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What is Interpretability?

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YoU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN (OLLECT
THE ANSLIERS ON THE OTHER SIDE.

VHAT IF THE ANGLERS ARE LURONG? )

JUST STIR THE PILE. INTIL
THEY START LOOKING RIGHT.
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What is Interpretability?

Interpretability within Machine
Learning is the degree to which we

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YU POUR THE DATA INTD THIS BiG can understand the cause of a
PILE OF LINEAR ALGEBRA, THEN (OLLECT - : :
THE PNSLERS ON T OTER SDE. decision, and use it to consistently

\JHAT I THE ANGLERS ARE WM?) predict the model’s prediction.

JUST STIR THE PILE. INTIL
THEY START LOOKING RIGHT.
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What is Interpretability?

Interpretability within Machine
Learning is the degree to which we

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YoU POUR THE DATA INTD THIS BIG can understand the cause of a
PILE OF LINEAR ALGEBRA, THEN COLLECT -~ : ;
THE ANGLERS ONTE OTER SIE. decision, and use it to consistently
\JHAT I THE ANGLERS ARE WM?) predict the model’s prediction.
JUST SR THE PILE UNTIL
THEY STPRT LOOKING RIGHT.

Traditionally, interpretability &
performance is seen as a trade-off.?
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What is Interpretability?

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YoU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN (OLLECT
THE ANSLIERS ON THE OTHER SIDE.

VHAT IF THE ANGLERS ARE LURONG? )

JUST STIR THE PILE. INTIL
THEY START LOOKING RIGHT.

Interpretability within Machine
Learning is the degree to which we
can understand the cause of a
decision, and use it to consistently
predict the model’s prediction.

Traditionally, interpretability &
performance is seen as a trade-off.?

Our work demonstrates a deep
intersect between these two
seemingly orthogonal research foci.

?Dziugaite, Ben-David, Roy. [Arxiv 2020]
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Overarching Motivation
Goal: Constrain learning to interpretable “sanity checks”
Legend

E]Expectations

. Reality
. Target

Penalty! Not
Interpretable

Spurious
Correlations
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Contrastive Activation Maps (1/2)

HiResCAMs are a provably faithful interpretability technique:

Img Convolutional
Backbone

VZ(HiResCAM _
c =
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Contrastive Activation Maps (1/2)

HiResCAMs are a provably faithful interpretability technique:

Img Convolutional
Backbone

F
., o0
AHlResCAM _ c @Af 1
Provably faithful because:
Dy,D;
fe= > ACEE + be o)
di,d>
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Contrastive Activation Maps (1/2)

HiResCAMs are a provably faithful interpretability technique:

Img Convolutional
Backbone

1HiResCAM
A 1
Ac Z oA, A (1)
Provably faithful because:
Dy,D;
Yo=Y ANRSAM 4 b, (2)
di,d>

However, softmax-activated multi-class classification relies on inter-class
logit differences'", while HiResCAMs only re-construct absolute values.
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Contrastive Activation Maps (2/2)

To recover logit differences, we define ContrastiveCAMs:

- . - oy le|—1
A<(:ontrast|ve = {AglResCAM _AHIReSCAM} (3)

Ct’ct,) v Cyr ec\cr

lwith subtle changes to the architecture
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Contrastive Activation Maps (2/2)

To recover logit differences, we define ContrastiveCAMs:

- . - oy le|—1
A<(:ontrast|ve = {AglResCAM _AHIReSCAM} (3)

Ct’ct,) v Cyr ec\cr

Next, we can now define an objective equivalent to cross-entropy:*
D1,D;
max > AR, Ve € Zy(le| 1) (4)
d1,d>

lwith subtle changes to the architecture
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Contrastive Activation Maps (2/2)

To recover logit differences, we define ContrastiveCAMs:

- . - oy le|—1
contrastive .__ HiResCAM HiResCAM
'A( Ct,Cy/ ) T {Act - ACL./ }

Ct/EC\Ct
Next, we can now define an objective equivalent to cross-entropy:*

D1,D;

max Y  ARTSEG Ve € Zi(|c[ - 1) (4)
di,d>

With one key difference: we’'ve preserved spatial information.

