with O( n

ϵ2 ) edges, ensuring a (1+ϵ) approximation to
the optimal solution. Additionally, the authors presented a polynomial-time semidefinite
programming approach designed to optimize the same objective through the perturba-
tion of initial opinions.

[13] provided a scalable greedy algorithm for optimizing the Polarization - Dis-
agreement index within a specified budget based on a given set of initial opinions.
Despite the non-submodular nature of the function, they successfully established a
bounded approximation ratio. To address the issue of potential echo chambers, [14]
augmented the FJ model by connecting edges between users with matching ideologies.
They observed that this augmentation could lead to potential echo chambers. Examin-
ing the adversarial scenario, [15] investigated how Disagreement and Polarization can
be increased by perturbing the initial opinions of nodes in the network. A recent study
by [8] delved into how an administrator or a centralized planner can alter the network
to reduce polarization. They addressed this problem in scenarios where initial opin-
ions were known and unknown. When the planner is oblivious to initial opinions, they
propose the Fiedler difference vector approach (FD) for reducing polarization.

Need for alternative approach: Most existing studies aiming to minimize polarization
and polarization-disagreement indices by altering network topology assume complete
knowledge of initial opinions. The only methodologies in the literature that remain
indifferent to the selection of initial opinions are the Average Conflict Risk (ACR) and
the Fiedler difference vector (FD). ACR assumes that the covariance matrix of initial
opinions, ⟨s, sT ⟩, is an identity matrix, and FD operates by heuristically minimizing
the λ2 of the graph Laplacian. In real-world networks, the initial opinions need not
follow a particular distribution, and in Section 4, we empirically demonstrate that all
eigenvalues play a pivotal role in minimizing polarization. To address the limitations
of existing methods, we propose a semidefinite programming approach that assumes
no knowledge of initial opinions. We use ACR and FD as benchmark references for
comparison in Section 4.
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3 Semidefinite Programming formulation to Minimize
Polarization

This section proposes a novel semidefinite programming formulation for minimizing
the p-th order polarization defined in Definition 1. Our approach begins with a broad for-
mulation, addressing the optimization problem outlined below (equation 7 transforms
into minimizing polarization when p = 2 and polarization-disagreement when p = 1):

min
L

fp(L) = sT (I + L)−ps

subject to L ∈ L
∥ vec(L)− vec(L0)∥1 ≤ 4k ,

(7)

Here, L0 represents the Laplacian of the given graph. The budget constraint is ad-
justed to 4k instead of 2k as modifying each entry in the adjacency matrix is equivalent
to altering 4 entries in the Laplacian. Without knowledge of the initial opinion vector s,
resolving this optimization problem in its present state is not feasible. Nevertheless, by
leveraging the spectral property of the Laplacian L, and assuming that the initial opin-
ions are mean-centered, i.e., s ⊥ 1⃗, we can establish the lower bound for the objective
function as

fp(L) ≥ (λmin((I + L)−p))sT s =
sT s

(1 + λmax(L))p
(8)

For the upper bound, note that the eigenvector corresponding to the largest eigen-
value of (I + L)−p is 1⃗. Since s is orthogonal to 1⃗, we get

fp(L) ≤ (λmax((I + L)−p))sT s =
sT s

(1 + λ2(L))p
(9)

For the unconstrained budget, the global optimum for fp(L) is attained for com-
plete graphs. The rationale behind this is that a complete graph possesses the maximum
possible eigenvalue (λmax) of n, and any other Laplacian matrix with n vertices will
have an eigenvalue no greater than n. However, this solution becomes impractical when
the budget k is limited in a constrained setting.

One approach to minimizing the p-th order polarization is maximizing λ2(L). This
strategy of maximizing the spectral gap has been explored to enhance network robust-
ness by introducing additional links, as discussed in [16] and [17]. This heuristic in-
volves adding edges between nonadjacent vertices in the graph with the largest abso-
lute difference |µi − µj | in the entries of the Fiedler vector µ [18]. Miklos et al. [8]
used these heuristics to establish bounds on the change in polarization (p = 2) resulting
from adding an edge in G. However, the spectral gap approach tends to overlook the
potential effects of other eigenvalues by concentrating solely on maximizing λ2 (refer
to Section(4) for details).

Here, we introduce a systematic method designed to increase all the eigenvalues of
the matrix L ∈ L. We start with the eigenvalue decomposition of (I + L) = V ΛV T

where V is an orthonormal matrix. Observe that columns of V (denoted as vi) can
be treated as the orthonormal basis of Rn as L is a normal matrix. Thus, s can be
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represented as a linear combination of columns of V , i.e., s =
∑n

i=1 αivi and ∥s∥ =∑n
i=1 α

2
i . The elements of Λ are expressed as 1 + λi with λi ≥ 0 given that L ∈ Sn

+.

sT (I + L)−ps = sTV Λ−pV T s =

n∑
i=1

1

(1 + λi)p
(sT vi)

2 =

n∑
i=1

1

(1 + λi)p
α2
i

≤
n∑

i=1

1

(1 + λi)p
max

i
α2
i ≤

n∑
i=1

1

(1 + λi)p
∥s∥2,

Where the last inequality follows trivially. Considering the network administrator’s
lack of knowledge of s, it is reasonable to minimize the upper bound. This involves
minimizing M :=

∑n
i=1

1
(1+λi)p

= Trace((I + L)−p) (ACR given in equation 4),
a strategy employed in [2] and [1] for p ∈ {1, 2}. However, the computational chal-
lenges associated with inverting (I + L) and repeated matrix multiplications make the
minimization of Trace((I + L)−p) challenging.

Essentially, any monotonically increasing function of M can be minimized to achieve
an equivalent minimization of M . An illustrative example is logM . Additionally, no-
tice that M ≥ 1, ensuring logM ≥ 0. This observation emphasizes that M logM is
also monotonically increasing, and minimizing M logM is equivalent to minimizing
M . By applying the log-sum inequality, we obtain:

M logM ≤
n∑

i=1

1

(1 + λi)p
log

n

(1 + λi)p
≤

n∑
i=1

log
n

(1 + λi)p

≤ n log n− p logΠn
i=1(1 + λi)

≤ n log n− p log det(I + L)

Therefore, the minimization of −p log det(I + L) effectively minimizes the upper
bound on p-th order polarization. Notably, this formulation is centered on augmenting
the eigenvalues of L. The convex formulation employing log(det(I + L)) is provided
below. We retain the exponent p in the objective function to emphasize the generaliz-
ability of our approach.

min
L

− p log(det(I + L))

subject to L ∈ L
∥ vec(L)− vec(L0)∥1 ≤ 4k .

(10)

Substantial research has been dedicated to this objective function with a focus on
scalability [19], [20], [21], [22].

Ensuring Sparsity: When addressing the convex formulation in (10), the resulting
Laplacian may exhibit high density. Even for modest budgets, our observations indicate
that the solution to (10) tends to converge to a complete graph with reduced weights dis-
tributed across the network. This phenomenon has been empirically noted with the com-
binatorial graph Laplacian, leading to the introduction of various sparsity-preserving
techniques in the literature [23], [24], [25], [26].
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Empirical findings suggest that employing an ℓ1 regularizer on the combinatorial
graph Laplacian, coupled with generalized Laplacian constraints pertaining to symme-
try and negativity of off-diagonal elements, proves effective in practice [26]. Adhering
to this principle, we adopt an entry-wise ℓ1 norm for the graph Laplacian.

To mitigate the echo chamber effects and reduce polarization, it is beneficial to in-
troduce edges connecting users with opposing opinions. We perform this by establishing
two opinionated clusters by grouping users with similar opinions and labeling one clus-
ter as ”−1” and the other as ”1”. In the subsequent formulation, cluster(i) denotes the
opinionated cluster of node i (assuming a binary opinionated model). The objective is to
bias the optimization problem towards adding edges between opinionated clusters while
simultaneously maximizing eigenvalues of L. Otherwise, we penalize it with a penalty,
i.e., for two nodes i and j penalty cij is defined as cij =| cluster(i) + cluster(j) |.
The extent of the penalty is determined by φ ∈ R. The mathematical formulation with
penalization is presented below.

min
L

− p log(det(I + L)) + φ
∑
i<j

cij |Lij |

subject to L ∈ L
∥ vec(L)− vec(L0)∥1 ≤ 4k .