lwith subtle changes to the architecture
Mathematical Foundations of DL
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Understanding the Problem

We evaluated models trained using Cross-Entropy Loss using
ContrastiveCAMs:

10

0 200 0 200
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Understanding the Problem

We evaluated models trained using Cross-Entropy Loss using
ContrastiveCAMs:

0

0 200 0 200 0 10 0 10

Problem Statement: For image classification tasks, Cross-Entropy
motivates learning spurious correlations.
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Understanding the Problem

We evaluated models trained using Cross-Entropy Loss using
ContrastiveCAMs:

0

0 200 0 200 0 10 0 10

Problem Statement: For image classification tasks, Cross-Entropy
motivates learning spurious correlations.

Provided the target class contains the largest logit, cross-entropy is happy.
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Understanding the Problem

We evaluated models trained using Cross-Entropy Loss using
ContrastiveCAMs:

0

0 200 0 200 0 10 0 10

Problem Statement: For image classification tasks, Cross-Entropy
motivates learning spurious correlations.

Provided the target class contains the largest logit, cross-entropy is happy.

We can use ContrastiveCAMs to optimize our network under a
“foreground-only” constraint!

Mathematical Foundations of DL Contrastive Optimization October 10, 2024



Contrastive Optimization

Cross-Entropy Loss is defined as follows:

j(y y Z ye log Jsoftmax()/c)) (5)

ceC
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Contrastive Optimization

Cross-Entropy Loss is defined as follows:

j(y y Z ye log Jsoftmax()/c)) (5)

ceC

We derive cross-entropy as function of ContrastiveCAMs, then penalize
the background:

j({Acontrastlve}M’ h, C) —

1 (6)
Zi exp ( Z ho Acontrastlve + Z ‘(1 _ h) ® _/Z[((:gnit)rastive >

— log
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Contrastive Optimization

Cross-Entropy Loss is defined as follows:

j(y y Z ye log Jsoftmax()/c)) (5)

ceC

We derive cross-entropy as function of ContrastiveCAMs, then penalize
the background:

j({Acontrastlve}M’ h, C) —

1 (6)
Zi exp ( Z ho Acontrastlve + Z ‘(1 _ h) ® _/Z[((:gnit)rastive >

— log

The model learns to:
1. Use only the foreground to base it's prediction.

2. Treat the background as noise, and learn invariance to it.
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Results (so far) (1/2)

In-distribution fine-grained image classification on Oxford-1lIT Pets:

Method | Valid CE Loss Train Acc Valid Acc

Cross-Entropy 3.605 5.1% 5.2%
Interpretable (Ours) 3.159 96.9% 51.5%
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https://www.kaggle.com/c/dogs-vs-cats

Results (so far) (1/2)

In-distribution fine-grained image classification on Oxford-1lIT Pets:

Method | Valid CE Loss Train Acc Valid Acc

Cross-Entropy 3.605 5.1% 5.2%
Interpretable (Ours) 3.159 96.9% 51.5%

Out-of-Distribution generalization performance on Dogs v/s Cats dataset:

Method | Accuracy

Cross-Entropy 77.0%
Interpretable (Ours) | 83.4%
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https://www.kaggle.com/c/dogs-vs-cats

Results (so far) (2/2)

Before:
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We're targeting the following next steps:

1. Exploring a level deeper: unpacking Zle Ar.
Identifying the cause of the generalization gap in multiclass setting.
Evaluating adversarial robustness.

Mechanistic Interpretability study (circuit identification).

AR

Evaluating the approach at scale, using ImageNet-S.
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We're targeting the following next steps:

1. Exploring a level deeper: unpacking Zle Ar.
Identifying the cause of the generalization gap in multiclass setting.
Evaluating adversarial robustness.

Mechanistic Interpretability study (circuit identification).

AR

Evaluating the approach at scale, using ImageNet-S.

Long-Term Objective: Build proof-backed approaches to optimization that
learn intrinsically interpretable neural networks.
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Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/cont-opt.pdf
Code: https://dagshub.com/jinensetpal/contrastive-optimization

Homepage: https://jinen.setpal.net/
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