(11)

The outcome derived from equation (11) is subsequently refined through pruning,
employing a threshold ρ to eliminate smaller weights in L by setting them to zero. It is
important to note that after pruning, the resulting matrix L̂ may not conform to Lapla-
cian properties. To address this, we apply the following projection to obtain the optimal
Laplacian Lproj that is closest to L̂, as outlined in [27]: Lproj

ii = −
∑n

j=1,j ̸=i L̂ij ,∀i ∈
{1, · · · , n} . Only the diagonal entries need to be updated after pruning.

4 Empirical Results

In this section, we will conduct an empirical comparison of the performance of our ap-
proach (11) with alternative eigenvalue maximization methods, including Trace ((4) for
p ∈ {1, 2}) and the Fiedler Difference vector (FD) ([17], [8]). Our empirical analysis
will focus on minimizing p-th order polarization for p ∈ {1, 2}. All three heuristics aim
to modify the network’s topology with the goal of minimizing both polarization (P(z)
for p = 2 in equation (7)) and polarization-disagreement (P(z) + D(z) for p = 1 in
equation (7)) indices (The experiments are run using the CVX [28]). A recent study by
Miklos et al. [8] delved into the FD approach within the context of polarization. Their
findings indicated that the FD approach does not consistently necessitate the addition
of edges between users with opposing opinions to mitigate polarization. They observed
that FD reduces polarization without reducing the homophily of the network. We eval-
uate the efficacy of these heuristics on real-world and synthetic networks. We consider
models based on stochastic block and preferential attachment for synthetic networks.

Karate Club Network: This social network captures a clash of opinions involving an
instructor and an administrator in a karate club, as outlined by Zachary [29]. Com-
prising 34 nodes and 78 edges, this undirected network represents club members, with
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each edge symbolizing a connection between two members. There are two opinionated
clusters among club members stemming from the conflict. Each of these clusters is as-
signed an internal opinion of ”1” or ”-1.” In Figure (1(a), we depict the variation in
P(z) and P(z) + D(z) across different budgets. Notably, the log det approach substan-
tially reduces polarization and polarization-disagreement indices compared to the Trace
(equation 4 for p ∈ {1, 2}) and FD methods. As FD achieves polarization reduction by
introducing a single edge, it creates the sparsest graph. For the log det approach (11)
with an absolute value thresholding parameter ρ = 0.05 and φ = 0.05, the average
number of non-zero entries in the matrix for budgets k = 1 to k = 15 is 112.

0 3 6 9 12 15
Budget k
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6

(z
)

0 3 6 9 12 15
Budget k

6

8

10

12

(z
)+

(z
)

FD logdet Tr(I+L) 2 Tr(I+L) 1

(a) Change in polarization P(z) and
polarization-disagreement (P(z) + D(z))
with budget on Karate Club network.
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Budget k
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)+
(z

)

FD logdet Tr(I+L) 2 Tr(I+L) 1

(b) Change in polarization P(z) and
polarization-disagreement (P(z) + D(z))
with budget on Twitter network

Fig. 1: Reduction in Polarization on Karate Club and Twitter Networks

Twitter Network: [30] compiled the Twitter dataset for the analysis of the Delhi leg-
islative assembly elections debate. The dataset, obtained through hashtags such as #BJP,
#AAP, #Congress, and #Polls2013, forms an undirected network comprising 548 users
engaged in 3638 interactions via tweets. Initial opinions are derived from users’ in-
teractions on Twitter using sentiment analysis. Given that the opinions acquired are
non-binary and continuous, we categorize them into two classes for the computation
of equation (11). Continuous opinions are utilized to determine the final polarization.
Figure 1(b) visually represents the variations in polarization (P(z)) and polarization-
disagreement (P(z)+D(z)) indices using the log det approach (11), the Trace approach
(equation 4 for p ∈ {1, 2} ), and the Fiedler Difference (FD) method. The log det ap-
proach is more effective in reducing both indices than the alternative methods. In (11),
parameters |ρ| and φ are set to 0.02 each. The average number of non-zeros in the re-
sulting matrix across all budgets using the log det approach is 4798 (with pruned edges
totaling 295, 506).

Stochastic Block Models: The Stochastic Block Model (SBM) is a generative model
that produces random graphs containing community structure based on the notion of
groups of nodes. We generate two communities with 100 nodes in each of them. The
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inter-cluster and intra-cluster densities are given by 0.05 and 0.1, respectively. The to-
tal number of edges is 1490. We distribute the initial opinions in two different ways.
In the first case, we provide an opinion of “−1” to one block of nodes and an opin-
ion of “+1” to another. Here, the opinionated clusters are well connected, so the FD
approach connects the nodes across two clusters to increase the algebraic connectivity.
The penalization term in equation (11) enforces it to connect to nodes across oppo-
site opinionated clusters. The decrease in polarization and polarization-disagreement
is shown in Figure 2(a). In the second case, we distribute the opinions of “+1” and
“−1” uniformly within each block, and the variation in polarization and polarization-
disagreement for all three heuristics is shown in Figure 2(b). We observed that log det
significantly outperforms both Trace and FD approaches in both cases. For both cases
we use parameters |ρ| = 0.02 and φ = 0.05.
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(a) Change in polarization and
polarization-disagreement with budget
k in SBM when an initial opinion of “-1”
is assigned to one community of nodes and
an opinion “+1” to the other community.
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(b) Change in polarization and polarization-
disagreement for uniformly distributed
opinions within each community in SBM.

Fig. 2: Reduction in Polarization and Polarization-Disagreement on SBM

Preferential Attachment Models: Preferential attachment (PA) delineates a mechanism
of graph evolution wherein nodes with higher degrees exhibit an augmented probability
of acquiring new neighbors, a concept tailored to simulate power-law behavior [31].
In our analysis, an incoming vertex establishes connections with a maximum of four
other pre-existing vertices within the graph. The resulting PA network comprises 200
nodes and 736 edges. Initial opinions of ”1” and ”-1” are uniformly assigned at random
to nodes in the network. The reduction in P(z) and (P )(z) + D(z) spanning budgets
k = 1 to k = 15 is depicted in Figure 3(a). A substantial decrease in polarization
is observed when employing the log det method in comparison to the FD and Trace
approaches. The average number of edges in the network, following log det relaxation
in (11) with parameters φ = 0.05 and |ρ| = 0.04, amounts to 1154.
Analysis: From the above empirical analysis, we conclude that log det (11) outper-
forms the Fielder Difference and Tr approach in minimizing polarization and polarization-



10 Meher Chaitanya et al.

0 3 6 9 12 15
Budget k

2.5

3.0

3.5
(z

)

0 3 6 9 12 15
Budget k

14

15

16

17

(z
)+

(z
)

FD logdet Tr(I+L) 2 Tr(I+L) 1
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varying budgets using log det, Trace, and
Fielder Difference (FD) approaches on PA
network.
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Fig. 3: (a) Reduction in Polarization and Polarization-Disagreement on PA network. (b)
Variation in Algebraic Connectivity

disagreement indices. If the opposite opinionated clusters are well connected, then there
is a considerable reduction in polarization using log det compared to FD. The absolute
value of thresholding parameter ρ is in the range of 0.01−0.05 (based on empirical ob-
servation). Figure 3(b) shows the effect on algebraic connectivity by all three different
approaches. It can be observed that minimization of Tr((I + L)−2) considerably re-
duces the algebraic connectivity of the resultant graph Laplacian compared to both FD
and log det, but it still fails to outperform log det in terms of decreasing polarization
and polarization-disagreement. This suggests that increasing λ2 could possibly increase
the other eigenvalues due to PSD, but this increase is not significant enough for both
FD and Tr to reduce the polarization. Also, with the above empirical analysis, Trace (4)
minimizes polarization by increasing the extreme eigenvalues, whereas log det mini-
mizes polarization by increasing a subset of the eigenvalues (need not be extreme ones)
of L. This shows that all eigenvalues of the network play a pivotal role in reducing
polarization.

Conclusion and Future Directions In this paper, we studied the problem of minimiz-
ing p-th order polarization by altering the network’s topology under the scenario when
the network administrator is oblivious to initial opinions. We provide a general compu-
tationally tractable semidefinite programming relaxation framework for minimizing the
upper bound of this objective function and empirically demonstrate that it outperforms
the existing state-of-the-art methodologies.

Current scalability investigations predominantly center around computing the value
polarization (sT (I + L)−2s) and polarization-disagreement (sT (I + L)−1s) [32]. In
practice, it has been shown that SDPs can be scaled to millions of nodes for problems
such as Maximum Cut by employing tight approximations. In the future, it would be in-
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teresting to explore the applicability of such concepts in deriving approximation bounds
for minimizing p-th order polarization and scaling them to extremely large network con-
figurations.
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